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Abstract. Computer assisted diagnosis (CAD) tools are of interest as they enable efficient decision making in
clinics and screening of diseases. Traditional approach to CAD algorithm design focuses on automated detection of
abnormalities independent of the end-user who can be an image reader or an expert. We propose a novel, reader-centric
system design wherein a readers attention is drawn to abnormal regions in a least-obtrusive yet effective manner, using
saliency-based emphasis of abnormalities and without altering the appearance of the background tissues. We present
an assistive lesion emphasis system (ALES) based on the above idea, for fundus image-based diabetic retinopathy
diagnosis. Lesion-saliency is learnt using a convolutional neural network (CNN), inspired by the saliency model of
Itti and Koch.1 The CNN is used to fine-tune standard low-level filters and learn new high-level filters for deriving a
lesion-saliency map which is then used to perform lesion-emphasis via a spatially-variant version of gamma correction.
The proposed system has been evaluated on public datasets and benchmarked against other saliency models. It was
found to outperform other saliency models by 6 to 30% and boost the contrast to noise ratio of lesions by more than
30%. Results of a perceptual study also underscore the effectiveness and hence the potential of ALES as an assistive
tool for readers.

Keywords: Computer Assisted Diagnostic (CAD), saliency, selective enhancement, color fundus image, Convolu-
tional Neural Network, gamma correction.
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1 Introduction

Recent advances in medical imaging has enabled the involvement of a variety of practitioners in the

diagnosis process. While in the past medical experts who examined patients also analyzed images,

the shortage of highly trained experts has led to creation of new types of services. One such service

allows images to be sent to a central location where they are read and observations/diagnosis are

recorded and returned. Centres offering such service are called Reading centers2 and they are

staffed with readers and some experts. Readers are trained only to examine images and write

reports whereas experts are medically trained and hence can also diagnose based on evidence

found in images and any available history of a patient maintained by the facility. Reading center-

like settings play an important role in screening and triage.
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Clinical screening is aimed at identifying individuals who may be at risk for some disease since

early detection is preferred in effective disease management. Breast cancer screening for women

in the age group of 45-54 years is one such example.3 In resource-constrained settings, screening

is done in camps by a field team and the images are brought/transmitted to reading centers for

experts to analyze and recommend further in-depth examination at a base hospital.4

Triage on the other hand is a practice followed by clinics to prioritize patients for experts’ at-

tention. A trained practitioner orders preliminary tests, a reader (semi-expert) analyzes the images

and the report is used to decide the priority of a patient. This practice helps to make the work-flow

efficient and speed up the diagnostic process. Acute stroke triage is an example of this.5

Image reading is a tedious task yet requires precision as it is critical to diagnosis. Fatigue

or inattention causes readers to miss inconspicuous/subtle lesions leading to under-reporting and

incorrect diagnosis. Computer Assisted Diagnostic (CAD) tools aim at addressing this problem.

CAD tools draw readers’ attention to abnormal regions typically by displaying augmented cir-

cles/markers on the abnormal regions.6 More recently, retrieving and displaying similar past cases

along with the diagnosis has been shown to be effective.7 Augmentation based assistance can

potentially clutter an image especially when abnormalities are present in abundance and when dif-

ferent types of abnormalities are also proximal in the image. Retrieval based assistance requires

a large amount of storage to store previous cases and heavy computations to calculate similarity

scores with large datasets. We argue that an alternate solution is to draw a reader’s attention by

emphasizing the abnormalities locally and making them more prominent while leaving the back-

ground tissue unaltered. This is motivated by the fact that the visual system draws attention to

salient locations characterized by distinctive features like color and orientation.1, 8 Boosting the

contrast of such salient locations has been shown (in the case of natural scenes) to attract one’s
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attention.9–11 Lesion-emphasis is both computationally efficient and clutterless. In this paper, we

take this alternate reader-centric approach and propose a novel Assistive Lesion Emphasizing Sys-

tem or ALES, which employs saliency of a region to determine the amount of its emphasis. The

ALES concept is demonstrated for retinal abnormalities called Diabetic Retinopathy (DR), an eye

disease observed in patients suffering from diabetes. Abnormalities specific to DR include two

major types of lesions: lipid leakage called hard-exudate and blood leakage called hemorrhage. In

color retinal images the former appears as a bright blob while the latter appears as a dark splotch.

The proposed ALES for DR has two stages: (i) saliency computation (ii) lesion-emphasis.

Technical contributions towards the development of ALES are as follows: (a) Novel approach

to image reading. An assistive solution is proposed based on saliency modeling. (b) A Convolu-

tional Neural Network (CNN) based saliency model with a novel loss function. Proposed architec-

ture is inspired by the Itti-Koch model1 which is extended and adapted to fundus images for DR

analysis. (c) Saliency based lesion-emphasis. This aids a least-obtrusive, yet effective assistance,

as only lesions are emphasized. The paper is organized as follows. The design of the two stages

are presented followed by their assessment.

2 Saliency Computation

2.1 Background

Computational modeling of visual saliency has been a subject of research for long. Existing

computational models range from biologically plausible ones1, 12 to information- and decision-

theoretic,13, 14 graphical,15, 16 spectral-analysis,17, 18 pattern classification based,19–21 etc. These

models have been employed in many computer vision tasks such as object recognition,22 image

tracking and retrieval,23 segmentation,24 image/video compression.25 Such models however are
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Fig 1 From left to right: Retinal image with DR lesions, dark artifacts, bright artifacts and varying illumination.

developed to compute saliency for natural images where: (a) there are only few objects of inter-

est (b) the target objects are mostly in the center and (c) the background is free of clutter/texture.

Medical images do not fit this category. Also, medical image analysis being highly domain spe-

cific area, requires separate attention to each modality/disease. For example, the model developed

to generate saliency of tumor in brain MRI will not work for the DR lesions in color fundus im-

ages. Hence, various task-specific saliency models have been developed for different applications

including medical image classification and retrieval,26 plane identification from 3D ultrasound,27

registration of dynamic renal MR images,28 prostate MRI segmentation29 and saliency modeling

for Glioblastoma multiforme tumor.30

Our interest lies in developing saliency model for DR lesions which can be used for lesion-

emphasis in ALES. Saliency computation for DR images is a challenging task due to artifacts and

non-uniform illumination (see Fig 1). A good saliency model has to learn discriminate artifacts

from true lesions and reject the former. Computational saliency models have been reported for

only hard exudate.31, 32 Our aim is to develop saliency models for both hard exudate and hemor-

rhage. This is done using a Convolutional Neural Network(CNN) inspired by the Itti-Koch saliency

model.1 In this model, center-surround difference maps are computed in the color, intensity and

orientation dimensions at different scales using pyramids and a linear combination of these maps

is defined as the saliency. The proposed CNN architecture is derived from this model.
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2.2 Method

The task specific saliency has been traditionally modeled as a weighted combination of low-level

feature maps, where weights are learned from prior-knowledge.33, 34 A neural network based ex-

tension of Itti-Koch model has already been shown to be effective in handling normalization and

feature competition with biologically plausible dynamics.35 Our approach is to use a CNN to (i)

fine-tune standard orientation and center-surround filters (ii) learn new filters and (iii) learn the

weights for combining the feature maps.

CNN is a type of feed forward neural network which is biologically inspired. The important

feature of CNN is local connectivity and weight sharing, i.e. each neuron in the current layer

is locally connected to a small set of neurons from the previous layer. Synaptic weights used

for the local connectivity are same for all the neurons which enables convolution property. The

architecture we propose has three building blocks: a convolutional layer which performs filtering

of activations with weights; maxpooling which downsamples the image by retaining the maxima in

a local neighborhood and an activation function which applies a non-linear transformation on the

intensity values of an image. We use the Rectified Linear Unit (ReLU) as an activation function.36

2.2.1 CNN Architecture

The architecture of the proposed model has five stages as shown in Fig 2. It is carefully designed

to share similarities with standard Itti-Koch saliency model. Similarities are as follows: Stage 1 is

equivalent to color/intensity pyramid; Stage 2 serves the purpose of orientation pyramid; Stage 3

facilitates further computation by stacking the feature maps of previous layers; Stage 4 models the

center surround difference pyramid and Stage 5 is identical to final normalization and combination

of all the maps. Parallel fine-tunning of Itti-Koch filters and learning of new filters is carried out at
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Fig 2 Proposed architecture with stage-wise description of types of layers, filter size, padding size, stride and activation
function.

each stage. Model architecture is described below.

An image I of size (288× 360× 3) forms the input to stage 1. Stage 1 has one convolutional

layer with 24 filters, each of size (1× 1× 3) and produces an activation map O1 as output. These

filters learn 24 different color transformations.

O1 = Wcolor ∗ I + bcolor (1)

Stage 2 has two parallel convolutional layers, each operating onO1 to produce two independent

output activation maps O21 and O22. Each convolutional layer has 18 filters of size (15× 15× 24).

The first convolutional layer is initialized with orientation filters and the second one is initialized

with random filters. Weight initialization for Worient is done as follows. Eighteen 2-D orientation

filters of resolution 20◦ were generated. Each filter was repeated and stacked to generate Worient.
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O21 and O22 are computed as follows.

O21 = Worient ∗O1 + borient (2)

O22 = Wrnd1 ∗O1 + brnd1 (3)

The maps O1, O22 and O21 are stacked in stage 3 and maxpooling in (2 × 2) neighborhood is

applied to generate a feature map O3 of size (144× 180× 60). Using [·, ·, ·] notation for stacking,

O3 = maxpooling([O1, O21, O22]) (4)

Stage 4 also has two parallel convolutional layers which operate on O3 to produce O41 and

O42 as two independent outputs. Both layers have 6 filters of size (10 × 10 × 60). The first

convolutional layer is initialized with center-surround (CS) filters and second with random filters.

Weight initialization for WCS is done using six 2-D center-surround filters which are generated as

follows:

CS1 = ±(G1 −G4) (5)

CS2 = ±(G2 −G5) (6)

CS3 = ±(G3 −G6) (7)

CS4 = ±(G1 −G5) (8)

CS5 = ±(G2 −G6) (9)

CS6 = ±(G3 −G7) (10)
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where Gn is a Gaussian filter with mean 0 mean and variance n. In these equations, positive sign

is used for hard exudate while the negative sign is used for hemorrhage saliency. Each CS filter

was repeated and stacked to make WCS . O41 and O42 are computed as follows.

O41 = WCS ∗O3 + bCS (11)

O42 = Wrnd2 ∗O3 + brnd2 (12)

Stacking of O41 and O42 generates O4 in stage 5. A convolutional layer with a filter of size

(1 × 1 × 12) operates on the stack O4 to produce a single image O5. This stage learns the final

weighted combination of all feature maps. Finally, a ReLU activation is applied to get the desired

output, which is a final gray scale image O of size (144× 180).

O4 = [O41, O42] (13)

O5 = Wcombination ∗O4 + bcombination (14)

O = max(0, O5) (15)

The ReLU activation function, unlike sigmoid or tanh, is linear in the positive range thus en-

suring linear mapping (no saturation) for positive saliency while clipping the negative saliency to

zero as desirable.

2.2.2 Loss Function

Training a CNN is an unconstrained optimization problem which aims to minimize a loss function

which compares the system output with ground truth. Conventional loss functions for regression
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assume same numeric range for both. However, in the present case, the ReLU activation allows

O ∈ [0,∞), whereas the ground truth (GT) saliency values are in the range [0, 1]. Hence, we define

a new loss function as follows.

L(X, Y ) =
1

N

∑
x∈X,y∈Y

βxe−αy + (1− x)(1− e−αy) (16)

Here, the tuple (x, y) denotes the (GT saliency, output) pixel pair; N is the total number of pixels;

β is a weight used to handle class imbalance. α controls the threshold y0 such that, a low loss is

achieved for 2 conditions: (i) low GT saliency value (x ∈ [0, 0.5]) and a sub-threshold output (ii)

a high GT saliency (x ∈ [0.5, 1]) and a supra-threshold output (see Fig 3).

The loss function has a saddle point at (x, y) = (0.5, y0). The threshold value y0 is found by

substituting x = 0.5 in L(X, Y ) (or differentiating L(X, Y ) w.r.t. x and equating to 0).

y0 =
1

α
log(β + 1) (17)

Ideally, zero GT saliency should correspond to nearly zero output values whereas it suffices to

have high GT saliency (x = 1) correspond to a large range of output values. This is achievable

with the threshold y0 tending to zero or equivalently, very large α.

The proposed CNN was trained for hard exudate and hemorrhage saliency separately. We

denote hard exudate (HE) and hemorrhage (HM) specific saliency models as SHE and SHM re-

spectively. Data and computational resources used for training of CNN is discussed in the Material

section. Computed saliency maps are used to emphasize lesions locally as described in the follow-

ing section.
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Fig 3 Loss function in the absence of class-imbalance (β = 1). (top) 3D view of a loss function. Saddle point is shown
in red color. (bottom) 2D view of a loss function. Above surface is sampled at different values of x. y-projection of
saddle point (0.5, y0) is also shown.
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Fig 4 Original image and GT: (a,b) DR stage 2 (c,d) DR stage 3 (e,f) DME stage 2 (g,h) DME stage 3.

3 Lesion-Emphasis

3.1 Background

In DR reading centres, readers scrutinize images and assign a DR stage to the image using the

ETDRS standard.37 Staging is based on the following guidelines: (1) DR grade (on a scale 1-4)

is proportional to the number of dark lesions (b) diabetic macular edema (DME) grade (scale 1-3)

is proportional to the distance between macula and nearest hard exudate(see Fig 4). The grade

determines the type of advice given to a subject being screened with some requiring immediate

referral. Thus, a failure of a reader to attend to all dark lesions or the bright lesion nearest to the

macula, can have serious implications as it leads to an incorrect stage assignment to the image.

The approach taken in ALES therefore is to increase the local contrast of the lesions and make

them more prominent. Contrast-enhanced lesion will successfully draw a reader’s attention and

hopefully reduce the rate of misdiagnoses.

Existing work on enhancement of retinal images are based on illumination/contrast correc-

tion,38–42 contourlet43 and histogram equalization and matching.44, 45 These methods are primarily
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aimed as a pre-processing stage for CAD development and none have been aimed at readers or

experts. Hence, they often introduce textures and colour shifts. These methods are developed to

correct global variations and improve contrast at a global (rather than local) level. ALES aims to

emphasize the lesion locally without altering the global statistics of the image and do this by using

saliency information. Saliency based local enhancement techniques have been reported for natural

images. These include optimization to match object and target saliency,11 luminance/chrominance

adjustment based on saliency,10 iterative addition of point variation values,46 de-emphasis of back-

ground texture47 and saliency weighted luminance correction.48 Most of these techniques are com-

putationally complex. Since ALES is aimed at readers in screening or triage scenario, the lesion

emphasis needs to be done with a simple, fast and computationally efficient method.

3.2 Method

We propose a spatially varying method that achieves lesion-specific emphasis by modifying a

global contrast stretching method. This is done by choosing a parametric, spatially invariant

method and allowing the parameter to be a function of the local saliency. We start with gamma cor-

rection, which is a well known spatially invariant, non-linear, contrast stretching method. Gamma

correction is defined as,

IC(x, y) = IO(x, y)
γ (18)

Here IC(x, y) and IO(x, y) (Normalized between 0 and 1) are corresponding pixels from corrected

and original images respectively. γ is the global parameter. This typically is used to match the

dynamic contrast of an image to that of a display device. A choice of γ > 1 pushes intensity
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Fig 5 Gamma correction. (a) original image (b) corrected image with γ = 2 (d) corrected image with γ = 0.5.

values to lower range which results in darkening of the entire image, while γ < 1 pushes intensity

values to higher range and thus brightening of the image. Gamma correction on the sample fundus

image can be seen in Fig 5. It can be observed that global correction fails to emphasize the lesions

locally.

The above operation can be made to be spatially varying by defining gamma as a function of

the saliency at a point as follows.

IC(x, y) = IO(x, y)

(
1−SHE(x,y)

a
+

SHM (x,y)

b

)
(19)

where, a and b are normalizing parameters. Ideally, the background pixels should have zero

saliency in both SHE and SHM and hence γ = 1 for such pixels which implies no correction.

Pixels from regions containing hemorrhage should have SHE(x, y) = 0 and SHM > 0, so γ > 1

resulting in a darkening of the region. Pixels from regions containing hard exudate will have

SHE(x, y) > 0 and SHM = 0, so γ < 1 should lead to a brightening of the region.

4 Material

The publicly available DIARETDB1,49 DRiDB50 and DMED51 datasets were used for training

and testing the proposed saliency computation stage. Pre-processing consisted of illumination
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correction;52 fundus extension to remove the black mask region;53 detection of vessels54 and Optic-

disk using circular Hough transform. The last two were subsequently in-painted to reduce false

detections. Fig 8(b) shows the result of preprocessing on a sample image Fig 8(a). All images

were downsampled to size 288 x 360 and normalized to have zero mean value and unit variance.

The size was chosen to minimize both distortion of the image (aspect ratio) and the computational

cost.

The chosen datasets provide different types of lesion markings whereas our CNN training re-

quires a lesion-level GT. Only DMED provides lesion markings (pixel level). Both DIARETDB1

and DRiDB datasets provide markings as regions around lesion(s) with the former providing mark-

ings of 4 experts as a heatmap (leftmost image in Fig.6) and the latter providing marking from one

expert as a binary map. In order to derive consistency in GT across the datasets, the markings

were processed as follows (see Fig.6). The heatmap was thresholded at 50% agreement to derive a

binary mask. This mask was multiplied with the original image to extract the lesion regions (sec-

ond image from right in Fig.6); this was finally thresholded to derive the final binary, lesion-level

GT (rightmost image in Fig.6). In order to retain hard exudates (hemorrhages) in the final GT,

we retain pixels above (below) a threshold. This GT was downsampled to 144 × 180 for train-

ing. Training for SHE was done directly with the derived GT whereas for SHM , a Gaussian was

convolved with the GT as hemorrhages are more diffused in appearance.

Table 1 presents the details of the datasets used. Since the aim is to derive a saliency model for

abnormalities, only abnormal images were used in training. 122 (of 134) images with hard exudates

and 72 (of 85) images with hemorrhages were used for training. Training and testing were done

on whole images. Given that the dataset size is not large, (i) the training set size was chosen to

be larger to ensure a variety of data for learning and (ii) online data augmentation was done using
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Fig 6 Procedure to obtain lesion-level ground truth from regional marking.

a variety of transformations. Random rotation between 0 to 30◦, random vertical shift between 0

to 57 pixels (20% of height of an image), random horizontal shift between 0 to 72 pixels (20%

of width of an image) and occasional horizontal/vertical flips are used for augmentation. Training

was done on NVIDIA GTX 970 GPU, with 4GB of RAM for 10000 epochs by minimizing the loss

function in Eq. 16 using a stochastic gradient descent optimizer. We experimented with a number

of learning schemes and finally determined the suitable values of parameters as given in Table 2.

Training time was approximately 5 days. Cross-validation was not performed due to excessive

training time.

Table 1 Dataset description.

Datasets DIARETDB1 DRiDB DMED

Total Number of Images 89 50 169

Images containing Hard Exudate 48 32 54

Images containing Hemorrhages 54 31 -

5 Evalution of ALES

Assessment of ALES is done stage-wise for both abnormal and normal cases.
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Table 2 Parameter values used for training.

Parameters SHE SHM

L2 regularization 0.01 0.01

Learning Rate 0.0005 0.0005

Nesterov momentum 0.7 0.6

Decay 5× 10−8 1× 10−4

β 225 111

α 500 500

Batch size 8 8

5.1 Saliency Computation

5.1.1 Evaluation of Trained Filters

CNN generates output by convolving a set of filters with the input. These filters are key components

for computation of activation maps for saliency. Evolution of filters was assessed qualitatively over

the period of training. It was observed that the orientation filters underwent very small changes

while center-surround filters changed considerably during training (see Fig 7(a)(b)). Fig 7(b) shows

progression in tuning of 3 channels of the center-surround filters of SHE . It can be seen that the

pattern of tuned filters are similar to difference of multiple ( > 2) Gaussian filters. Fig 7(c-d)

shows how 3 filters (single channel only) with random initialization changes during training in

stage 2 and 4. The sample filters from stage 2 can be expected to give higher response for linear

structures, bifurcations and bright spots (with dark top) respectively. The sample filters from stage

4 are similar to Gaussian filters or blob detectors.

5.1.2 Evaluation of Saliency

The performance of the saliency models was evaluated against seven existing computational saliency

models: Itti-Koch,1 SR,18 AIM,14 GBVS,16 Torralba,55 Judd19 and Rare.56 Among these Itti-Koch
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Fig 7 Evolution of the filters during training of hard exudates saliency. (a) 3 channels of Worient from stage 2 (b)
3 channels of CS3 filters from stage 4 (c) 3 channels of random filters from stage 2 (d) 3 channels of random filters
from stage 4.
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is biologically plausible, SR is spectral analysis based, AIM and Torralba are information-theoretic,

GBVS is graph based, Judd is pattern classification and Rare is based on top-down bias. Saliency

maps for these existing models were computed using publicly available codes using default param-

eter settings.

A sample image, its GT and the computed saliency maps are shown in Fig 8 for hard exudates

and Fig 9 for hemorrhages. Ideally, a computed saliency map should appear sparse and similar to

the GT as this would be ideal for lesion emphasis in the next stage of ALES. It can be seen from the

computed maps in Fig 8, only SHE , SR and Torralba have either of these desired characteristics.

Of these, the map with Torralba is the least sparse. In general, it is more difficult to differentiate

hemorrhages from the background and blood vessel fragments. This is seen from the fact that, of

all the computed maps in Fig 9, only those with ours and SR models have the desired features.

Computational saliency for healthy retina is also important for normal vs abnormal decisions.

Hence, SHE and SHM were tested on normal cases. Sample images and the computed maps are

shown in Fig 10. The almost blue maps indicate that both models give virtually-zero saliency

values for the pixels representing healthy tissue. Weak responses in SHE are seen occasionally

near the peripapillary region which is due to the presence of a hyper-reflective region.

Quantitative evaluation was performed on both abnormal and normal images (see Table 3).

Normal images were taken from DRiDB50 and DIARETDB0.57 The metrics used for the eval-

uation are: receiver operating characteristic curves (ROC), area under the ROC curve (AUC),

false positive rate(FPR) vs saliency and precision vs saliency. The binary lesion-level GT is used

as the reference standard. In case of SHE , GT is already binary hence used directly. In case

of SHM , GT is continuous hence thresholded at 0.5 value to obtain binary GT. Lesion-pixels, if

correctly/incorrectly detected with reference to GT, are considered true positive(TP)/false nega-
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Fig 8 Hard exudate saliency. (a) original color fundus image (b) pre-processed image (c) ground truth. Computed
saliency maps of (d) Proposed (e) Itti-Koch (f) SR (g) GBVS (h) AIM (i) Rare (j) Torralba (k) Judd.
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Fig 9 Hemorrhage saliency. (a) original color fundus image (b) pre-processed image (c) Gaussian convolved ground
truth. Computed saliency maps of (d) Proposed (e) Itti-Koch (f) SR (g) GBVS (h) AIM (i) Rare (j) Torralba (k) Judd.
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Fig 10 Predicted saliency for normal cases. (a) Normal color fundus image and saliency maps for (b) hard exudate
(c) hemorrhage.

tive(FN). Background pixels, if correctly/incorrectly detected with reference to GT, are considered

true negative(TN)/false positive(FP).

Table 3 Number of images in the test set.

Type of abnormality Abnormal images Normal images

Hard exudate 12 33

Hemorrhage 13 33

ROC is a graphical representation of achieved True Positive Rate (TPR = TP
TP+FN

) vs False

Positive Rate (FPR = FP
FP+TN

) for varying threshold values. The ROC and AUC are presented

in Fig 11 and Table 4. AUC values are reported for whole test set as well as a balanced test

set (with equal number of normal and abnormal images). The results show that proposed model

outperforms all other models. It can be seen that the Judd saliency model has nearly same AUC

value as SHM . This can be explained as follows. In normal cases (absence of any hemorrhage), the

model successfully rejects background pixels as non-salient regions. Since the test set is skewed

towards normal images, the overall performance is good and almost at par with SHM . However,

this model’s use of multi-scale analysis causes the saliency response to be spatially extended rather

than highly localized as can be seen in Fig. 9(k). Consequently, the performance of Judd model
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Fig 11 Receiver Operating Characteristics(ROC). (a) hard exudate saliency (b) hemorrhage saliency.

is compromised for abnormal images. This can be verified from analysis of False Positive Rate

discussed next. Hence, the AUC value of Judd model on balanced test set is less than that of whole

test set.

Table 4 Comparison of AUC scores.

Hard Exudate Hemorrhage

whole test set balanced test set whole test set balanced test set

SHE/SHM 0.962 0.959 0.918 0.923
SR 0.799 0.829 0.678 0.622

Torralba 0.853 0.867 0.708 0.683

rare 0.794 0.791 0.621 0.591

Itti-Koch 0.688 0.675 0.526 0.523

AIM 0.723 0.728 0.589 0.575

GBVS 0.667 0.664 0.774 0.677

Judd 0.367 0.383 0.896 0.827

As noted in58 AUC aids assessment of a model’s ability to assign high saliency values to lesions,

but it fails to give any insight into its handling of non-lesion regions such as background and

artifacts where FP can be created. Low saliency should ideally correspond to non-lesion regions.
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Fig 12 Flase positive rate vs saliency. (top) hard exudates (bottom) hemorrhages.

The FP Rate (FPR = FP
FP+TN

) for low saliency values may be a better metric for this purpose.

FPR was computed(on whole test set) by thresholding the computed saliency with a step-size of

1% of the maximum saliency value and comparing with GT (see Fig 12). Both SHE and SHM

have a low FPR almost over the entire range of saliency values which indicates they handle the

background(non-lesion) regions well. On the other hand, barring SR, all existing models have a

relatively high FPR for lower saliency range (Wilcoxon signed-rank test: p-value << 0.01). In the

case of hemorrhages, Torralba and Judd model have higher FPR(in the low saliency range) than

other models which indicates its inability to handle non-lesion regions.

FPR demonstrates how well a saliency model can reject background pixels. Precision ( TP
TP+FP

)

on the other hand helps assess how often a model correctly detects lesions. Precision is also

known as Positive Predictive Value in some literature. As saliency increases, the proportion of
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Fig 13 Positive Predictive Rate/Precision vs saliency. (top) hard exudates (bottom) hemorrhages.

correctly detected lesion-pixels among all the detected pixels (and hence precision) can be expected

to increase. The precision vs saliency plots(computed on whole test set) for the two types of lesions

are shown in Fig. 13. The wide difference in precision levels for SHE and SHM attest to the fact

that detection of hemorrhages is more challenging; the low precision caused by confusion between

vessel fragments (persisting after inpainting) and hemorrhages. Further, it can also be seen that

both SHE and SHM outperform other saliency models (Wilcoxon signed-rank test: p-value <<

0.01).

The two saliency models can be combined to derive a common saliency map for a given image.

Examples of such maps are shown for sample images in Fig 14. Here, the salient regions are color

coded with green (hard exudate) and blue (hemorrhages). It can be observed that by and large, the

background and non-lesion regions, including blood vessels, are non-salient. Some high saliency
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Fig 14 Combined saliency for hard exudate and hemorrhage. (a,c) Original images with lesions (b,d) combined
saliency maps for hard exudate (green) and hemorrhage (purple) shown overlaid on the original image.

is seen in the middle of the optic disc where blood vessels converge, which is erroneous.

5.2 Lesion-emphasis

Qualitative results of ALES are shown in Fig 15 for sample images. It can be observed that dark

lesions in poorly illuminated regions are not visible in the original images but are more visible

in the processed results which makes counting of dark lesion easier. Hard exudates which are

close to macula as per GT are not clearly visible in the original images but are prominent after
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Fig 15 ALES output for abnormal images. (a)(e) original images (b)(f) corrected images (c)(g) hard exudate GT
(d)(h) hemorrhage GT.

emphasis. It is notable that the image in Fig 15(e) contains a dark artifact near the optic-disk

which is not enhanced by ALES as desirable. Vessel regions are emphasized incorrectly which

may be undesirable for fully automatic CAD. A reader using ALES will know to ignore it.

Quantitative evaluation of ALES was done using contrast-to-noise ratio (CNR) of lesions.

CNR =
|mf −mb|

σb
(20)

where, mf and mb are mean intensity of foreground (lesions) and background respectively. σb is

the standard deviation of background intensity. CNR was computed for images from two datasets

containing both hemorrhage and hard exudate. The CNR values are presented in table 5. CNR

is improved by more than 30% in each case. Lesions with improved local CNR should attract

reader’s attention more than the ones in the original image.

ALES output for a sample normal image is shown in the Fig 16. ALES can be seen to introduce

minimal artifacts, as desirable.
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Table 5 Average contrast-to-noise ratio.

DIARETDB1 DRiDB

HE HM HE HM

Original image 3.97 2.91 2.98 3.05

ALES image 5.67 4.02 4.02 4.63

Fig 16 ALES output for normal image. (a) original image (b) corrected image.

6 Perception Studies

Two perception studies were conducted to measure the effectiveness of ALES in assisting readers.

The first study was aimed at measuring the effectiveness for global-level decision about an image

which is classification of an image as a normal vs abnormal case. The second study was aimed at

measuring the effectiveness of ALES for local-level decision about an image such as locating all

hemorrhages and a hard exudate in proximity of macula. This task is designed in accordance with

the guidelines given by the ETDRS.37
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6.1 Stimuli

Stimuli (images) for both the experiments were selected by a local expert. 30 pairs of (original

and ALES output) images, with equal number of normal and abnormal cases, were used in the first

study. 10 pairs of abnormal images were used in the second experiment. Randomized studies were

conducted in two sessions with a gap of 4 days to ensure least fatigue for participants.

One image from each pair(original and ALES output) was randomly selected and grouped as

set A. The remaining images were grouped as set B. Hence, set A and B are mutually exclusive.

Set A was used for the first session and set B for the second. This was done for both the studies.

6.2 Subjects

12 engineering student volunteers were recruited for the studies. They were given a brief introduc-

tion to DR using some images prior to the first session.

6.3 Experiment design

For both studies, images were shuffled and displayed on Lenovo monitor of size 1366× 768 pixels

and the interval between the response for an image and the display of next image was 2s.

Study 1. Subjects were shown images and asked to press key ‘A’ for abnormal and key ‘N’ for

normal to indicate their decisions about the images.

Study 2. Subjects were shown images of abnormal cases and were instructed to mark (i)

all hemorrhages; (ii) click on the hard exudate which is closest to macula. Hemorrhages are of

interest in detecting DR. Macula is the site of high acuity colour vision and therefore presence of

hard exudates in its proximity is of interest to detect DME.
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6.4 Results

The results for the first and second studies are shown in Tables 6 and 7 respectively. The results

in Table 6 indicate that ALES is effective as the accuracy of global-level decision is significantly

higher with the ALES output than with original images. ALES is also seen to cause a significant

decrease in the response time.

DME requires immediate referral to a clinic and as per ETDRS standards this is assessed

based on the proximity of hard exudates to macula. We assess DME by computing Accuracy

= TP+TN
Total number of images . TP is defined to be the number of images where a subject’s hard exudate

marking is in the same retinal zone as given by GT and TN is the number of images where the

subject has not marked any hard exudate and the corresponding GT also indicates no sign of DME.

Table 7 shows that the accuracy for detection of DME improves significantly with ALES.

As per ETDRS standards, determining the DR stage based on an image requires localizing

and counting all hemorrhages. Hence, we measure the Sensitivity = TP
TP+FN

; TP is the number

of correctly detected and FN is the number of undetected hemorrhages. Table 7 also shows that

ALES is effective for DR detection as the sensitivity has increased significantly with ALES.

Table 6 Average accuracy and response time for abnormal vs normal classification task in Study 1.

Original image ALES output p-value (Wilcoxon signed-rank test)

Accuracy 71% 78% < 0.05

Response Time 5.00s 4.47s < 0.05

7 Conclusions and Future Work

We conceptualized the role of CAD in reading centres/triage to be different from the prevailing

paradigm. In our view, the role could be to emphasize the abnormalities and leave the background
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Table 7 Performance for local level decision task in Study 2.

Original image ALES output p-value (Wilcoxon signed-rank test)

Accuracy for DME 70.83% 79.17% < 0.05

Sensitivity for DR 41.56% 49.78% < 0.05

tissue unaltered. This concept can be used to design assistive solutions for readers in many ways.

We took a reader-centric approach and presented a 2-stage system (ALES) design focused on

DR. The proposed ALES performs saliency computation followed by lesion-emphasis which was

modeled using a spatially varying gamma correction. Starting with the bottom-up Itti-Koch model,

we demonstrated that a CNN-based saliency model can be built by fine-tuning low-level filters and

simultaneously learning new high-level filters. The proposed saliency model outperformed other

state-of-the-art models for both bright and dark lesions for both abnormal and normal cases.

Assessment results of ALES indicate that it can successfully discriminate artifacts from true

lesions and reject them. ALES is fast, as a given image can be processed in 5 seconds and produce a

result where the background is unaltered and lesions are made prominent (up to 30% improvement

in the CNR). Thus, we conclude that ALES can be an effective and computationally efficient tool

employable in reading centers. The results of our perception studies attested to the effectiveness

of ALES. However, a more rigorous evaluation needs to be done in a clinical setting.
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