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Abstract—We present an approach to simulate both Newto-
nian and generalized Newtonian fluids using Lattice Boltzmann
Method. The focus has been on accurately modelling non-
Newtonian fluids at the micro channel level from biological fluids
in the past. Our method can model macroscopic behaviour of such
fluids by simulating the variation of properties such as viscosity
through the bulk of the fluid. The method works regardless of
the magnitude of flow, be it through a thin tube or a large
quantity of liquid splashing in a container. We simulate the
change in viscosity of a generalized Newtonian fluid and its free
surface interactions with obstacles and boundaries. We harness
the inherent parallelism of Lattice Boltzmann Method to give a
fast GPU implementation for the same.

I. INTRODUCTION

Computational simulation of fluids is very important for
several applications. The incompressible Navier Stokes’ equa-
tions [1] describe the physics behind fluids. They are a set of
two partial differential equations which hold throughout the
fluid and model it on the basis of Newton’s second law of
motion.
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∇.~u = 0 (2)

Eq. (1) is called the momentum equation. This, essentially,
is Newton’s second law of motion. u is the velocity field,
ρ is the density, p is the pressure existing in the fluid, g
is the acceleration due to gravity while ν is the kinematic
viscosity. Eq. (2) is called the incompressibility condition and
is interpreted as the amount of fluid entering and exiting is the
same through any element of unit volume. The two equations
together describe the velocity field through the fluid domain
completely.

The non-linearity of the first equation makes it difficult
to solve analytically, with non-existent solutions for flows
with higher Reynold’s number. However, exact solutions to
the problem exist due the vanishing of the non-linear term in
such cases.

We generally take the Newtonian fluid model as standard.
However, Newtonian fluid is just one of the many kinds of
fluid behaviour which we see around us. An example of a non-
Newtonian fluid is blood. It is a shear-thinning fluid, for which
the apparent viscosity decreases with the increase in shear rate.
Other kinds such as shear-thickening fluids also exist. Other
examples of such fluids are multiphase mixtures like slurries

and emulsions, polymer and solutions, food products like jams
and jellies etc.

Conventionally, two viewpoints have existed for modelling
fluids viz. Lagrangian and Eulerian. While both methods
involve directly discretizing the Navier Stokes’ equations, the
Lagrangian viewpoint [2] is the more intuitive of the two. It
models the fluid as a particle system. Each point is marked
with position and velocity vectors. It tracks these points and
models how the vectors change according to the variation
in fluid properties such as density, velocity and temperature.
Eulerian approach [3] takes the opposite direction; it looks
at fixed points in the fluid domain and calculates how fluid
properties change on these points as it flows past them.

Another approach, which is relatively new, is the Lattice
Boltzmann Method (LBM). It is based on Kinetic Theory.
The LBM evolved from Lattice Gas Cellular Automata when
the latter was found to be incapable in simulating fluids with
high accuracy. The method takes a mesoscopic view of the
problem showing that modelling at this level can aggregate to
give an accurate description of macroscopic fluid properties.
The model, thus, does away with the need to solve partial
differential equations or apply approximate finite difference
techniques and is extremely easy to understand and implement.
Also, it is accurate to the second order, in contrast to other
methods which are accurate only to the first order. Although
several sub-approaches exist we will focus on LBM with
Bhatnagar, Gross, Krook (BGK) approximation [4].

In the past attention has been paid to simulating non-
Newtonian behaviour at extremely small scales. Flow of blood
in capillaries is an example of the kind of flows that has been
studied. However, we argue that since the physics behind the
behaviour of fluids doesn’t change according to the scale or
extent of flow, the same equations can be used to model bulkier
flows. We do this by reducing dependence of the model on
constants like the Knudsen number. The Knudsen number is
the ratio of the molecular mean free path to the characteristic
physical length scale of the simulation. While it is easy to
find the characteristic length for microfluidics and is taken to
be the width of the channel (for example, the characteristic
length of a tube is it’s diameter), it becomes difficult to find
its value for simulations where there is no channel to speak
of, for example, a fluid flowing on an inclined plane. In the
succeeding sections we introduce the theory behind LBM and
how it can be extended. The procedure can model generalized
Newtonian flows of any scale, implying that Newtonian, shear-
thinning and dilatant fluids can be simulated and the change
in viscosity depicted, not just in the bulk of the fluid but also



as its free surface interacts with obstacles, boundaries and
atmosphere while progressing forward.

II. GENERALIZED NEWTONIAN FLUIDS

The Newtonian or non-Newtonian nature of a fluid can
be determined by its flow curve i.e the plot of shear stress
vs. shear rate. The slope of the curve gives the viscosity
of the fluid. If the slope is constant and the curve passes
through the origin the fluid is Newtonian. In other words, for
Newtonian fluids, viscosity is independent of shear rate and
depends only on temperature and pressure. In addition to that,
for an incompressible Newtonian flow, the deviatoric normal
stresses should be zero in simple shear i.e.

τxx = τyy = τzz (3)

On the other hand if the curve is non-linear or, linear but not
passing through the origin then the fluid is said to be non-
Newtonian. The non-Newtonian behaviour falls under three
categories viz.

1) Fluids in which shear stress depends only on the
current value of the shear rate. τyx = f( ˙γyx).

2) Fluids where the shape of the flow curve depends on
the duration of shearing etc.

3) Materials which show partial elasticity after defor-
mation thereby exhibiting combined characteristics of
both an elastic solid and a viscous fluid.

The first kind of fluids are called Generalized Newtonian
Fluids (GNF) and it is this type that we will be focussing on in
this paper. Thus Newtonian fluids are a specific case of GNF.

III. THE LATTICE BOLTZMANN METHOD

The LBM [4] in its most basic form consists of two
steps, advection (or streaming) and collision. It is a cellular
automata based approach. The simulation domain is divided
into grid cells with each cell directly interacting only with its
neighbours. The lattice is typically named DXQY where X
is the number of dimensions of the domain and Y determines
the number of directions the particles may move to from a cell
site. Thus the method restricts the number of distinct lattice
velocity directions since each lattice velocity vector points to
a neighbouring cell. D2Q9 and D3Q19 grids are most popular
for 2 dimensional and 3 dimensional simulations respectively.

Like LGCA, each cell stores the number of particles that
move along each lattice velocity vectors. Only, these are real
numbers unlike in LGCA where they are boolean, and are
called particle distribution functions. They are represented as
fi with i being the number of lattice velocity vector. Thus
summing up all the particle distribution functions for a cell
gives the total number of particles in the cell at that time
instant. Since the cell size is assumed, for ease of simulation,
to be unity, this is also its density. Momentum density can
be calculated by taking a weighted average of the velocity
vectors using the pdfs as weights. This procedure is called
course graining. Hence,

ρ =
∑
i

fi (4)

ρu =
∑
i

fi ∗ ei (5)

Where ei are the lattice velocity vectors.

In the advection step the fis are copied to the neighbouring
cell according to the lattice velocity vectors. As f0 doesn’t
point anywhere (it is equal to the number of particles that are
stationary within a cell) its value for each grid cell remains
the same post the stream step.

The collision step imitates the collisions of the fluid
particles occurring in the simulation domain. For colliding,
the equilibrium distributions are calculated first based on the
lattice velocity vectors and velocity of the cell,

f
(0)
i = wi ∗ [ρ− 3/2(−→u )2 + 3(−→ei .−→u + 9/2(−→ei .−→u )2] (6)

where wi are the weights awarded to each direction depending
on the type of grid (D3Q19, D2Q9 etc). The relaxation time
τ is linked to the kinematic viscosity ν through,

ν = (2 ∗ τ − 1)/6 (7)

The new particle distribution functions after the collide step
according to BGK approximation [4] are given by,

f ′i = fi ∗ (1− 1/τ) + f
(0)
i ∗ 1/τ (8)

It is assumed that fi obtained for the next step can be expanded
around the local equilibrium distribution function [5] i.e.

fi = f
(0)
i + ε ∗ fneqi (9)

Where ε is the Knudsen number [6] and fneqi is the non
equilibrium part of the distribution function expanded as,

fneqi = f
(1)
i + f

(2)
i + o(ε2) (10)

where,
∑
i

f
(k)
i =

∑
i

f
(k)
i ∗ ei = 0, k = 1, 2. (11)

After obtaining the distribution functions at the end of the
stream and collide steps one can coarse grain to find the value
of density and velocity at each grid cell location. The obtained
values are in accordance with the Navier Stokes’ equations and
are accurate to second order.

As described above the relaxation time is related to the
kinematic viscosity. For a Newtonian fluid this isn’t an issue
since the viscosity is constant for given temperature and
pressure. However for a Generalized Newtonian Fluid this may
not be true. We look at GNF simulations based on the truncated
Ostwald-de Waele model, also known as the truncated power
law model [7] ,

ν =

 k ∗ γ̇n−10 γ̇ < γ̇0
k ∗ γ̇n−1 γ̇0 < γ̇ < γ̇∞
k ∗ γ̇n−1∞ γ̇ > γ̇∞

(12)

where γ̇ is the shear rate. We use the truncated model because
many fluids display non-Newtonian behaviour only in some
range shear rates; outside that range they behave as Newtonian
fluids. When γ̇ lies in that range, fluid is shear-thinning if 0 ≤
n < 1, shear-thickening if n > 1 and Newtonian with viscosity
ν = k otherwise. Another reason for using the truncated power
law is the LBM becomes unstable as ν → 0 or ν ≥ 1/6.

The viscous stress tensor for a fluid d is defined as,

d = 1/2 ∗ (∇u+∇ut) (13)



It has been shown by [8] that the viscous stress tensor can be
recovered at each node by using the relation,

d(x, t)α,β = −3/(2 ∗ τ) ∗
∑
i

f
(1)
i (x, t)eiαeiβ (14)

However eq. (14) requires f (1)i which is obtained using eq. (9).
However we choose to employ the more fundamental relation
i.e. eq. (13). We do this for two reasons, first, because its only a
question of applying finite difference technique to calculate∇u
and ∇ut after the calculation of instantaneous velocities. The
velocity field is anyway calculated using coarse graining for
each frame. Second, knowledge of the Knudsen number which
may vary along with the scale of simulation. For example,
it will be different for flows in a thin tube and for bulkier
flows like curry in a pot. Also, we realize that applying finite
difference will restrict the accuracy of our method to the first
order whereas Lattice Boltzmann equations are second order
accurate. However, this is not an issue since using boundary
conditions like no-slip make the overall simulation first order
accurate.

The second invariant of the strain rate tensor [5] is,

DII =

dimension∑
α,β=1

dα,βdα,β , (15)

Where dimension is the dimensionality of the grid. For two
dimensions, this is equal to det(d). The shear rate can then be
obtained from the above as,

γ̇ = 2
√
DII (16)

We obtain the new value for viscosity using eq. (12). Putting
this value in (7) we find the shear dependent τ for the next
time step.

Modelling Free Surfaces

We extend the process by simulating the interaction of fluid
with their environment. We use no-slip boundary conditions
to model the interaction of the fluid with the container bound-
aries. To model its interaction with the atmosphere we use the
procedure given by [9]. The cells which are full of fluids are
treated the same way as above, while special treatment is given
to the cells lying on liquid-air interface which are partially
filled with fluid, as given in their algorithm. The distribution
functions for such cells need to be normalised based on the
type of cells in their neighbourhood (liquid, air or interface).

IV. PARALLEL IMPLEMENTATION

The parallelism in LBM is evident from the above descrip-
tion. As it proceeds by aggregating quantities in a bottom up
fashion and starts from a mesoscopic scale there are extremely
few computationally heavy calculations. We harness these
features while accelerating it using the GPU. Both the stream
step and the collide step consist of local operations which
make the computations of each cell independent of one another.
This facilitates direct mapping of these operations to parallel
kernels. Data access patterns form an important factor in the
performance of the simulations and hence we try to access
data in an optimized manner. We employ a SoA(Structure of
Arrays) data format to store information present in each cell

which enables coalesced memory access for threads. In our
simulations the entire simulation domain is considered as a
grid made up of blocks. 32x32 cells make up a block, with a
single thread handling a cell.

The stream step for a particular cell requires data from
all its neighbouring cells. Data accesses to neighbouring cells
on a per thread basis will result in lot of memory traffic and
may lead to non-coalesced access patterns. This approach is
thus avoided. Instead we make each thread load its contents
into the shared memory allocated for the block. Since shared
memory access is much faster than global memory accesses
threads now can access their neighbouring cells’ data faster
thereby leading to performance gains. Threads handling cells
at the block boundary have to be taken care of specially since
the data required by them is not completely available in shared
memory. This is handled as a special case within the kernels.
Since collision requires each thread to work with only the data
present with the cell, each thread is independent of the other
and such issues don’t arise.

V. RESULTS AND DISCUSSION

We show here the results of two standard experiments that
are performed for bulk fluid simulations, the lid driven cavity
experiment and the dam-break experiment. The intermediate
frames from the simulations are shown as results in figures 1
and 2 respectively. We also show flow of a shear-thinning fluid
in a thin tube with bifurcations to show that the method works
well both of bulk as well as micro-simulations.

In the lid driven cavity experiment, a sealed container filled
with fluid to the brim is simulated. The idea is for one wall
to move along the domain accelerating the fluid with no slip
boundary conditions. A special kind of cells called accelerator
cells are marked which are awarded a fixed velocity. We keep
the last but one row of our domain as accelerator cells implying
that the top wall of the container is moving. After some time,
a vortex becomes visible near the middle of the domain as
can be seen in the frames. The color gradient present in the
frames shows the variation of viscosity in the bulk of the fluid.
The viscosity of the region decreases as the color shifts from
red to blue to green. As is expected, the last but one row of
the domain, which is driving the vortex has the most viscosity
followed by areas around it which are coloured, successively,
yellow, blue, magenta and red. The farther a cell from the
accelerator row, the lesser is its viscosity.

Figure 2 shows intermediate frames from a dam break ex-
periment with shear-thickening fluid. A wedge shaped obstacle
is kept at three fourths of the length of a side of the domain to
interact with the fluid. The experiment is important because it
not only shows how the viscosity changes within the fluid, but
also the change in viscosity as it progresses and its free surface
interacts with the boundaries and the atmosphere. The gradient
again shows the same variation in viscosity with red signifying
maximum viscosity followed by blue and green. The motion
of the fluid away from a wall implies a shear acting on the
fluid cells close to the wall because of the no-slip boundary
conditions resulting in increasing viscosity in the region as can
be seen when the fluid is receding from the left wall. Also,
the viscosity increases on the bottom layer of the fluid when it
advances and occupies new volume. In figures 2a and 2b as the



(a) (b) (c) (d)

Fig. 1: Intermediate frames of the ”Lid driven cavity” experiment

(a) (b) (c) (d) (e) (f)

Fig. 2: Intermediate frames of ”Dam-break” experiment simulation

(a) (b)

Fig. 3: Shear-thinning flow in a thin tube

fluid advances and interacts with the vertical wedge there is a
change in the color gradient from top (red) to bottom (from
blue to orange to green) signifying the increase in viscosity in
this direction.

Figure 3 shows viscosity change along a thin tube with
shear-thinning non-Newtonian fluid. The simulation is done
with no-slip boundary conditions to ensure zero fluid velocity
along the tube walls. Here blue signifies the minimum viscos-
ity, which can be found near the tube walls and the bifurcations
as these are the regions of maximum stress. The tube center
is the area experiencing minimum shear and correspondingly,
maximum viscosity. The green areas are intermediate. Figure
3a experiences an overall lower shear stress rate than figure 3b,
which is depicted by the shrinking of the (red) regions having
comparatively high viscosity.

We have performed experiments with both shear-thinning
and shear-thickening fluids here and have accrued accurate
results for all. Further work includes making the method
accurate enough to be used as efficient design and optimization
tools in medical applications. The non-Newtonian nature of

such fluids is more pronounced at finer levels. Microfluidic
devices thus need extremely accurate representation because
of their usage in biomedical research. Many of the complex
flow phenomenon may not be easily obtained by physical
experimentation. We would further like to extend this approach
to simulate interaction of non-Newtonian fluids with moving
obstacles and boundaries. We would therefore like to incorpo-
rate other factors as well, such as, channel geometry, diffusion
coefficients, possible chemical interactions and particulate sus-
pensions etc.
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