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Abstract—The Graphics Processing Units (GPUs) provide high
computation power at a low cost and is an important compute
accelerator with a massively multithreaded architecture. In
this paper, we present fast implementations of common graph
operations like breadth-first search, st-connectivity, single-source
shortest path, all-pairs shortest path, minimum spanning tree,
and maximum flow for undirected graphs on the GPU using the
CUDA programming model. Our implementations exhibit high
performance, especially on large graphs. We use two data-parallel
programming methodologies for these algorithms. One is an
iterative, mask-based approach that processes valid data elements
like vertices and edges using independent threads for each.
The other is a divide-and-conquer approach that reduces the
problem into smaller problems that are handled later using the
same approach. Parallel algorithms for such problems have been
reported in the literature before, especially on supercomputers.
The massively multithreaded model of the GPU makes it possible
to adopt the data-parallel approach even to irregular algorithms
like graph algorithms, using O(V ) or O(E) simultaneous threads.
The algorithms and the underlying techniques presented in this
paper are likely to be applicable to many irregular algorithms.
We show the impact of our implementations on random, scale-
free, and real-life graphs of up to millions of vertices on high-
end and low-end GPUs. The availability and spread of GPUs to
desktops and laptops make them ideal candidates to accelerate
graph operations over the CPU-only implementations. Practical
implementations of basic operations go a long way in realizing
their potential.

Index Terms—Graph Algorithms, GPU, CUDA.

I. INTRODUCTION

Modern Graphics Processing Units (GPUs) provide high
computation power at low costs and have been described as
desktop supercomputers. Several high-performance, general
data processing algorithms such as sorting, matrix multipli-
cation, etc., have been developed for the GPUs. We present a
set of general graph algorithms on the GPU using the CUDA
programming model. Graphs are popular data representations
in many computing, engineering, and scientific areas. Fun-
damental graph operations such as breadth first search, st-
connectivity, shortest paths, etc., are building blocks to many
applications. Implementations of serial fundamental graph
algorithms exist [1], [2] with computing time of the order
of vertices and edges. Such implementations become imprac-
tical on very large graphs involving millions of vertices and
edges, common in many domains like VLSI layout, phylogeny
reconstruction, network analysis, etc. Parallel processing is

essential to apply graph algorithms on large datasets. Parallel
implementations of some graph algorithms on supercomputers
are reported, but are accessible only to a few owing to
the high hardware costs [3], [4], [5]. CPU clusters have
been used for distributed implementations. Synchronization
however becomes a bottleneck for them. All graph algorithms
cannot scale to parallel hardware models. For example, there
does not exist an efficient PRAM solution to the DFS problem.
A suitable mix of parallel and serial hardware is required for
efficient implementation in such cases.

The GPUs expose a general, data-parallel programming
model today in the form of CUDA and CAL. The recently
adopted OpenCL standard [6] provides a common computing
model to all GPUs and also to other platforms like multi-
core, manycore, and Cell/B.E. The Compute Unified Device
Architecture (CUDA) from Nvidia presents a heterogeneous
programming model where the parallel hardware can be used
in conjunction with the CPU. CUDA can be used to imitate
a parallel random access machine (PRAM) if global memory
alone is used. In conjunction with a CPU, it can be used as
a bulk synchronous parallel (BSP) hardware with the CPU
deciding the barrier for synchronization.

CUDA presents the GPU as a massively threaded parallel
architecture, allowing up to millions of threads to run in
parallel over its processors, with each having access to a
common global memory. Such a tight architecture is a de-
parture from supercomputers, which typically have a small
number of powerful cores. The parallelizing approach there is
that of divide-and-conquer, where individual processing nodes
solve smaller sub-problems followed by a combining step.
The massively multithreaded model presented by the GPU
makes it possible to adopt the data-parallel approach even
on irregular algorithms, using O(V ) or O(E) simultaneous
threads, breaking down and working at the problem at its
smallest constituent.

In this paper, we present a set of general graph algorithms
on the GPU, using the CUDA programming model. We
adopt two data parallel approaches in this paper: the iterative
mask based approach and the divide and conquer approach
to solve irregular graph algorithms. Specifically, we present
implementations of breadth first search (BFS), st-connectivity
(STCON), single source shortest path (SSSP) and maximum
flow (MF) using the iterative mask based approach. And the
implementation of minimum spanning tree (MST) using the
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divide-and-conquer approach. We compare various approaches
to solve the all pairs shortest path (APSP) problem including
iterative, recursive and a matrix multiplication approach. Our
implementations exhibit high performance, especially on large
graphs. We show experiments on random, scale-free, and
real-life graphs of up to millions of vertices. Using a single
graphics card, we perform BFS in about half a second on a
10M vertex graph with 120M edges, and SSSP on it in 1.5
seconds. On the DIMACS USA graph of 24M vertices and
58M edges it takes less than 9 seconds for our implementation
to compute the minimum spanning tree. We study different
approaches to APSP and show a speed up by a factor of 2−4
times over Katz and Kider [7]. Compared to the CPU a speed
up of nearly 10 − 15 times over the Boost Graph Library is
achieved for all algorithms reported in this paper.

The prevalence of GPUs on desktops and laptops today
make them feasible accelerators for a wide variety of appli-
cations including common graph algorithms. Comparison of
timing with the CPU implementations gives an indication of
the accelerated performance one can get using low-end and
high-end GPUs. Our BFS and SSSP code is already being
used by different users and has been included in the Rodinia
benchmark [8]. We will make all code available to whoever is
interested in using them.

II. COMPUTE UNIFIED DEVICE ARCHITECTURE

In this section we present a small overview of the CUDA
programming and hardware models. Please see [9] for more
details about CUDA programming. Figure 1 depicts the CUDA
programming model, mapping a software CUDA block to
a hardware CUDA multiprocessor. A number of blocks can
be assigned to a multiprocessor and they are time-shared
internally by the CUDA programming environment. Each
multiprocessors consists of a series processors which run the
threads present inside a block in a time-shared fashion based
on the warp size of the CUDA device. Each multiprocessor
further contains a small shared memory, a set of 32-bit
registers, texture, and constant memory caches common to all
processors inside it. Processors in the multiprocessor executes
the same instruction on different data, which makes CUDA
an SIMD model. Communication between multiprocessors is
through the device global memory which is accessible to all
processors within a multiprocessor.

The CUDA API provides a set of library functions which
can be coded as an extension of the C language. A compiler
generates executable code for the CUDA device. The code
executes as threads running in parallel in batches of warp
size, time-shared on the CUDA processors. Each thread can
use a number of private registers for its computation. Threads
of each block have access to a small amount of common
shared memory. Synchronization barriers are also available
for all threads of a block. The available shared memory and
registers are split equally amongst all blocks that timeshare a
multiprocessor. An execution on a device generates a number
of blocks, collectively known as a grid (Figure 1).

Each thread executes a single instruction set called the
kernel. Threads and blocks are given a unique ID that can

be accessed within the thread during its execution. These can
be used by a thread to perform the kernel task on its part of
the data resulting in an SIMD execution. Algorithms may use
multiple kernels, which share data through the global memory
and synchronize their execution either at the end of each kernel
or forcefully using barriers.

III. REPRESENTATION AND PROGRAMMING
METHODOLOGY

We adopt two data parallel programming approaches in our
implementations.
• The iterative mask based approach, in which a set of

vertices take part in execution at each iteration. We pro-
cess each vertex in the mask in parallel. Synchronization
occurs after execution of all vertices at every iteration. We
use this approach in implementing BFS, STCON, SSSP
and Maximum Flow.

• The divide-and-conquer approach. Here we divide the
problem into its simplest constituent and process each
constituent in parallel while merging them recursively as
we move up the hierarchy. We give one thread to each
constituent and process them in parallel. This approach
is used in the implementation of the Minimum Spanning
Tree.

In implementing all pairs shortest paths we compare im-
plementations using both approaches, iterative from our group
and recursive from Buluc et al. [10], along-with another matrix
multiplication approach. In all implementations we map the
problem to a data parallel scenario. We assume there can exist
a thread for each vertex/edge in the graph. This assumption is
in contrast with previous supercomputing approaches, where
the problem is mapped onto a fixed set of processes. A
bulk synchronous parallel programming model is used in
implementing all algorithms.

A. Graph Representation

Efficient data structures for graph representation have been
studied in depth. Complex data structures like hash tables [11]
have been used for efficiency on the CPU. Creating an efficient
data structure on the GPU memory model, however, is a
challenging problem [12], [13].

Adjacency matrix representation is not suitable for large
sparse graphs because of its O(V 2) space requirements, re-
stricting the size of graphs that can be handled by the GPU.
Adjacency list is a more practical representation for large
sparse graphs requiring O(V +E) space. We represent graphs
using a compact adjacency list representation with each vertex
pointing to its starting edge list in a packed adjacency list
of edges (Figure 2). CUDA model treats memory as general
arrays and can support such representation efficiently. We
assume the GPU can hold entire data into memory using this
representation.

Table I states the variables used for representing graph in
adjacency list format. The vertex list Va points to its starting
index in the edge list Ea. Each entry in the edge list Ea points
to a vertex in vertex list Va. Wa holds the edge weight for each
edge. We deal with undirected graphs resulting in each edge
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Fig. 1. The CUDA hardware model (top) and programming model (bottom), showing the block to multiprocessor mapping.

TABLE I
GENERAL VARIABLES USED IN GRAPH REPRESENTATION AND THE

CPU SKELETON CODE

Variable Purpose
Va Holds starting index of edge list in Ea

Ea Holds vertex id of outgoing vertex
Wa Holds the weight of every edge

Terminate Global variable written over by all threads
to achieve consensus using logical OR

having one entry for each of its end vertices. Cache efficiency
is hard to achieve using this representation as the edge list
can point to any vertex in Va and can cause random jumps
in memory. The problem of laying out data in memory for
efficient cache usage is similar to the BFS problem itself.

Size O(V)

Va0 3 5 7 9 V-1 V

Ea
2 5 20 13 15 3 6 18 11 7 3 2 0 7

Size O(E)

Starting Edge 

pointers

Fig. 2. Graph representation is in terms of a vertex list that points to a
packed edge list.

This representation is used for all algorithms reported in this
paper except in all pairs shortest paths matrix multiplication
method (explained in section VII). A block-divided adjacency
matrix representation is used to exploit better cache efficiency
there. We do not assume the entire matrix can be held in the
GPU memory. We stream parts of the matrix from the CPU
to GPU memory. APSP output requires O(V 2) space and thus
adjacency matrix proves a more suitable representation.

B. Algorithm Outline on CUDA

The CUDA hardware can be seen as a multicore/manycore
co-processor in a bulk synchronous parallel mode when used
in conjunction with the CPU. Synchronization of CUDA
threads can be achieved with the CPU deciding the barrier
for synchronization. Broadly a bulk synchronous parallel
machine follows three steps: (a) Concurrent computation:
Asynchronous computation takes place on each processing
element (PE). (b) Communication: PEs exchange data between
each other. (c) Barrier Synchronization: Each PE waits for all
PEs to finish their task. Concurrent computation takes place
at the CUDA device in the form of program kernels with
communication through the global memory. Synchronization
is achieved only at the end of each kernel. Algorithm 1 outlines
the CPU code in this scenario. The skeleton code runs on the
CPU while the kernels run on a CUDA device.

Algorithm 1 CPU SKELETON
1: Create and initialize working arrays on CUDA device.
2: while NOT Terminate do
3: Terminate ← true
4: For each vertex/edge/color in parallel:
5: Invoke Kernel1
6: Synchronize
7: For each vertex/edge/color in parallel:
8: Invoke Kernel2
9: Synchronize

10: etc...
11: For each vertex/edge/color in parallel:
12: Invoke Kerneln and modify Terminate
13: Synchronize
14: Copy Terminate from GPU to CPU
15: end while

The termination of an operation depends on a consensus be-
tween threads. A logical OR operation needs to be performed
over all active threads for termination. We use a single boolean
variable (initially set to true) that is written over by all threads
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independently, typically by the last kernel during execution.
Each non-terminating thread writes a false to this location in
global memory with conflicts. If no thread modifies this value,
the loop terminates. The variable needs to be copied from GPU
to CPU in each iteration to check for termination (Algorithm 1
line 2).

Algorithms presented in this paper differ from each other
in the kernel code and the data structure requirements but the
CPU skeleton pseudo-code given in Algorithm 1 applies to all
algorithms reported in this paper.

C. Vertex List Compaction

We assign threads to an attribute of the graph (vertex,
color etc.) in all implementations to exploit maximum data-
parallelism. This leads to an execution of maximum O(V )
parallel threads, though they are time-shared by the CUDA
environment. The number of active vertices, however, varies
in each iteration of execution. Active vertices are indicated
in an activity mask, which holds a 1 for each active vertex.
Each vertex thread confirms its status from the activity mask
and continues execution if active. This can lead to poor load
balancing on the GPU as CUDA blocks have to be scheduled
even when all vertices of the block are inactive, leading to
an unbalanced SIMD execution. Performance improves if we
deploy only as many threads as the active vertices, reducing
the number of blocks and thus time sharing on the CUDA
device.

1

Activity mask (Active Threads)

Active Mask

Scan output

0 1 42 3 5 6 7 8 9 10 11 12 13 14 15 16 Vertex/

Thread

IDs

New Thread 

IDs

Old Active 

Vertex IDs

Active

Vertices

Parallel Scan / Prefix Sum

0 1 0 1 0 0 1 1 0 1 1 1 101 0

1 2 2 3 3 4 4 4 5 6 6 7 8 980 1 10

0 2 4 6 9 10 12 13 15 16

0 1 42 3 5 6 7 8 9

Deploy these many threads only

Write active Vertex IDs to these locations

Fig. 3. Vertex compaction is used to reduce the number of threads needed
when not all vertices are active.

A scan operation [14] on the activity mask determines the
number of active vertices as well as gives an ordinal number to
each. This establishes a mapping between the original vertex
index and a new index amongst the currently active vertices.
We compact all entries in the activity mask to an active mask
(Figure 3) creating the mapping of new thread IDs to old vertex
IDs. Each thread can now find its vertex id by looking at its
active mask, and thereafter can execute normally.

There exists a trade-off between time taken by parallel
thread execution and time taken by scan and compacting. For
graphs where parallelism expands slowly, compaction makes
most sense, as many threads are inactive in a single grid

execution. For faster expanding graphs, however, compacting
becomes an overhead. We report experiments where vertex
compaction gives better performance than the non compacted
version.

IV. BREADTH FIRST SEARCH (BFS)

The BFS problem is to find the minimum number of edges
needed to reach every vertex in graph G from a source
vertex s. BFS is well studied in serial setting with best
time complexity reported as O(V + E). Parallel versions of
BFS algorithm also exist. A study of the BFS algorithm on
Cell/B.E. processor using the bulk synchronous parallel model
appeared in [15]. Zhang et al. [16] gave a heuristic search for
BFS using level synchronization. Bader et al.[3] implement
BFS for the CRAY MTA−2 supercomputer and Yoo et al. [5]
on the BlueGene/L.

We treat the GPU as a bulk synchronous device and use level
synchronization to implement BFS. BFS traverses the graph
in levels, once a level is visited it is not visited again during
execution. We use this as our barrier and synchronize threads
at each level. A BFS frontier corresponds to all vertices at
the current level, see Figure 4. Concurrent computation takes
place at the BFS frontier where each vertex updates the cost
of its neighboring vertices by assigning cost values to their
respective indices in the global memory.

We assign one thread to every vertex, eliminating the
need for queues in our implementation. This decision fur-
ther eliminates the need to change grid configuration and
reassigning indices in the global memory with every kernel
execution, which incurs additional overheads and slows down
the execution.

BFS Frontier

Iteration 2

s

1 1 1 1 1 1

Iteration 1

Frontier

1 1 11 1 1 1 1 1 1 1 1 Visited

Fig. 4. Parallel BFS: Vertices in the frontier list execute in parallel in each
iteration. Execution stops when the frontier is empty.

GPU Implementation

Table II states the variables used in BFS implementation. We
keep two boolean arrays Fa and Xa of size |V | for the frontier
and visited vertices respectively. Initially, Xa is set to false and
Fa contains the source vertex. In the first kernel (Algorithm 2),
each thread looks at its entry in the frontier array Fa, if present,
it updates the cost of its unvisited neighbors by writing its own
cost plus one to its neighbor’s index in the global cost array
Ca.∗
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TABLE II
VARIABLES AND THEIR USE IN BFS IMPLEMENTATION

Variable Purpose
Fa Holds active vertices in each iteration.
Xa Holds the visited state for each vertex.
Ca Holds the BFS cost per vertex.
Fua Used to resolve read after write inconsistencies.

Algorithm 2 KERNEL1 BFS
1: tid ← getThreadID
2: if Fa[tid] then
3: Fa[tid] ← false
4: for all neighbors nid of tid do
5: if NOT Xa[nid] then
6: Ca[nid] ← Ca[tid]+1
7: Fua[nid] ← true
8: end if
9: end for

10: end if

Each thread removes its vertex from the frontier array Fa

and adds its neighbors to an alternate updating frontier array
Fua. This is needed as there is no synchronization possible
between all CUDA threads. Modifying the frontier at the time
of updation may result in read after write inconsistencies. A
second kernel (Algorithm 3) copies the updated frontier Fua to
the actual frontier Fa. It adds the vertex in Fua to the visited
vertex array Xa. The vertex thread sets the termination flag to
false if the vertex is added to the frontier array, Fa.

Algorithm 3 KERNEL2 BFS
1: tid ← getThreadID
2: if Fua[tid] then
3: Fa[tid] ← true
4: Xa[tid] ← true
5: Fua[tid] ← false
6: Terminate ← false
7: end if

The process is repeated until the frontier array is empty
and the while loop in Algorithm 1 line 2 terminates. In the
worst case, the algorithm needs the order of the diameter of
the graph G(V, E) iterations.

V. ST-CONNECTIVITY (STCON)

The st-Connectivity problem resembles the BFS problem
closely. Given an unweighted graph G(V,E) and two vertices,
s and t, find a path from s to t assuming one exists.
Bader et al. [3] implement STCON by extending their BFS
implementation; they find the smallest distance between s and

∗It is possible for many vertices to write a value at one location concurrently
while executing this step, leading to clashes in the global memory. We do not
lock memory for concurrent write operations because all frontier vertices write
the same value at their neighbor’s index location in Ca. CUDA guarantees
at least one of them will succeed which is sufficient for our BFS cost
propagation.

t by keeping track of all expanded frontier vertices. We also
modify BFS to find the smallest number of edges needed to
reach t from s for undirected graphs.

Our approach starts BFS concurrently from s and t with
Red and Green colors assigned respectively to them. In
each iteration, colors are propagated to neighbors along with
the BFS cost. Termination occurs when both colors meet.
Evidently, both BFS frontiers hold the smallest distance to the
current processing vertex from their respective source vertices.
The smallest path from s to t is reached when frontiers come
in contact with each other. Figure 5 depicts two termination
conditions due to merging of frontiers, either at a vertex or
an edge. We set the Terminate variable to false in this
implementation and each thread writes a true in this variable
if termination condition is reached.

Terminate

R
a

G
a

Termination

Conditions

s
t

Fig. 5. Parallel st-connectivity with colors expanding from s and t vertices.

GPU Implementation

Along with Va, Ea, Fa, and Ca we keep two boolean arrays
Ra and Ga, for red and green colors, of size |V | as the vertices
visited by s and t frontiers respectively, see Table III. Initially

TABLE III
VARIABLES AND THEIR USE IN STCON IMPLEMENTATION

Variable Purpose
Fa Holds active vertices in each iteration
Ca Holds the total length per vertex
Ra Vertices visited by Red frontier
Ga Vertices visited by Green frontier
Rf Holds the current Red frontier value
Gf Holds the current Green frontier value

Fua, Gua, Rua Resolves read after write inconsistencies

Ra and Ga are set to false and Fa contains the source and
target vertices. To keep the state of variables intact and avoid
read after write inconsistencies, alternate updating arrays Rua,
Gua and Fua of size |V | are also used in each iteration.
Variables Rf and Gf keep track of the Red and Green frontier
lengths at current execution.

Each vertex, if present in Fa, reads its color in both Ra and
Ga and sets its own color to one of the two. This is exclusive
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as a vertex can only exist in one of the two arrays, an overlap is
a termination condition for the algorithm. Each vertex updates
the cost of its unvisited neighbors by adding 1 to its own cost
and writing it to the neighbor’s index in Ca. Based on its
color, the vertex also adds its neighbors to its own color’s
visited vertices by adding them to either Rua or Gua. The
algorithm terminates if any unvisited neighbor of the vertex
is of the opposite color. We need not update both frontiers
for termination at an edge, only the Red frontier is updated in
this case as shown in Algorithm 4, line 7. The vertex removes
itself from the frontier array Fa and adds its neighbors to the
updating frontier array Fua. Kernel1 (Algorithm 4) depicts
these steps.

Algorithm 4 KERNEL1 STCON
1: tid ← getThreadID
2: if Fa[tid] then
3: Fa[tid] ← false
4: for all neighbors nid of tid do
5: if (Ga[nid] | Ra[nid]) then
6: if (Ra[tid]&Ga[nid]) then
7: Rf ← Ca[tid]+1
8: Terminate ← true
9: end if

10: if (Ga[tid]&Ra[nid]) then
11: Terminate ← true
12: end if
13: else
14: if Ga[tid] then Gua[nid] ← true
15: if Ra[tid] then Rua[nid] ← true
16: Fua[nid] ← true
17: Ca[nid] ← Ca[tid]+1
18: end if
19: end for
20: end if

Algorithm 5 KERNEL2 STCON
1: tid ← getThreadID
2: if Fua[tid] then
3: Fa[tid] ← true
4: if Rua[tid] then
5: Ra[tid] ← true
6: Rf ← Ca[tid]
7: end if
8: if Gua[tid] then
9: Ga[tid] ← true

10: Gf ← Ca[tid]
11: end if
12: Fua[tid] ← false
13: Rua[tid] ← false
14: Gua[tid] ← false
15: if Gua[tid] &Rua[tid] then Terminate ← true
16: end if

The second Kernel (Algorithm 5) copies the updating arrays
Fua, Rua, Gua to actual arrays Fa, Ra and Ga for all newly

visited vertices. It also checks the termination condition due to
merging of frontiers and terminates the algorithm if frontiers
meet at any vertex. Variables Rf and Gf are updated to reflect
the current frontier lengths. The length of the path between s
and t can be obtained by adding Rf and Gf . The algorithm
needs a maximum of the radius of the Graph G iterations to
terminate.

VI. SINGLE SOURCE SHORTEST PATH (SSSP)

The sequential solution to single source shortest path prob-
lem comes from Dijkstra [17]. Originally the algorithm re-
quired O(V 2) time but was later improved using Fibonacci
heap to O(V log V + E). A parallel version of Dijkstra’s al-
gorithm on a PRAM given in [18] introduces a O(V 1/3 log V )
algorithm requiring O(V log V ) work. Nepomniaschaya et al.
[19] parallelized Dijkstra’s algorithm for associative parallel
processors. Narayanan [20] solves the SSSP problem for
processor arrays. Although parallel implementations of the Di-
jkstra’s SSSP algorithm are reported [21], an efficient PRAM
algorithm does not exist [22].

Single source shortest path does not traverse a graph in
levels, as cost of a visited vertex may change due to a low
cost path being discovered later in the execution. In our
implementation simultaneous updates are triggered by vertices
undergoing a change in cost values. These vertices constitute
an execution mask. Termination condition is reached with
equilibrium when there is no change in cost for any vertex.

We assign one thread to every vertex. Threads in the
execution mask execute in parallel. Each vertex updates the
cost of its neighbors and removes itself from the execution
mask. Any vertex whose cost is updated is put into the
execution mask for next iteration of execution. This process
is repeated until there is no change in cost for any vertex.
Figure 6 shows the execution mask (shown as colors) and cost
states for a simple case, costs are updated in each iteration,
with vertices undergoing re-execution if their cost changes.

1 1
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17
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9
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1 0

1 2 1 2 0 17

1 4 2 8 0 17 18 9
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Mask and Cost StatesIteration #
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2

3
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5

Change in cost with each iteration Execution terminates when mask is empty

Fig. 6. SSSP execution: In each iteration, vertices in the mask update costs of
their neighbors. A vertex whose cost changes is put in the mask for execution
in the next iteration.

GPU Implementation

For our implementation (Algorithm 6 and Algorithm 7) we
keep a boolean mask Ma and cost array Ca of size |V |. Wa

holds the weights of edges and an updating cost array Cua is
used for intermediate cost values. Table IV states the variables
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TABLE IV
VARIABLES AND THEIR USE IN SSSP IMPLEMENTATION

Variable Purpose
Ma Holds active vertices in each iteration
Ca Holds the current cost per vertex
Cua Resolves read after write inconsistencies

and their usage. Initially the mask Ma contains the source
vertex. Each vertex looks at its entry in the mask Ma. If true,
it updates the cost of its neighbors if greater than its own
cost plus the edge weight to the corresponding neighbor in an
alternate updating cost array Cua. The alternate cost array Cua

is used to resolve read after write inconsistencies in the global
memory. Updates in Cua need to lock the memory location
before modifying the cost value, as many threads may write
different values at the same location concurrently. We use the
atomicMin function supported on CUDA 1.1 hardware (lines
5− 9, Algorithm 6) to resolve this.

Algorithm 6 KERNEL1 SSSP
1: tid ← getThreadID
2: if Ma[tid] then
3: Ma [tid] ← false
4: for all neighbors nid of tid do
5: Begin Atomic
6: if Cua[nid] > Ca[tid] +Wa[nid] then
7: Cua[nid] ← Ca[tid]+Wa[nid]
8: end if
9: End Atomic

10: end for
11: end if

Algorithm 7 KERNEL2 SSSP
1: tid ← getThreadID
2: if Ca[tid] > Cua[tid] then
3: Ca[tid] ← Cua[tid]
4: Ma[tid] ← true
5: Terminate ← false
6: end if
7: Cua[tid] ← Ca[tid]

Atomic functions resolve concurrent writes by assigning
exclusive rights to one thread at a time. The clashes are thus
serialized in an unspecified order. The function compares the
existing Cua(v) cost with Ca(u)+Wa(u, v) and updates the
value if necessary. A second kernel (Algorithm 7) is used
to reflect updating cost Cua to the cost array Ca. If Ca is
greater than Cua for any vertex, it is set for execution in
the mask Ma and the termination flag is toggled to continue
execution. This process is repeated until the mask is empty.
The algorithms takes the order of diameter of the graph to
converge to equilibrium.

VII. ALL PAIRS SHORTEST PATHS (APSP)
Warshall defined boolean transitive closure for matrices that

was later used to develop the Floyd Warshall algorithm for the

APSP problem. The algorithm had O(V 2) space complexity
and O(V 3) time complexity. Numerous parallel versions for
the APSP problem have been developed to date [23], [24],
[25]. Micikevicius [26] reported a GPGPU implementation for
the same, but due to O(V 2) space requirements he reported
results on small graphs.

The Floyd Warshall parallel CREW PRAM algorithm (Al-
gorithm 8) can be easily extended to CUDA if the graph is
represented as an adjacency matrix. The kernel implements
line 4 of Algorithm 8 while the rest of the code runs on
the CPU. This approach however requires entire matrix to
be present on the CUDA device. In practice this approach
performs slower as compared to approaches outlined below.
Please see [27] for a comparative study.

Algorithm 8 Parallel-Floyd-Warshall
1: Create adjacency Matrix A from G(V, E, W )
2: for k from 1 to V do
3: for all Elements of A, in parallel do
4: A[i, j] ← min(A[i, j], A[i, k]+A[k, j])
5: end for
6: end for

A. APSP using SSSP

Reducing space requirements on the CUDA device directly
translates to handle larger graphs. A simple space conserving
solution to the APSP problem is to run SSSP from each vertex
iteratively using the graph representation given in Figure 2.
This implementation requires O(V + E) space on the GPU
with a vector of O(V ) copied back to the CPU memory in
each iteration. However for dense graphs this approach proves
inefficient. We implemented this approach for general graphs
and found it to be a scalable solution for low degree graphs.
See the results in Figure 11(d).

B. APSP as Matrix Multiplication

Katz and Kider [7] formulate a CUDA implementation for
APSP on large graphs using a matrix block approach. They
implement the Floyd Warshall algorithm based on transitive
closure with a cache efficient blocking technique (extension
of method proposed by Venkataraman [28]), in which the
adjacency matrix (broken into blocks) present in the global
memory is brought into the multiprocessor shared memory
intelligently. They handle larger graphs using multiple CUDA
devices by partitioning the problem across the number of
devices. We take a different approach and use streaming of
data from the CPU to GPU memory for handling larger
matrices. Our implementation uses a modified parallel matrix
multiplication with blocking approach. Our times are slightly
slower as compared to Katz and Kider for fully connected
small graphs. For general large graphs however we gain 2− 4
times speed over the method proposed by Katz and Kider.

A simple modification to the matrix multiplication algorithm
yields an APSP solution (Algorithm 9). Lines 4 − 11 is the
general matrix multiplication algorithm with the multiplication
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and addition operations replaced by addition and minimum
operations respectively, line 7. The outer loop (line 3) utilizes
the transitive property of matrix multiplication and runs log V
times.

Algorithm 9 MATRIX APSP
1: D1 ← A
2: for m ≤ log V do
3: for i ← 1 to V do
4: for j ← 1 to V do
5: Dm

i,j ←∞
6: for k ← 1 to V do
7: Dm

i,j ← min(Dm
i,j , D

(m−1)
i,j + Ak,j)

8: end for
9: end for

10: end for
11: end for

We modify the parallel version of matrix multiplication pro-
posed by Volkov and Demmel [29] for our APSP solution. We
replace the multiplication and addition operations in Volkov
and Demmel kernel to addition and min operations. The kernel
is looped over log V times using an outer loop to solve the
APSP problem.

CPU

R1

C1 C2 C3

R2

R3

Global memory

C

R

Shared MemoryGlobal MemoryCPU Memory

B

16x16

C

64 x 16

R

B

64x4

Fig. 7. Blocks for matrix multiplication by Volkov and Demmel [29] modified
to stream from CPU to GPU.

Cache Efficient Graph Representation: For matrix
multiplication based APSP, we use an adjacency matrix to
represent graph. Figure 7 depicts an extension of the cache
efficient, conflict free, blocking scheme used for matrix
multiplication by Volkov and Demmel. We present two new
ideas over the basic matrix multiplication scheme. The first
is the modification to handle graphs larger than the device
memory by streaming data as required from the CPU. The
second is the lazy evaluation of the minimum finding which

results in a boost in performance.

Streaming Blocks: To handle large graphs, the adjacency
matrix present in the CPU memory is divided into rectangular
row and column sub-matrices. These are streamed into the
device global memory and a matrix-block Dm based on their
values is computed. Let R be the row and C the column sub-
matrices of the original matrix present in the device memory.
For every row sub-matrix R we iterate through all column sub-
matrices C of the original matrix. We assume CPU memory
is large enough to hold the adjacency matrix, though our
method can be easily extended to secondary storage with slight
modification.

Let the size of available device memory be GPUmem. We
divide the adjacency matrix into rows R and column C sub-
matrices of size (B × V ) and (V ×B) respectively such that

size
(
RB×V + CV×B + Dm

B×B

) ≤ GPUmem,

where B is the block size. A total of

log V

(
V 3

B
+ V 2

)
≡ O

(
log V

(
V 3

B

))

elements are transferred between CPU and GPU for a V × V
adjacency matrix for our APSP computation, with V 3 log V/B
reads and V 2 log V writes. Time taken for this data transfer
is negligible compared to the computation time, and can be
easily hidden using asynchronous read and write operations
supported on current generation CUDA hardware as will be
shown in Section X.

For example, for a 18K × 18K matrix with integer entries
and 1GB device memory, a block size B ' 6K can be used.
At the PCI-e×16 practical transfer rate of 3.3 GB/s, data
transfer takes nearly 16 seconds. This time is negligible as
compared to ' 800 seconds of computation time taken on
Tesla for a 18K × 18K matrix without streaming (result
taken from Table XI).

Lazy Minimum Evaluation: The basic step of Floyd’s
algorithm is similar to matrix multiplication with
multiplication replaced by addition and addition by minimum
finding. However, for sparse-degree graphs, the connections
are few and the remaining entries of the adjacency matrix
are infinity. With entries involving infinity, additions and
subsequent minimum finding can be skipped altogether
without affecting correctness. We, therefore, evaluate the
addition and the minimum in a lazy manner, skipping all
paths involving a non-existent edge. This results in a speedup
of 2 to 3 times over complete evaluation on most graphs,
however, making the running time degree-dependent.

GPU Implementation: Let R be the row and C be the
column sub-matrices of the adjacency matrix. Let Di denote a
temporary matrix variable of size B×B used to hold interme-
diate values. In each iteration of outer loop (Algorithm 9, line
2) Di is modified using C and R. Lines 3−10 of Algorithm 9
are executed on the CUDA device using modified Volkov and
Demmel kernel, while the rest of the code executes on the
CPU. Shared memory is used as a user managed cache to
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improve the performance and translates directly from Volkov
and Demmel kernel. They bring sections of matrices R, C and
Di into shared memory in blocks: R is brought in 64×4 sized
blocks, C in 16 × 16 sized blocks and Di in 64 × 16 sized
blocks. These values are selected to maximize throughput of
the CUDA device.

C. Gaussian Elimination Based APSP

In a parallel work , Buluc et al. [10] formulate a fast
recursive APSP algorithm based on Gaussian elimination.
They cleverly extend the R-Kleene [30] algorithm for in place
APSP computation on global memory. They split each APSP
step recursively into 2 APSPs involving graphs of half the
size, 6 matrix multiplications and 2 matrix additions. The
base-case is when there are 16 or fewer vertices; Floyd’s
algorithm is applied in that case by modifying the CUDA
matrix multiplication kernel proposed by Volkov and Demmel
[29]. They also use the fast matrix multiplication for other
steps. Their implementation is degree independent and fast;
they achieve a speed up of 5 − 10 times over the APSP
implementation presented above.

While the approach of Buluc et al. is the fastest APSP
implementation on the GPU so far, our key ideas can extend
it further. Our APSP specific optimizations can improve per-
formance over their native implementation, for example, we
incorporated the lazy minimum evaluation into the Volkov and
Demmel kernel used their approach and obtained a speed up of
more than 2 over their native code. Their approach is memory
heavy and is best suited when the adjacency matrix can fit
completely in the GPU device memory. The approach involves
several matrix multiplications and additions. Extending which
to stream the data from CPU to the GPU for matrix operations
in terms of blocks that fit in the device memory will involve
many more communications and computations. The CPU to
GPU communication bandwidth has not at all kept pace with
the increase in the number of cores or computation power of
the GPU. Thus, our non-matrix approach is likely to scale
better to arbitrarily high graphs than the Gaussian Elimination
based approach by Buluc et al.

Comparison of the matrix multiplication approach with
APSP using SSSP and Gaussian elimination approach is sum-
marized in Figure 11(d). Comparison of matrix multiplication
approach with Katz and Kider is given in Figure 11(e). Be-
havior of the matrix approach with varying degree is reported
in Table VII.

VIII. MINIMUM SPANNING TREE (MST)

Best time complexity for a serial solution to the MST prob-
lem, proposed by Bernard Chazelle [31], is O(Eα(E, V )),
where α is the functional inverse of Ackermann’s function.
Borůvka’s algorithm [32] is a popular solution to the MST
problem. In a serial setting it takes O(E log V ) time. Nu-
merous parallel variations of this algorithm also exist [33].
Chong et al. [34] report a EREW PRAM algorithm re-
quiring O(log V ) time and O(V log V ) work. Bader et al.
[35] design a fast algorithm for symmetric multiprocessors
with O((V + E)/p) lookups and local operations for a p

processor machine. Chung et al. [36] efficiently implement
Borůvka’s algorithm on a asynchronous distributed memory
machine by reducing communication costs. Dehne and Götz
implement three variations of Borůvka’s algorithm using the
BSP model [37].

We implement a modified parallel Borůvka algorithm on
CUDA using the divide-and-conquer approach similar to the
algorithm reported by Johnson and Metaxas in [38]. We initiate
colored trees from all vertices. Grow individual trees by adding
the minimum weighted edge to the minimum outgoing vertex
and merge colors when trees come in contact with each other.
Cycles are removed explicitly in each iteration. Connected
components are found via color propagation, an approach
similar to our SSSP implementation (section VI).

We represent each supervertex in Borůvka’s algorithm as
a color. Each supervertex finds the minimum weighted edge
to another supervertex and adds it to the output MST array.
Each newly added edge in the MST edge list updates the
colors of both its supervertices until there is no change in
color values for all supervertices. Cycles are removed from
the newly created graph and each vertex in a supervertex
updates its color to the new color of the supervertex. This
processes is repeated and the number of supervertices keep
on decreasing. The algorithm terminates when exactly one
supervertex remains.

Increasing order of colors

< < <<

Each color finds the min weighted edge 

to another color

Each edge updates colors of both super 

vertices until there is no change in colors

Each vertex updates its color to new 

supervertex color Terminates when one supervertex remains

Edge picking operation is parallel and hence can result 

in MST containing cycles. Cycle making edges are 

removed explicitly from the MST in each iteration.

Fig. 8. Parallel minimum spanning tree.

GPU Implementation

We use colors array Ca, color index array Cia (per vertex
color index to which the vertex belongs to), active colors array
Aca and newly added MST edges NMsta of size |V |. Output
is a set of edges present in the MST, let Msta of size |E|
denote this. Further, we keep degrees array Dega and cycle
edges array Cya of size |V | for cycle finding and elimination.
Arrays Va, Ea and Wa retain their previous meanings. Initially,
Ca holds the vertex id as color and each vertex points to this
color in Cia, Aca and Msta are set to false and NMsta holds
null. We assign one color to each vertex in the graph initially,
eliminating uncolored vertices and thus race conditions due to
them. An overview of the algorithm using steps presented in
following sections is given in Algorithm 10. The variables and
their purpose is stated in Table V.
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Algorithm 10 Minimum Spanning Tree
1: Create Va, Ea, Wa from G(V, E,W )
2: Initialize Ca and Cia to vertex id.
3: Initialize Msta to false
4: while More than 1 supervertex remains do
5: Clear NMsta, Aca, Dega and Cya

6: Kernel1 for each vertex: Finds the minimum weighted
outgoing edge from each supervertex to the lowest
outgoing color by working at each vertex of the su-
pervertex, sets the edge in NMsta.

7: Kernel2 for each supervertex: Each supervertex sets its
added edge in NMsta as part of output MST, Msta.

8: Kernel3 for each supervertex: Each added edge, in
NMsta, increments the degrees of both its supervertices
in Dega using color as index. Old colors are saved in
PrevCa.

9: while no change in color values Ca do
10: Kernel4 for each supervertex: Each edge in NMsta

updates colors of supervertices by propagating the
lower color to the higher.

11: end while
12: while 1 degree supervertex remains do
13: Kernel5 for each supervertex: All 1 degree superver-

tices nullify their edge in NMsta, and decrement their
own degree and the degree of its outgoing supervertex
using old colors from PrevCa.

14: end while
15: Kernel6 for each supervertex: Each remaining edge in

NMsta adds itself to Cya using new colors from Ca.
16: Kernel7 for each supervertex: Each entry in Cya is

removed from the output MST, Msta, resulting in cycle
free MST.

17: Kernel8 for each vertex: Each vertex updates its own
colorindex to the new color of its new supervertex.

18: end while
19: Copy Msta to CPU memory as output.

TABLE V
VARIABLES AND THEIR USE IN MST IMPLEMENTATION

Variable Purpose
Ca Holds color values
Cia Holds index of color for every vertex
Aca Holds active colors out of Ca

NMsta Holds newly selected edges per iteration
Msta Edges selected in MST upto current iteration
Dega Degree of every supervertex in current iteration
Cya Used to eliminate cycle making edges

PrevCa Stores previous state of Ca in each iteration

A. Finding Minimum Weighted Edge

Each vertex finds its minimum weighted outgoing edge
using edge weights Wa. The index of this edge is written
atomically to the color index of the supervertex in global
memory. Multiple edges in a supervertex can have minimum
weights, the one with minimum outgoing color is selected.
Algorithm 11 finds the minimum weighted edge for each

supervertex. Please note lines 10 − 14 in the pseudo code
(Algorithm 11) are implemented as multiple atomic operations
in practice.

Algorithm 12 adds the minimum weighed edge from each
supervertex to the final MST output array Msta. This kernel is
important as we cannot add an edge to Msta until all vertices
belonging to the supervertex have voted for their lowest
weighted edge. This Kernel executes for all supervertices (or
active colors) after KERNEL1 MST executes for every vertex
of the graph.

Algorithm 11 KERNEL1 MST
1: tid ← getThreadID
2: cid ← Cia[tid]
3: col ← Ca[cid]
4: for all edges eid of tid do
5: col2 ← Ca[Cia[Ea[eid]]]
6: if NOT Msta[eid] & col 6= col2 then
7: Ieid← Index(min(Wa[eid] &col2))
8: end if
9: end for

10: Begin Atomic
11: if Wa[Ieid] > Wa[NMsta[col]] then
12: NMsta[col] ← Ieid
13: end if
14: End Atomic
15: Aca[col] ← true

Algorithm 12 KERNEL2 MST
1: col ← getThreadID
2: if Aca[col] then
3: Msta[NMsta[col]]← true
4: end if

B. Finding and Removing Cycles

As C edges are added for C colors, at least one cycle is
expected to be formed in the new graph of supervertices.
Multiple cycles can also form for disjoint components of
supervertices. Figure 9 shows such a case. It is easy to see that
each such component can have at most one cycle consisting
of exactly 2 supervertices with both edges in the cycle having
equal weights. Identifying these edges and removing one edge
per cycle is crucial for correct output.

In order to find these edges, we assign degrees to super-
vertices using newly added edges NMsta. We then remove all
1-degree supervertices iteratively until there is no 1-degree
supervertex left, resulting in supervertices whose edges form
cycles.

Each added edge increments the degree of both its superver-
tices using color of the supervertex as its index in Dega (Algo-
rithm 13). After color propagation, i.e., merger of supervertices
(Section VIII-C), all 1-degree supervertices nullify their added
edge in NMsta. They also decrement their own degree and the
degree of their added edge’s outgoing supervertex in Dega
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Fig. 9. For C colors, C edges are added, resulting in multiple cycles. One
edge per cycle must be removed.

(Algorithm 15). This process is repeated until there is no 1-
degree supervertex left, resulting in supervertices whose edges
form a cycle.

Incrementing the degree array needs to be done before
propagating colors, as the old color is used as index in Dega

for each supervertex. Old colors are also needed after color
propagation to identify supervertices while decrementing the
degrees. We preserve old colors before propagating new colors
in an alternate color array PrevCa (Algorithm 13).

After removing 1-degree supervertex edges, resulting su-
pervertices write their edge from NMsta to their new color
location in Cya (Algorithm 16), after new colors have been
assigned to supervertices of each disjoint component using
Algorithm 14. One edge of the two, per disjoint component
cycle, survives this step. Since both edges have equal weights,
no preference is given over edges. Edges in Cya are then
removed from the output MST array Msta (Algorithm 17)
resulting in cycle free set of MST edges.

Algorithm 13 KERNEL3 MST
1: col ← getThreadID
2: if Aca[col] then
3: col2 ← Ca[Cia[Ea[NMsta[col]]]]
4: Begin Atomic
5: Dega[col]← Dega[col]+1
6: Dega[col2]← Dega[col2]+1
7: End Atomic
8: end if
9: PrevCa[col] ← Ca[col]

C. Merging Supervertices

Each added edge merges two supervertices. Lesser color of
the two is propagated by assigning it to the higher colored
supervertex. This process is repeated until there is no change
in color values for any supervertex. Color propagation mech-
anism is similar to our SSSP step. Kernel4 (Algorithm 14)
executes for each added edge and updates the colors of both
the vertices to the lower one. As in the SSSP implementation,
we use an alternate color array to store intermediate values

and to resolve read after write inconsistencies (not shown in
Algorithm 14).

Algorithm 14 KERNEL4 MST
1: cid ← getThreadID
2: col ← Ca[cid]
3: if Aca[col] then
4: cid2 ← Cia[Ea[NMsta[col]]]
5: Begin Atomic
6: if Ca[cid] > Ca[cid2] then
7: Ca[cid] ← Ca[cid2]
8: end if
9: if Ca[cid2] > Ca[cid] then

10: Ca[cid2] ← Ca[cid]
11: end if
12: End Atomic
13: end if

Algorithm 15 KERNEL5 MST
1: cid ← getThreadID
2: col ← PrevCa[cid]
3: if Aca[col] & Dega[col] = 1 then
4: col2 ← PrevCa[Cia[Ea[NMsta[cid]]]]
5: Begin Atomic
6: Dega[col]← Dega[col]−1
7: Dega[col2]← Dega[col2]−1
8: End Atomic
9: NMsta[col] ← φ

10: end if

Algorithm 16 KERNEL6 MST
1: cid ← getThreadID
2: col ← PrevCa[cid]
3: if Aca[col] & NMsta[col] 6= φ then
4: newcol ← Ca[Cia[Ea[NMsta[col]]]]
5: Cya[newcol] ← NMsta[col]
6: end if

Algorithm 17 KERNEL7 MST
1: col ← getThreadID
2: if Cya[col] 6= φ then
3: Msta[Cya[col]]← false
4: end if

D. Assigning Colors to Vertices

Each vertex in a supervertex must know its color; merging
of colors in the previous step does not necessarily end with all
vertices in a component being assigned the minimum color of
that component. Rather, a link in color values is established
during the previous step. This link must be traversed by each
vertex to find the lowest color it should point to. The colors are
set same as the index initially, leading to same color and index
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Algorithm 18 KERNEL8 MST
1: tid ← getThreadID
2: cid ← Cia[tid]
3: col ← Ca[cid]
4: while col 6= cid do
5: col ← Ca[cid]
6: cid ← Ca[col]
7: end while
8: Cia[tid] ← cid
9: if col 6= 0 then

10: Terminate ← false
11: end if

for all active colors. This property is exploited while updating
colors for each vertex. Each vertex in Kernel8 (Algorithm 18)
finds its colorindex cid and traverses the colors array Ca until
coloridnex is not equal to color, converging at the lowest active
color of its supervertex. The entire process is repeated until
a single supervertex remains. A total of

√
log V iterations are

needed for the algorithm to terminate [38].

E. Primitive based MST

Another variation of the MST algorithm in a recursive
framework using primitives such as scan, segmented-scan and
split is developed from our group [39]. Though the algorithm
reported in [39] is 2− 3 times faster than the implementation
stated above, it is heavy on memory requirements and cannot
handle graphs larger than 6M and weights larger than 1K
because of the 32−bit restriction of the segmented-scan op-
eration and O(E) sized scan and split operations used in the
implementation. Please see [39] for comparison of the above
mentioned and recursive MST implementations on smaller
sized graphs than reported here.

IX. MAXIMUM FLOW (MF)/MIN CUT

Maxflow tries to find the minimum weighed cut that
separates a graph into two disjoint sets of vertices, con-
taining the source s and the target t vertices. The
fastest serial solution due to Goldberg and Rao takes
O(Emin(V 2/3,

√
E) log(V 2/E) log(U)) time [40], where U

is the maximum capacity of the graph.
Popular serial solutions to the max flow problem include

Ford-Fulkerson’s algorithm [41], later improved by Edmond
and Karp [42], and the Push-Relabel algorithm [43] by
Goldberg and Tarjan. Edmond-Karp’s algorithm repeatedly
computes augmenting paths from s to t using BFS, through
which flows are pushed, until no augmented paths exist. The
Push-Relabel algorithm, however, works by pushing flow from
s to t by increasing heights of nodes farther away from t.
Rather than examining the entire residual network to find an
augmenting path, it works locally, looking at each vertex’s
neighbors in the residual graph.

Anderson and Setubal [44] first gave a parallel version of
the Push-Relabel algorithm. Bader and Sachdeva implemented
parallel cache efficient variation of the push-relabel algorithm
using an SMP [45]. Alizadeh and Goldberg [46] implemented

the same on a massively parallel Connection Machine CM−2.
GPU implementations of the push-relabel algorithm are also
reported [47]. A CUDA implementation for grid graphs spe-
cific to vision applications is reported in [48]. We implement
the parallel push-relabel algorithm using CUDA for general
graphs.

The Push-Relabel Algorithm

The push-relabel algorithm constructs and maintains a resid-
ual graph at all times. The residual graph Gf of the graph G
has the same topology, but consists of the edges which can
admit more flow, Ef . Each edge has a current capacity in
Gf , called its residual capacity which is the amount of flow
that it can admit currently. Each vertex in the graph maintains
a reservoir of flow (excess flow) and a height. Based on its
height and excess flow either push or relabel operations are
undertaken at each vertex. Initially height of s is set to |V | and
height of t to 0. Height at all times is a conservative estimate
of the vertex’s distance from the source.
• Push: The push operation is applied at a vertex if its

height is one more than any of its neighbor and it has
excess flow in its reservoir. The result of push is either
saturation of an edge in Ef or saturation of vertex, i.e.,
empty reservoir.

• Relabel: Relabel operation is applied to change the
heights. Any vertex having excess flow, which cannot
flow due to height mismatch undergoes relabeling. The
relabel operation ensures the height of the vertex to be
one more than the minimum height of its neighbor.

Better estimates of height values can be obtained using
global or gap relabeling [45]. Global relabeling uses BFS
to correctly assign distances from the target whereas gap
relabeling finds gaps using height mismatches in the entire
graph. However, both are expensive operations, especially
when executed on parallel hardware. The algorithm terminates
when neither push nor relabeling can be applied. The excess
flows in the nodes are then pushed back to the source and the
saturated nodes of the final residual graph gives the maximum
flow/minimal cut.

ha

Height

Nodes present in Gf

Nodes not present in Gf

Sink

Source
Relabelling Nodes

Pushing Nodes

Residual Graph Gf at intermediate stage Push and Relabel operations in Gf

ha(s) = No of nodes

ha(t) = 0

Fig. 10. Parallel maxflow, showing push and relabel operations based on ea

and ha
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GPU Implementation

We keep ea and ha arrays representing excess flow and
height per vertex. An activity mask Ma holds three distinct
sates per vertex, 0 corresponding to the relabeling state
(ea(u)> 0, ha(v) ≥ ha(u) ∀ neighbors v ∈ Gf ). Ma is set to
1 for the push state (ea(u) > 0 and ha(u) = ha(v)+1 for any
neighbor v ∈ Gf ) else the mask is set as 2 for saturation
(Table VI). Based on these values the push and relabel

TABLE VI
VARIABLES AND THEIR USE IN MAX FLOW IMPLEMENTATION

Variable Purpose
Ma Holds activity state per vertex
ea Holds excess flow per vertex
ha Holds height at every vertex
Wa Holds residual capacity for every edge

operations are undertaken. Initially activity mask is set to 0
for all vertices. A backward BFS from the sink node is used
for global relabeling. Global relabeling is used heuristically in
our implementation. We apply multiple pushes before applying
the relabel operation. Multiple local relabels are applied before
applying a single global relabel step (Algorithm 19).

Algorithm 19 Max Flow Step
1: for 1 to k times do
2: Apply m pushes
3: Apply Local Relabel
4: end for
5: Apply Global Relabel

Relabel: Relabels are applied as given in Algorithm 19.
Local relabel operation is applied at a vertex if it has positive
excess flow but no push is possible to any neighbor due to
height mismatch. The height of vertex is increased by setting
it to one more than the minimum height of its neighboring
nodes. Kernel1 (Algorithm 20) explains this operation. Global
relabeling uses backward BFS from sink, which propagates
the height values to each vertex in the residual graph based
on its actual distance from sink.

Algorithm 20 KERNEL1 MAXFLOW
1: tid ← getThreadID
2: if Ma[tid] = 0 then
3: for all neighbors nid of tid do
4: if nid ∈ Gf&minh > ha[nid] then
5: minh ← ha[nid]
6: end if
7: end for
8: ha[tid] ← minh + 1
9: Ma[tid] ← 1

10: end if

Push: Each vertex looks at its activity mask Ma, if 1 it
pushes the excess flow along the edges present in residual
graph. It atomically subtracts the flow from its own reservoir

and adds it to the neighbor’s reservoir. For every edge (u, v)
of u in residual graph it atomically subtracts the flow from
the residual capacity of (u, v) and adds (atomically) it to the
residual capacity of (v, u). Kernel2 (Algorithm 21) performs
the push operation.

Algorithm 21 KERNEL2 MAXFLOW
1: tid ← getThreadID
2: if Ma[tid] = 1 then
3: for all neighbors nid of tid do
4: if nid ∈ Gf&ha[tid]= ha[nid]+1 then
5: minflow ← min(ea[tid], Wa[nid])
6: Begin Atomic
7: ea[tid] ← ea[tid] −minflow
8: ea[nid] ← ea[nid] +minflow
9: Wa(tid,nid)←Wa(tid,nid)−minflow

10: Wa(nid,tid)←Wa(nid,tid)+minflow
11: End Atomic
12: end if
13: end for
14: end if

Algorithm 22 changes the state of each vertex. The activity
mask is set to either 0, 1 or 2 states reflecting relabel, push
and saturation states based on the excess flow, residual edge
capacities and height mismatches at each vertex. Each vertex
sets the termination flag to false if its state undergoes a change.

Algorithm 22 KERNEL3 MAXFLOW
1: tid ← getThreadID
2: for all neighbors nid of tid do
3: if ea[tid]≤ 0 OR Wa(tid,nid)≤ 0 then
4: state ← 2
5: else
6: if ea[tid]> 0 then
7: if ha[tid] = ha[nid] + 1 then
8: state ← 1
9: else

10: state ← 0
11: end if
12: end if
13: end if
14: end for
15: if Ma[tid] 6= state then
16: Terminate ← false
17: Ma[tid]← state
18: end if

The operations terminates when there is no change in the
activity mask. This does not necessarily occur when all nodes
have saturated. Due to saturation of edges, unsaturated nodes
may get cutoff from sink. Such nodes are not actively taking
part in the process, consequently their state does not change.
Termination hence cannot be based on saturation of nodes.
Results of this implementation are given in Figure 11(g).
Figure 11(h) and Figure 11(i) shows the behavior of our
implementation with varying m and k in accordance to Al-
gorithm 19.
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X. PERFORMANCE ANALYSIS

We choose graphs representatives of real world problems.
Our graph sizes vary from 1M to 10M vertices for all
algorithms except APSP. Scarpazza et al. [15] focus on im-
proving the throughput of the Cell/B.E. for BFS. Bader and
Madduri [3], [4], [35] use CRAY MTA−2 for BFS, STCON
and MST implementations. Dehne and Götz [37] use CC−48
to perform MST. Edmonds et al. [49] use Parallel Boost graph
library and Crobak et al. [50] use CRAY MTA−2 for their
SSSP implementations. Yoo et al. [5] use the BlueGene/L for
a BFS implementation. Though our input sizes are not compa-
rable with the ones used in these implementations, of orders
of billions of vertices and edges, we show implementations
on a hardware several orders less expensive. Because of the
large difference in input sizes, we do not compare our results
with these implementations directly. We show a comparison
of our APSP approach with Katz and Kider [7] and Buluc
et al. [10] on similar graph sizes as the implementations are
directly comparable.

The focus of the performance analysis is on what GPUs can
deliver on the seemingly irregular problems involving graphs.
The low costs of the GPUs make them highly available to
a wide audience and are good candidates for accelerating
different types of tasks. We compare the GPU performance
with other GPU implementations when available. We also
compare the performance on a standard CPU using standard
implementations as an indication of the practical acceleration
that the GPU can provide. To this end, we show performance
of all our implementations on a high-end GPU. We also
show the performance on low-end and medium-end GPUs
on feasible graph sizes. Comparison with the CPU is not
otherwise meaningful as the two devices are radically different.

A. Types of Graphs

We tested our algorithms on various types of synthetic
and real world large graphs including graphs from the ninth
DIMACS challenge [51]. Primarily, three generative models
were used for performance analysis, using the Georgia Tech.
graph generators [52].
• Random Graphs: Random graphs have a short band of

degree where all vertices lie, with a large number of
vertices having similar degrees. A slight variation from
the average degree results in a drastic decrease in number
of such vertices in the graph.

• R-MAT [53]/Scale Free/Power law: A large number of
vertices have small degree with a few vertices having
large degree. This model best approximates large graphs
found in real world. Practical large graphs models includ-
ing, Erdös-Rényi, power-law and its derivations follow
this generative model. Due to its small degree distribution
over most vertices and uneven degree distribution these
graphs expand slowly in each iteration and exhibit uneven
load balancing. These graphs therefore are a worst case
scenario for our algorithms as verified empirically.

• SSCA#2 [54]: These graphs are made up of random
sized cliques of vertices with a hierarchical distribution
of edges between cliques based on a distance metric.

These models approximate real world datasets and are
good representatives for graphs commonly used in real world
domains. We assume all graphs to be connected with positive
weights.

B. Experimental Setup

Our testbed consisted of a single Nvidia GTX 280 graphics
adapter with 1024MB memory controlled by a Quad Core Intel
processor (Q6600 @ 2.4GHz) with 4GB RAM running Fedora
Core 9. For CPU comparison we use the C++ Boost graph
library (BGL), with the exception of BFS, compiled using gcc
at optimization setting −O4 on the Intel Quad Core Q6600,
2.4GHz processor. We use our own BFS implementation on
CPU as it proved faster than Boost. BFS was implemented
using STL and C++, compiled with gcc using −O4 optimiza-
tion. A quarter Tesla S1070 1U was used for graphs larger than
6M in most cases, it has a similar GPU as GTX 280 with
4096MB of memory clocked at a slightly lower frequency.
We also show scalability of our algorithms on low end GPUs
including 8600GT (32 stream processors and 256MB RAM)
and 8800GT (112 stream processors and 512MB RAM).

We are aware there may exist more optimized implemen-
tations of algorithms reported than BGL. Our aim to to show
data parallel approaches presented to be applicable on readily
available hardware, with better scalability and performance
than CPU. Detailed timings of the plots given are listed in
Table X and Table XI in the Appendix.

C. Iterative Mask Based Approach

We implement BFS, STCON, SSSP and Maxflow using
the iterative mask based approach. A speedup of nearly
15 − 20 times over BGL is observed in these implemen-
tations on Random and SSCA#2 graphs as shown in Fig-
ures 11(a), 11(b), 11(c) and 11(g). Data parallelism is exploited
in 80−90% of the total time taken for execution. For Random
and SSCA#2 graphs 7 − 8% time is taken to reach full
parallelism (number of threads ≥ number of processors), while
R-MAT graphs take nearly 20% of the total time. Low degree
and linear graphs exhibit lower performace for the iterative
mask based implementations emperically, as seen in Table IX.
This behavior is not surprising, since this approach cannot
exploit parallelism under such a senario. A maximum of
two vertices can be processed in parallel in each iteration
for a linear graph using the iterative mask based approach.
Vertex list compaction, however, helps reduce running time by
25− 40% in such cases. Large variation in degree also slows
down the execution on an SIMD machine owing to uneven
load per thread. This behavior is seen in all algorithms on
R-MAT graphs (Figures 11(a), 11(b), 11(c) and 11(g)).

BFS (Figure 11(a)), STCON (Figure 11(b)) and SSSP
(Figure 11(c)) show similar behavior on all graph models.
We use vertex list compaction in BFS and SSSP leading to
40% reduction in time in case of R-MAT graphs. Running
times for 100 iterations of randomly selected s and t are
reported for STCON. The implementations are highly scalable
and exhibit an almost linear respose in timings as the size of
the graph is increased. R-MAT graphs, even after compaction,
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(a) Breadth first search on varying number of
vertices for synthetic graphs.
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(b) st-Connectivity for varying number of
vertices for synthetic graph models.
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(c) Single source shortest path on varying
number of vertices for synthetic graph mod-
els.
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(d) Comparing APSP using SSSP, APSP us-
ing matrix multiplications and APSP using
Gaussian elimination [10] approaches on a
GTX280 and Tesla

256 512 1024 2048 4096 9216 10240 11264 18K
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Number of Vertices, average degree 12, weights in range 1−100

Lo
g 

pl
ot

 o
f T

im
e 

in
 M

ill
is

ec
on

ds

Matrix − Random
Matrix − RMAT
Matrix  − SSCA2
Matrix − Fully Connected
APSP − Katz and Kider

(e) Comparing our matrix-based APSP ap-
proach with Katz and Kider [7] on a Quadro
FX5600
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(f) Minimum spanning tree results for varying
number of vertices for synthetic graph models
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(g) Maxflow results for varying number of
vertices for synthetic graph models

(h) Maxflow behavior on Random and
SSCA2 on a 1M vertex graph

(i) Maxflow behavior on RMAT on a 1M
vertex graph

Fig. 11. Experiments on varying sizes and varying degree for three types of graph

perform badly on the GPU as compared to other graph models,
conversely, however, they perform better on the CPU. Larger
fanouts and low degrees lead to load imbalance and slow
frontier expansion for R-MAT graphs.

SSSP converges much later than BFS because of its uneven
frontier configuration. Atomic clash serialization, however,
does not slow down SSSP implementation. This is because
a maximum of warp size clashes can occur at a vertex using
atomic operations, which is small and is fixed for a CUDA

device.

Maxflow timings for various graphs are shown in Fig-
ure 11(g). We average timings over 5 iterations for randomly
selected source s and sink t vertices. R-MAT GPU times out
shoots the CPU times because of their low degree nature and
slow convergence of local relabel thereof. The behavior of
our max flow implementation for varying m and k, control-
ling the periodicity of the local and global relabeling steps
(Algorithm 19), is given in Figure 11(h) and Figure 11(i)
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for a 1M vertex graph. Random and SSCA#2 graphs show a
similar behavior with time increasing with number of pushes
for low or no local relabels. Time decreases as we apply
more local relabels. We found for m = 3 and k = 7 the
timing were optimal for Random and SSCA#2 graphs. R-MAT
graphs however exhibit different behavior for varying m and
k. For low local relabels the time increases with increasing
number of pushes similar to Random and SSCA#2. However
as local relabels are increased we see an increase in timings.
This further reinforces the fact that low degree poses slow
convergence of local relabels.

A speed up of nearly 5− 7 times in case of R-MAT graphs
and 15− 20 times in case of Random and SSCA#2 graphs is
observed over BGL for these implementations. Larger degree
graphs benefit more using iterative mask based implementa-
tions as the expansion per iteration is more, resulting in better
expansion of data and thus better performance.

D. The Divide-and-Conquer Approach

The MST algorithm is implemented using a divide-and-
conquer approach. Timings for minimum spanning tree imple-
mentation are summarized in Figure 11(f) for synthetic graphs.
The divide-and-conquer approach is not affected by linearity
of the graph, as each supervertex is processed in parallel
independent to other supervertices and there is no frontier
expansion. However, for R-MAT graphs we see a slowdown
due to uneven loops over vertices with high degree, which
prove inefficient on an SIMD model.

E. All Pairs Shortest Paths (APSP)

The SSSP, matrix multiplication and Gaussian elimination
APSP implementations are compared in Figure 11(d) on a
GTX 280 and Tesla. The SSSP based solution uses iterative
mask based approach where as Gaussian Elimination based
approach due to Buluc et al. [10] is recursive divide-and-
conquer. The matrix multiplication based APSP uses graph
representation outlined in Section VII. We stream data from
CPU to GPU for graphs larger than 18K for this approach.
As seen from the experiments, APSP using SSSP performs
badly on all types of graph, but is a scalable solution for large,
low-degree graphs. For smaller graphs, matrix approach proves
much faster. We do not use lazy min for fully connected graphs
as it becomes an overhead for them. We are able to process a
fully connected 25K graph using streaming of matrix blocks
in nearly 75 minutes on a single unit of Tesla S1070, which
has similar compute power to that of GTX280, but with 4
times the memory. The Gaussian Elimination based APSP by
Buluc et al. [10] is the fastest among the approaches. However,
introducing the lazy minimum evaluation to their approach
provides a further speed up of 2 − 3 as can be seen from
Figure 11(d) and Table XI. For direct comparison with Katz
and Kider [7], we also show results on Quadro FX 5600.
Figure 11(e) summarizes the results of these experiments. In
case of fully connected graphs we are 1.5 times slower than
Katz and Kider up to the 10K graph. We achieve a speed up
of 2− 4 times over Katz and Kider for larger general graphs.

F. Scalability

Behavior of our implementations with varying degrees are
summarized in Table VII. We show results for a 100K
vertex graph with varying degree. For APSP matrix based
approach results for a 4K graph are shown. The running
time increase with increasing degree in all cases, however,
GPU implementations scale better than their CPU counterparts
for all implementations. A sub-linear reduction in time is
observed for GPU in contrast to a linear slow down on the
CPU. The behavior can be explained based on the work
done in these implementations, that is distributed over parallel
threads resulting in a lower increase in time as compared to
CPU. Table VIII shows results for the BFS, SSSP and MST
implementations on low end graphics processors, the 8600GT
with 32 stream processors and 256MB RAM and the 8800GT
with 112 stream processors and 512MB of RAM. Inferring
from experiments we can see both iterative mask and divide-
and-conquer approaches scale linearly with the number of
stream processors on the CUDA device. We see a speedup of
2−3 times on 8600GT and 7−8 times for 8800GT over CPU
for these approaches, which are entry level CUDA devices.
Nvidia has integrated GPUs on motherboards which support
CUDA processing, the 9400 series motherboards come with
a low end GPU. Performance over CPU can be gained by
porting algorithms to CUDA on such devices.

Results on the ninth DIMACS challenge [51] dataset are
summarized in Table IX. GPU performs worse than CPU
in most implementations for these inputs expect in case of
minimum spanning tree. The divide and conquer approach is
inert to linearity of the graph and thus performs better than the
iterative mask based implementations. Average degree is 2−3
makes these graphs almost linear and expand data minimally
in each iteration the frontier based implementations.

XI. CONCLUSIONS

In this paper, we presented massively multithreaded al-
gorithms on large graphs for the GPU using the CUDA
model. Each operation was typically broken down using a
BSP-like model into several kernels executing on the GPU,
synchronized by the CPU. We showed results on random
graphs and scale-free graphs that are inspired by real-life prob-
lems. The high performance demonstrated makes the GPUs
attractive as co-processors to the CPU for several scientific
and engineering tasks that are modeled as graph algorithms.
The wide availability of the GPUs puts it within the reach of
every user who needs high performance computing. Practical
implementations that deliver superior performance will ease
the adoption of GPUs by a wide range of users. The source
code for our implementations will be made available on the
web. This is likely to facilitate their adoption by other users,
going by our experience on BFS and SSSP. In addition to
the higher performance, we believe the approaches presented
will be applicable to the multicore and manycore architectures
that are in the pipeline from different manufacturers for graph
algorithms.
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TABLE VII
SCALABILITY WITH VARYING DEGREE ON A 100K VERTEX GRAPH, 4K FOR APSP, WEIGHTS IN RANGE 1− 100. TIMES IN MILLISECONDS.

Degree BFS GPU/CPU STCON GPU/CPU SSSP GPU/CPU
Random R-MAT SSCA#2 Random R-MAT SSCA#2 Random R-MAT SSCA#2

100 15/420 91/280 7/160 0.8/1.1 1.47/14.3 1.04/5.8 169/260 305/190 120/170
200 48/800 122/460 13/290 1.5/1.1 2.36/18.9 1.11/8.7 375/380 400/250 237/220
400 125/1520 163/770 24/510 2.8/1.2 3.93/27.9 1.53/8.9 898/710 504/360 474/320
600 177/2300 182/1050 38/730 4.1/1.3 5.26/41.9 2.81/9.1 1449/- 587/430 683/410
800 253/3060 210/1280 67/980 5.5/1.5 6.85/55.4 2.589/9.8 1909/- 691/540 1042/520

1000 364/- -/- -/- 6.8/- -/- -/- 2157/- -/- -/-
Degree MST GPU/CPU Max Flow GPU/CPU APSP Matrix GPU/CPU

Random R-MAT SSCA#2 Random§ R-MAT SSCA#2§ Random R-MAT SSCA#2
100 302/12150 461/10290 122/7470 808/6751 3637/4950 345/3750 6111/30880 5450/19470 3400/16390
200 369/25960 638/22180 218/16700 2976/13430 6308/9230 615/7670 8100/53480 5875/27370 5253/25860
400 1149/- 849/- 347/- 10842/32900 8502/16570 1267/17360 9034/92700 6202/38070 7078/41580
600 1908/- 1103/- 499/- 14722/- 11238/- 6018/- 9123/102383 6317/41273 7483/48729
800 2484/- 1178/- 883/- 22489/- 14598/- 8033/- 9231/126830 6391/45950 7888/57460
1000 3338/- -/- -/- 32748/- -/- -/- 9613/167630 6608/54540 8309/68580

TABLE VIII
SCALABILITY OF BFS, SSSP AND MST ON LOWER END GPUS. TIMES IN MILLISECONDS. AVERAGE DEGREE 12.

Number Time 8600GT/8800GT
of BFS SSSP MST

vertices Random RMAT SSCA#2 Random RMAT SSCA#2 Random RMAT SSCA#2
1M 161/68 620/339 133/55 1733/919 1862/994 1879/1038 -/1532 5682/3814 2461/1310
2M -/143 1237/642 270/114 -/2016 -/2527 -/1803 -/2820 -/8002 -/2731
3M -/223 -/1235 -/170 -/- -/3880 -/2690 -/- -/- -/4029
4M -/299 -/1546 -/229 -/- -/- -/3900 -/- -/- -/-
5M -/370 -/2139 -/287 -/- -/- -/- -/- -/- -/-

TABLE IX
RESULTS ON THE NINTH DIMACS CHALLENGE [51] GRAPHS, WEIGHTS IN RANGE 1− 300K . TIMES IN MILLISECONDS.

Graphs with Vertices Edges Time GPU/CPU
distances as weights BFS STCON SSSP MST Max Flow§

New York 264346 733846 147/20 1.25/8.8 448/190 76/780 657/420
San Fransisco Bay 321270 800172 199/20 2.2/11.3 623/230 85/870 1941/740

Colorado 435666 1057066 414/30 2.36/15.9 1738/340 116/1280 3021/2770
Florida 1070376 2712798 1241/80 5.02/37.7 4805/810 261/3840 6415/2810

Northwest USA 1207945 2840208 1588/100 7.8/48.3 8071/1030 299/4290 11018/3720
Northeast USA 1524453 3897636 2077/140 8.8/66.5 8563/1560 383/6050 18722/4100

California and Nevada 1890815 4657742 2762/180 9.4/100 11664/1770 435/7750 19327/4270
Great Lakes 2758119 6885658 5704/240 19.8/114.7 32905/2730 671/12300 21915/6360
Eastern USA 3598623 8778114 7666/400 24.4/183.8 41315/4140 1222/16280 70147/16920
Western USA 6262104 15248146 14065/800 58/379.8 82247/8500 1178/32050 184477/25360
Central USA 14081816 34292496 37936/3580 200/1691 215087/34560 3768/- 238151/-
Full USA‡ 23947347 58333344 102302/- 860/- 672542/- 8348/- -/-

‡Results taken on Tesla
§Max Flow results at m = 3 and k = 7
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APPENDIX

TABLE X
SUMMARY OF RESULTS FOR SYNTHETIC GRAPHS. TIMES IN MILLISECONDS

Algo Graph Number of Vertices, average degree 12, weights varying from 1 to 100
Type 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

BFS∗

Random GPU† 38 82 132 184 251 338 416 541 635‡ 678‡
Random CPU 530 1230 2000 2710 3480 4290 5040 5800 - -
R-MAT GPU† 244 433 778 944 1429 1526 1969 2194 2339‡ 3349‡
R-MAT CPU 340 760 1230 1680 2270 2760 3220 3620 - -

SSCA#2 GPU† 30 62 95 142 178 233 294 360 433‡ 564‡
SSCA#2 CPU 420 930 1460 2010 2550 3150 3710 4310 - -

STCON

Random GPU 1.42 3.06 4.28 5.34 6.62 7.37 9.96 10.8 11.15 -
Random CPU 68 164 286 310 416 536 692 - - -
R-MAT GPU 19.2 32.37 172.1 347.4 408.3 579.1 626 1029 - -
R-MAT CPU 160 358 501 638 926 1055 1288 - - -
SSCA#2 GPU 1.96 3.76 5.33 5.44 7.23 8.08 9.1 12.33 - -
SSCA#2 CPU 78 176 286 422 552 595 665 - - -

SSSP

Random GPU 116 247 393 547 698 920 947 1140 1247 1535
Random CPU 2330 5430 10420 18130 - - - - - -
R-MAT GPU† 576 1025 1584 1842 2561 3575 11334 - - -
R-MAT CPU 1950 4200 6700 11680 - - - - - -
SSCA#2 GPU 145 295 488 632 701 980 1187 1282 1583 2198‡
SSCA#2 CPU 2110 4490 6970 9550 - - - - - -

MST

Random GPU† 770 1526 2452 3498 4654 6424‡ 8670‡ 11125‡ - -
Random CPU 12160 26040 - - - - - - - -
R-MAT GPU† 2076 4391 5995 9102 10875 12852 15619‡ 21278‡ - -
R-MAT CPU 10230 22340 - - - - - - - -

SSCA#2 GPU† 551 1174 1772 2970 4173 4879 7806‡ 9993‡ - -
SSCA#2 CPU 7540 15980 25230 - - - - - - -

MF

Random GPU§ 598 3013 5083 7179 7323‡ 16871‡ 30201‡ 34253‡ - -
Random CPU 15390 33290 - - - - - - - -
R-MAT GPU 30743 55514 74767 148627 232789‡ 311267‡ - - - -
R-MAT CPU 8560 18770 - - - - - - - -

SSCA#2 GPU§ 459 2548 2943 7388 8606‡ 12742‡ - - - -
SSCA#2 CPU 9760 20960 - - - - - - - -

TABLE XI
SUMMARY OF RESULTS FOR SYNTHETIC GRAPHS APSP APPROACHES. TIMES IN MILLISECONDS

APSP Graph Number of Vertices, average degree 12, weights in range 1− 100
Type 256 512 1024 2048 4096 9216 10240 11264 18K 25K 30K

Using Random 499 1277 3239 7851 18420 56713 65375 77265 160608 316078 556313
SSSP R-MAT 489 1531 4145 12442 38812 143991 170121 211277 465037 1028275 1362119

GTX 280 SSCA#2 469 1300 3893 7677 17450 50498 58980 67794 163081 353166 461901
Random 2.77 11.3 55.7 330.4 2240.8 41150 58889 72881‡ 244264‡ 1724970‡ ¶ 3072443‡ ¶

Matrix R-MAT 2.54 10.9 66.2 478 3756 32263 56906 71035‡ 339188‡ 1152989‡ ¶ 4032675‡ ¶
GTX 280 SSCA#2 2.55 8.6 42.9 263.6 2063.7 43045 62517 76399‡ 220868‡ 1360469‡ ¶ 1872394‡ ¶

Fully Conn. 2.9 15.2 112 959 8363 110658 151820 202118‡ 799035‡ 4467455‡ ¶ -
Random 3.25 21.3 136.3 827.9 5548 65552 87043 113993 1048598¶ - -

Matrix R-MAT 2.99 22 174.8 1307.6 10534 94373 115294 137854 1487025¶ - -
FX 5600 SSCA#2 2.91 15.78 103.2 635.3 4751 62555 82708 109744 1001212¶ - -

Fully Conn. 2.9 25.1 221.5 1941 16904 268757 368397 490157 4300447¶ - -
GE Based Random 1.8 4.4 12.1 44.9 230 1505 - - - - -
Lazy Min R-MAT 1.8 4.5 12.1 45 230 1505 - - - - -
GTX 280 SSCA#2 1.8 4.5 12.1 44 230 1497 - - - - -
GE Based Random 2.18 6 19.64 96.5 639 3959 - - - - -

Buluc [10] R-MAT 1.86 5.9 19.1 96 638 3959 - - - - -
GTX 280 SSCA#2 2.18 5.9 19.67 96 638 3965 - - - - -
Katz [7] - 7.7 34.9 230.1 1735.6 13720 158690 216400 1015700 - - -

∗CPU implementation is ours
†Using Compaction process
‡Results taken on a Tesla S1070
§Max Flow results at m = 3 and k = 7
¶Results using streaming from CPU to GPU memory
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