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Abstract— We present here, a novel network architecture
called MergeNet for discovering small obstacles for on-road
scenes in the context of autonomous driving. The basis of the
architecture rests on the central consideration of training with
less amount of data since the physical setup and the annotation
process for small obstacles is hard to scale. For making effective
use of the limited data, we propose a multi-stage training
procedure involving weight-sharing, separate learning of low
and high level features from the RGBD input and a refining
stage which learns to fuse the obtained complementary features.
The model is trained and evaluated on the Lost and Found
dataset and is able to achieve state-of-art results with just
135 images in comparison to the 1000 images used by the
previous benchmark. Additionally, we also compare our results
with recent methods trained on 6000 images and show that
our method achieves comparable performance with only 1000
training samples.

I. INTRODUCTION

The importance of small obstacle discovery for on-road
autonomous driving cannot be overstated. Small obstacles
such as bricks, stones and rocks pose a veritable hazard to
driving, especially to the state estimation modules that are a
core constituent of such systems. Some times these obstacles
can take the shape of stray dogs and cats that are entailed
protection. Many a time these objects are too low on the road
and go unnoticed on depth and point cloud maps obtained
from state of the art range sensors such as 3D LIDAR. The
problem slowly seems to be generating interest in the robotic
and vision community [1], [2], not without a reason. For
one, even the best of range sensors such as 3D LIDAR
can find segmenting obstacles of height 15-25cms from a
distance of 10m or more rather challenging. The problem
is more pronounced with low cost low baseline stereo rigs,
wherein the disparity profile can hardly be used to discern
such obstacles from the background when they are at a depth
of 5m or more.

Introspection reveals that the problem is difficult to solve
purely based on appearance cues even with the best of the
state of the art deep convolutional networks since gradients
in the image can be caused equally due to changes in
appearance such as markings and zebra crossings on the
road as much as it could be due to obstacle edges. This
problem aggravates in case the obstacles are small. Hence,
an apt combination of both appearance and depth or disparity

1Krishnam Gupta is with Microsoft, India. Work done as gradu-
ate student at International Institute of Information Technology Hy-
derabad (IIIT-H), India. 2Syed Ashar Javed, Vineet Gandhi and
K. Madhava Krishna are with Kohli Center of Intelligent Sys-
tems (KCIS), IIIT-H, India. krishnam.gupta@microsoft.com,
mkrishna@iiit.ac.in

evidences is more likely to perform the task better. Recent
efforts [3] on multi modal fusion also suggests likewise.

Most of the previous works [4], [1], [5] in small obstacle
detection are based on low level image and depth profile
analysis, which are prone to errors due to noise in depth com-
putation (especially while using a stereo rig). The challenge
in naive application of recently successful deep learning
architectures is the limited availability of annotated data. In
this paper, we propose a novel deep learning architecture
called MergeNet which can be trained using as low as 135
images to obtain state of the art results.

We pose the problem of obstacle detection as that of seg-
menting the road scene into multiple classes. The proposed
model consists of three key networks, namely the stripe-
net, the context-net and the refiner-net. Stripe-net is a fully
convolutional encoder-decoder model which is trained with
column-wise strips of RGBD input (each training image is
divided into a set of non overlapping vertical strips and fed to
the network individually). The key idea behind Stripe-net is
twofold: (a) learning discriminative features at a low-level by
only attending to the vertical pathway of a road scene and (b)
sharing parameters across the stripes to ensure lower model
complexity and in turn reducing susceptibility to overfit even
on small datasets. Context-net is also a fully convolutional
encoder-decoder, but is trained on the full image. The role of
this network is to incorporate global features which typically
span a width higher than the stripe-width used in the previous
network. Global coherence and important contextual cues are
more suitably learnt using this network. Finally, the refiner-
net is used for aggregating both the low and high level
features and making the final prediction. Figure 1 illustrates
a motivating example, showing the results at different stages
of the proposed architecture.

Formally, we make the following contributions:
• We propose a novel three-staged architecture for seg-

menting out the small on-road obstacles. The model
design, the multi-modal data input and the fusion of
features obtained at multiple spatial scales enable us to
exploit the structure in a road scene while preserving
the details necessary for small obstacle detection.

• The proposed network can be efficiently trained for
the task of semantic segmentation from as few as 135
images. Thus it makes a much needed effort in the
direction of applying deep learning architectures in such
data deficient applications.

• We test our model on the Lost and Found dataset [1]
and show an improvement of 19% in the instance-level
detection rate even when using a tenth of the training
dataset and an improvement of around 30% if we use



Fig. 1. An overview of our network components and their outputs (the obstacle category is marked in red, the off road category is marked in green
and the road category is marked in blue). The STRIPE-NET, which takes individual vertical stripes of RGBD data as input, is effective at detecting small
objects (but with false positives and noisy road boundaries) whereas the CONTEXT-NET, which takes full RGB images as input, better preserves the
overall structure of the scene (but misses out on small objects on the road). The REFINER-NET learns to combine the best of both worlds and outputs
accurate and smooth segmentation maps.

the full dataset. We also achieve comparable results with
[2], while employing only one sixth of the training data.

The rest of the paper is organized as follows: Section II
lists the related work. The proposed architecture is detailed
in Section III. The experiments and results are presented in
Section IV and Section V. The final section comprises of
conclusions and future work.

II. RELATED WORK

Early efforts on small obstacle detection were limited
to indoor scenes. Zhou and Baoxin [6] presented a solu-
tion for obstacle detection using homography based ground
plane estimation algorithm. The work was extended in [7]
for smaller obstacles by combining multiple cues like ho-
mography estimation, superpixel segmentation and a line
segment detector into in a MRF framework. Early outdoor
efforts on the other hand were focused on problems like
curb detection [8], [9]. One line of work [8] was based
on probability occupancy maps [10], which is created by
orthogonal projection of the 3D world onto a plane parallel
to the road (assuming a structured environment where the
floor surface is approximately planar). The plane is then
discretized into cells to form a grid and the algorithm then
predicts the occupancy likelihood of each cell. Another line
of work [11], [9] utilized digital elevation map (DEM’s),

which builds a height based cartesian occupancy grid and
uses it for road surface estimation and obstacle detection.

Recent efforts [1], [2] have been made to extend the
specific problem of small obstacle detection to outdoor
settings for applications concerning autonomous driving and
driver assistance. In [1] the Lost and Found dataset for small
obstacle detection is presented along with three statistical
hypothesis tests for detecting small obstacles. The extension
of this work [2] combines deep learning with hypothesis
testing. A deep network termed UON which uses a Fully
Convolutions Network [12] with GoogleNet architecture is
used for obtaining a semantic segmentation map of the scene.
The network is trained on 6000 RGB images, combining
images from both Lost and Found dataset and the Cityscape
dataset [13]. The UON segmentation of the scene is then
converted to a stixel realization [14] and fused with the
hypothesis models of [1] to come up with the eventual
segmentation. Our method on the contrary is void of any
low/mid level post processing.

Since the small obstacle detection task can be expressed as
that of semantic segmentation of the obstacles, it also makes
sense to examine possible architectures pertaining to the
segmentation literature. The typical semantic segmentation
networks like [15], the Fully Convolutional Network [12]
and SegNet [16] apply hierarchical and bottom-up convolu-
tions and pooling to downsample an image, and then use



Fig. 2. Model architecture is shown. The three components of the pipeline are magnified and illustrated in detail (best viewed in color)

layers like bilinear upsampling, unpooling, atrous convolu-
tion or deconvolution (strided convolution) to obtain a dense
segmentation map. More advanced approaches like [17],
[18] utilize multi-scale or contextual features for learning
this dense mapping. Although many competitive architec-
tures for general application of semantic segmentation exist,
replication of these models for specific tasks like obstacle
detection yields inferior performance. Moreover, the labeled
data required for these complex models also limits the direct
applicability of standard semantic segmentation models, a
problem which we try to resolve in our work.

III. LEARNING TO DETECT OBSTACLES

Before formulating the problem and the model, it is useful
to analyze the nature of the problem and the properties a
good solution should possess. Firstly, the detection model
should be capable of detecting small obstacles which are
often far away on the road or don’t appear like an obstacle
(brick slabs of low height often resemble a cement road).
Similarly, detection should preclude artifacts like zebra cross-
ing and chalk markings on the road. Secondly, the effort
required for the physical setup of constructing and annotating
a small obstacle dataset for autonomous vehicles is consid-
erable, so it makes sense to have a parsimonious learning
model which isn’t data intensive. Also, less training data
makes a sufficiently parametrized model prone to overfitting,
which is to be kept in check. Thirdly, the model should be
deployable on an autonomous vehicle with respect to the
memory and inference speed.

A. Problem formulation

The obstacle detection problem is posed as that of seman-
tic segmentation of the video frames. The aim is then to learn

a mapping f(w, x) : X → L for each of the N pixels, where
xi = (vi, di) ∈ X are ordered pairs of visual RGB and depth
input respectively and li ∈ L are the set of labels for each
pixel and w are the parameters for the model being used.
Three labels, namely ’road’, ’off road’ and ’small obstacle’
are considered. Due to the various challenges mentioned in
the previous section, a staggered approach is used to learn
the mapping f as compositions of multiple functions. Each
of these mappings is learnt with a loss function defined as
the per-pixel cross-entropy loss, given as follows:

L(w) = −
N∑
i=1

|L|∑
l=1

1{l = yi}log(yi) (1)

where, 1 is the indicator function and yi ∈ Y is the
softmax probability for pixel i. The final output is taken as

lpredicted = argmax
l∈L

(Y ) (2)

B. The MergeNet model

The core intuition behind the MergeNet model is that
learning the low-level features of a road scene, combined
with high-level features learnt from the context of the scene
can jointly produce better segmentation maps. The MergeNet
consists of three individual CNNs, each implemented as a
fully convolutional network. The encoder and decoder blocks
used for upsampling and downsampling of the image are
similar to Segnet (basic version) [16], differing only in the
number of layers and channels. Each encoder downsamples
the input resolution through a series of convolution, batch
normalization and pooling layers and then upsamples the
encoded features though a series of deconvolution, batch
normalization and unpooling layers, back to the original



resolution. The first two networks learn at different levels of
spatial abstraction while the third is a refiner network which
exploits complementary information from the first two net-
works to produce a refined semantic map. These three models
are denoted by functions gstripe(ws, xs), gcontext(wc, xc)
and grefine(wr, xr) in the following sub-sections. Figure 2
shows the detailed structure of the whole pipeline and its
various modules.

Stripe Network The stripe network is the model respon-
sible for learning low-level features present within a narrow
vertical band of the image. The whole image is split vertically
into k strips of equal width and the function gstripe(ws, xs)
is learnt using a shuffled set of strips from the whole training
dataset using ground truth labels of corresponding strips as
supervision.

The network consists of two parallel encoding and de-
coding branches, one for the RGB channel and another
for the depth channel. Each branch contains four layers of
convolutional downsampling in the encoder followed by 4
layers of upsampling in the decoder. These branches are
subsequently fused across the channel dimension to obtain
a combined map which is used for pixel-wise predictions of
the three classes using a softmax layer.

The use of vertical strips xs offers multiple benefits.
It allows the model to concentrate on the discriminative
features present only within the narrow vertical band. This,
when combined with the context network, can be seen as
a form of curriculum learning of features where the easier
features are learnt first, followed by learning from more
global and information-dense parts of the image. Secondly,
the vertical strips allow the disparity map to contribute
critical depth information. Within a narrow strip of a typical
road scene, the disparity map follows an increasing trend of
depth until an obstacle is encountered, the depth at which
point, flattens out for some time before regaining its original
trend. This can act as a very strong signal for the presence of
obstacles. Thirdly, the use of strips allow the network to learn
useful features with only a small set of parameters which are
shared across all vertically split inputs. This is crucial for
preventing overfitting on the small training dataset.

Context Network The context network is responsible for
learning complementary features with respect to the stripe
network. The function gcontext(wc, xc) is learnt through full
RGB images as input xc, trained with the full image ground
truth as supervision. The idea is to learn global context which
can complement the stripe network. The context network
contains the same number of layers and channels as that of
any individual stream of the stripe network and is also similar
in architecture to the fully convolutional networks generally
used for semantic segmentation task. But the advantage of
using it in conjunction with the stripe network is evident
from the experimental results which highlight the limitation
of the context network in detecting very small obstacles.
Apart from providing the global features for obstacle detec-
tion, the context network also generates output segmentation
maps which are smoother and more coherent with respect
to neighboring pixels. Note that as opposed to stripe net,

including the depth channel leads to reduced performance,
which might be attributed to the use of complex RGBD data
coupled with training with very few samples.

Refiner Network The refiner network grefine(wr, xr) is
learnt using xr = (ys, yc) where ys and yc refer to the
class normalized output features from gstripe(ws, xs) and
gcontext(wc, xc) respectively. The input to this network is
therefore the output maps of the previous networks con-
catenated across the channel axis. This model contains only
two convolutional layers each for encoding and decoding
as the task of segmentation of raw images is simplified
to identifying relevant features from the previously trained
outputs. The visualization of features from the stripe and
context network underlines the need of a refiner network to
learn from the complementarity of features.

The complete MergeNet model is a composition of the
three networks:

f(w, x) = gr(wr, (gs(ws, xs), gc(wc, xc))) (3)

where gs, gc and gr are the stripe, context and refiner
models

C. Implementation details

The context model and refiner model are trained with
images of resolution 256 ∗ 896 whereas the stripe network
is trained with images of size 256 ∗ 32 by dividing each
image into k vertical strips where k = 28. Thus each
input is of size 256 ∗ 32. The strip-width of 32 is chosen
through cross-validation. Adam optimizer [19] is used while
training with an initial learning rate of 0.01. The batch size
is taken as 4 for the context and refiner network and 32
for the stripe network. Training is continued until the model
starts to overfit on the validation set. The context and refiner
networks are trained with a weighted cross entropy loss to
account for the difference in the number of pixels of each
class in the dataset. The weights for each class are set as
inversely proportional to the ratio of number of class pixels
and the number of total pixels. The stripe network is not
explicitly weighted at the loss level, but the shuffled stripes
are sampled and fed to the network such that the expected
value of occurrence of each class pixel is balanced out while
training.

During inference, the individual networks are merged
and a single segmentation map is produced by the refiner
network. The individual strips of the input image x can be
passed through the stripe network in parallel as the weights
are shared.

IV. EXPERIMENTS

The following section details the evaluation of our model.

A. Dataset

The Lost and Found dataset [1] is used for both training
and testing of our network. The dataset consists of around
2200 frames of road scene obtained from 112 stereo videos,
along with the pixel-level annotation of each frame pertaining



to the road category, the off road category and the small ob-
stacle category. The dataset has a challenging test set of 1200
images which contains varying road illumination, different
small objects present at long distances, non-uniform road
texture, appearance and pathways and many non-obstacle
class objects acting as distractors off the road. We train our
model using two sets of training data, one with the complete
training set of 1036 images and another with a reduced subset
of only 135 images sampled equally across all the training
image sequences. We evaluate our model on the released test
set.

B. Evaluation metrics
We evaluate our model on both pixel-level and instance-

level metrics. While choosing the metrics, there are two
primary goals. The first is to ensure fair comparability of
our results with the previous state-of-art methods, many of
which employ some approach-dependent metric. The second
is to assess the performance of our network through generic
and approach independent metrics which can be used without
any method-coupled adaptation in the future work.

Pixel-wise detection rate Pixel-level detection rate (PDR)
is defined as the fraction of pixels of the obstacle class,
taken across the test set, which are correctly detected by
the network. Formally, this metric is calculated as:

PDR =
CDPobstacle

TPobstacle
(4)

where CDPobstacle refers to the correctly detected pixels
of the obstacle class and TPobstacle refers to the total pixels
of the obstacle class.

Instance-wise detection rate Instance-level detection rate
(IDR) is defined as the fraction of obstacle instances, taken
across the dataset, which are detected by the network. For
this metric, an instance is marked correctly detected if more
than 50% of the pixels of the predicted obstacle overlaps with
the ground truth of that instance. For extracting instances
from pixel-level predictions, we convert the segmented map
into a binary image with obstacles/ non-obstacle classes.
Then, a 4-connectivity based connected component algorithm
is used to obtain instance-level maps of just the obstacle
class. The metric is formally calculated as:

IDR =
CDIobstacle
TIobstacle

(5)

where CDIobstacle refers to correctly detected instances of
the obstacle class and TIobstacle refers to the total instances
of the obstacle class, taken across the entire dataset.

Pixel-wise false positives Pixel-level false positives (PFP)
is defined as the fraction of pixels of the non-obstacle classes,
taken across the dataset, which are incorrectly marked as an
obstacle. Formally, this metric is calculated as:

PFP =
IDPobstacle

TPnon obstacle
(6)

where IDPobstacle refers to the incorrectly detected pixels
of the obstacle class and TPnon obstacle refers to the total
pixels of the non-obstacle class.

Model
IDR
(Instance)

IFP
(Instance)

PDR
(Pixel)

PFP
(Pixel)

Stripe Net@135 65.22 2.03 74.65 1.98
Context Net@135 55.89 0.49 62.76 1.73
MergeNet@135 73.42 0.69 85.00 2.01
Stripe Net@1036 77.87 2.48 86.71 4.16
Context Net@1036 65.00 1.40 74.52 3.60
MergeNet@1036 82.05 0.76 92.85 3.19

TABLE I
MERGENET AND ITS COMPONENTS’ PERFORMANCE ON THE LOST AND

FOUND DATASET

Instance-wise false positives Lastly, instance-level false
positives (IFP) is defined as the fraction of non-obstacle
instances, taken across the dataset, which are incorrectly de-
tected by the network. Similar to IDR, connected components
algorithm is used to get instance-level predictions. The metric
is formally calculated as:

IFP =
IDIobstacle

d
(7)

where d is the number of frames in the testing dataset
and IDIobstacle refers to incorrectly detected instances of
the obstacle class, taken across the entire dataset.

V. RESULTS

A. Quantitative results

Table I presents the results of our model and all its
components, on the full testing set of 1036 images and on a
subset of it containing 135 images. The Stripe-net model
performs better than the Context-net, reinforcing two of
our basic assumptions. Firstly, that the road scenes afford
an inherent vertical structure in the data, for both RGB
and depth inputs, which can be exploited effectively by
sharing parameters across the strips. Secondly, the local
information learnt by the Stripe-net model is more capable of
detecting the small obstacles than the standard architectures
in semantic segmentation, which operate on full images.
On the other hand, the Context-net is much more useful
in maintaining the consistency of labels in a globally-aware
manner, as evident from the qualitative results in the next
section. Furthermore, the Context-net also plays the vital
role of learning features which minimize the presence of
false positives. This is also verified quantitatively by observ-
ing that the false positives are reduced from 2.03 (Stripe-
Net@135) to 0.69 (Refiner-net@135) and from 2.48 (Stripe-
Net@1036) to 0.76 (Refiner-net@1036) when going from
only Stripe-Net to the Refiner-Net (final model) which uses
both Context and Stripe networks.

Table II shows the comparison of our model against the
previous state-of-art methods. FPHT Stixels [1] uses the
same 1200 image testing set from Lost and Found dataset
that we do. They also have a similar detection metric for
pixel-level and instance-level detection which makes a direct
comparison feasible. Using only 135 images, we achieve an
instance detection rate of 73.4% which is a 19% improve-
ment with 10 times less the data used for training and much



fewer false positives. A similar improvement is also visible
in pixel-level detection rates and false positives. Naturally,
this performance boost is even higher (around 30%) when
comparing our approach trained on the full training set with
FPHT Stixels.

We also compare our model with a more recent work
called UON-Stixels and its extensions [2] which are prefixed
as FUSION in table II. We perform comparable to their state-
of-art detection result on instances with only one-sixth of the
training data which again affirms the ability of MergeNet to
perform better with lesser data (it is to be noted that we
use a stricter metric of at least 50% overlap with the ground
truth annotation whereas their metric only evaluates on an
upper bound). The other metrics like pixel-level detections
and false positives can’t be compared since they are either
not evaluated in the paper or are differently defined. Another
important point to be noted here is that UON Stixels and its
extensions also learn a fully convolutional network trained
for semantic segmentation for generating a semantic class
map which is then used by other methods to get the 84.1%
detection rate. This means that it is theoretically possible to
use our networks in conjunction with their post-processing
techniques to further improve our performance.

Fig. 3. Variation of the cumulative instance detection rate across obstacle
distance

Another quantitative experiment which we conduct in
Figure 3, similar to that of previous work, is analyzing the
variation of cumulative detection performance with respect
to the depth of obstacle. The plot shows two of our models,
along with the plots from the previous work. The graph
presents the typical difficulty in detecting obstacles as the
distance from the camera increases.

Finally, we report the inference time of our model.
MergeNet generates semantic maps at 5 FPS on a Nvidia
GeForce GTX 1080 Ti GPU which can be run smoothly on
top of an autonomous vehicle in real time.

B. Qualitative results

Results of our method (MergeNet@135) on some of the
images from the test set are shown in Figure 4. Additional
results can be found in our video. We select the particular
road images to highlight the challenges arising due to varying
appearance, size, distance, shape and clutter of the obstacles.

Model
IDR
(Instance)

IFP
(Instance)

PDR
(Pixel)

PFP
(Pixel)

FPHT Stixels@1000 55.00 5.00 68.00 2.00
UON-Stixels@6000 73.80 0.103 NA NA
FUSION-OR@6000 84.10 0.669 NA NA
FUSION-Prob@6000 82.80 0.496 NA NA
MergeNet@135 73.42 0.69 85.00 2.01
MergeNet@1036 82.05 0.76 92.85 3.19

TABLE II
COMPARISON OF OUR METHOD WITH [1] AND [2]

The qualitative results display all the network outputs of 3
test images in each column. The first column shows three
far off obstacles on the road, one of each going undetected
by both stripe and context networks. But due to the comple-
mentary nature of features, and in turn, detections, the final
refiner network output detects all three obstacles successfully.
In the second column, three obstacles are present, each with
different size, height, texture and illumination. This road also
has chalk markings, something which the training set frames
do not contain. Even though the context network misses
out on all three obstacles, the stripe network detects all of
them and this is also passed onto the refiner network, which
segments all three objects with higher accuracy than both
other networks. Finally, the third column shows a relatively
larger obstacle, which is bigger than the strip-width of the
stripe network. The stripe network merges it into the off
road category, which is reasonable given it looks at each
stripe individually. However, the prediction is corrected when
merged with the context through the refiner network.

As for the failure cases of our approach, we observe 3
main qualitative scenarios: a) Undetected obstacle - Occurs
when the obstacle height is too low (e.g. a thin plank). b)
Obstacle detected as off-road - Occurs when obstacle lies too
close to the camera. c) Off-road detected as obstacle - Occurs
when irregular artifacts (e.g. patch of grass) are present at
the boundary of the road.

VI. CONCLUSION

In this paper, we propose a novel deep network archi-
tecture for learning to detect small obstacles on the road
scene. The model is composed of multiple stages, with each
stage learning complementary features which are then fused
to predict a segmentation map of the scene. We present
thorough quantitative and qualitative experimentation and
the results showcase high fidelity segmentation of obstacles
on challenging public datasets. The current version of our
algorithm runs at 5fps, which makes it suitable for on-road
driving applications such as autonomous driving and driver
assistant systems. In future work, we plan to investigate
the proposed architecture for settings with more number of
classes like pedestrian, pot holes, speed breakers and traffic
signs.
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