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ABSTRACT

Cardiac motion analysis from B-mode ultrasound sequence is a key
task in assessing the health of the heart. The paper proposes a new
methodology for cardiac motion analysis based on the temporal be-
haviour of points of interest on the myocardium. We define a new
signal called the Temporal Flow Graph (TFG) which depicts the
movement of a point of interest over time. It is a graphical represen-
tation derived from a flow field and describes the temporal evolution
of a point. We prove that TFG for an object undergoing periodic
motion is also periodic. This principle can be utilized to derive both
global and local information from a given sequence. We demon-
strate this for detecting motion irregularities at the sequence, as well
as regional levels on real and synthetic data. A coarse localisation of
anatomical landmarks such as centres of left/right cavities and valve
points is also demonstrated using TFGs.

Index Terms— cardiac motion, TFG, ultrasound, landmarks,
abnormality, optical flow

1. INTRODUCTION

Myocardial motion analysis from a series of B-mode ultrasound
(US) images has received attention in the past decade and still re-
mains an open and challenging problem. It broadly aims at obtaining
information about the location and extent of any damage to heart
tissue. Some of the specific information of interest are beat intervals
and locations (heart rate variability); missing of beats; behaviour
of anatomical landmarks (the apex, the mitral annulus and center
of the left and right ventricle cavities). Generally, cardiologists get
these information by manual inspection though, attempts have been
made to develop tools which assist via automatic segmentation of
major anatomical structures like left ventricle (LV) and analysing
the changes in their shape or volume [1] etc.

Tools for a global assessment of the cardiac motion are of also of
interest since they facilitate detecting the overall health of the heart.
Automatic 3D cyclic motion analysis has been addressed for general
data in [2]. A function based on the temporal correlation of frames
(called“Period Trace”) was defined to help profile the motion in a
given sequence in terms of changes in the period. This function is
very sensitive to noise and hence, is not suitable to analyse motion
trends and irregularities in US sequences. Learning-based approach
is proposed for discriminating between normal and abnormal motion
in [3]. Average velocity curves for regions of interest are derived by
analysing regional motion trends between image sequences. Such
regions of interest are first segmented from the image a priori. These
curves are learned from a set of image sequences and used for dis-
crimination between normal and abnormal motion. This method was
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further improved by incorporating demon’s algorithm to derive ro-
bust motion fields and using a support vector machine classifier to
achieve higher classification accuracy [4] and [5]. However, the ac-
curacy of the methods heavily depends on the segmentation which
is a challenging task in US images. Another method for detecting
abnormalities is based on estimating the motion field using a mov-
ing spatiotemporal B-spline window [6]. The method poses the mo-
tion parameter estimation as a least squares estimation problem and
hence is computationally very intensive.

We proposed a concept we call temporal flow graph (TFG) for
cardiac cyclic motion analysis of a myocardial point from B mode
US data. TFG is a graphical representation of the evolution of an
interest point throughout the course of a motion cycle. In this paper,
we present this concept and its scope of applicability for a range of
applications. We demonstrate its ability to support both a global and
local assessment of cardiac motion.

The remainder of the paper is organized as follows. In section 2,
we introduce the concept of TFG. In section 3, we discuss about two
applications of TFG which are important tasks in cardiac asessment.
We conclude with some future directions of our work in the section4.

2. TEMPORAL FLOW GRAPHS

Consider a point of interest p undergoing motion captured in an
video sequence. The displacement/motion of this point over two
frames is represented by a vector v. Estimation of such a vector
at every point over the entire sequence yields a dense motion field
commonly referred to as optical flow. Let us consider quantising the
direction (or angle, θ) of the motion vector to be +1 when θ < 1800

and -1 when θ > 1800. This helps represent the displacement of p
over time as a 1-D function of time where the value of the function
is determined by the displacement magnitude and the sign is deter-
mined by the displacement direction. We call such a function as a
Instantaneous Displacement Graph (IDG). Let I be a given image
sequence and let the displacement at a point of interest p between
the nth and (n+1)th frame be of magnitude vn in the direction θn.
We first quantise the direction as follows

dir(θn) =

{
−1, −1800 ≤ θn < 00

+1, 00 ≤ θn < 1800

Then we define the IDG for the point p as follows

IDGp(n) = vn.dir(θn) (1)

The cumulative sum of IDG helps track the motion flow of a point
over time. We refer to such a sum as a Temporal Flow Graph (TFG).
Such graphs helps represent the cyclic motion history of a point in a
compact manner. Mathematically, the TFG is defined as
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(a) (b)

Fig. 1. (a) IDG and (b) TFG graphs for a landmark

TFGp(k) =

k∑
n=1

IDGp(n) (2)

where k is the frame index. Fig.1 shows a sample of IDG and TFG
of a point on myocardial boundary on cardiac sequence. When the
point p undergoes cyclic motion, the periodicity is readily captured
by the TFG rather than the IDG. This is stated as a Lemma below:
Lemma: The running sum of the instantaneous displacement of a
point undergoing cyclic motion is a periodic function.
Proof :

Without loss of generality, consider a sequence in which a sim-
ple pendulum oscillates about a equilibrium point (O). The point of
interest is the centre of mass (P ). Let xn and θn be the instantaneous
distance and angular displacements that the mass undergoes between
nth and (n+ 1)th frames. Let X and θ be the distance and angular
displacement of P from O respectively. The equation of motion for
the simple pendulum for sufficiently small amplitude has the form
as shown below.

d2X

dt2
+
g

L
X = 0

where g is the gravitational constant, L is the length of pendulum
and t refers to frame number or time-line. The assumption here is
that the frame rate is sufficiently large for capturing the cyclic motion
(at least two times the highest frequency in the cyclic motion). The
solution for the above differential equation is of the form

X(t) = Acos(wt+ φ)

But, X(t) =

t∑
n=1

xn =

t∑
n=1

L.θn = Acos(wt+ φ) (3)

In Eq.3, X(t) is nothing but TFG and xn is nothing but IDG.

TFGP (t) =

t∑
n=1

IDGP (n) = Acos(wt+ φ) (4)

Hence, TFG is periodic. Its period is 2π
w

which is identical to the
period of cyclic motion of pendulum.

2.1. Optical Flow Estimation

The parameters (vn, θn) in Eq.1 can be derived from the optical flow
or the motion field of estimated from two consecutive frames. Op-
tical flow field is computed under the brightness constancy assump-
tion. This leads to the well known optical flow equation:

Ixvx + Iyvy + It = 0 (5)

where vx and vy are the projections of the velocity vector along
the x and y axes. The brightness constancy assumption is very sen-
sitive to brightness changes. Therefore, it is relaxed and a gradient
constancy assumption has been proposed [7] which is expressed as:

∇I(x, y, t) = ∇I(x+ vx, y + vy, t+ 1) (6)

Velocity vectors vx and vy are determined by minimizing the
total of energy E(vx, vy).

Additionally, a smoothness assumption is also imposed on the
flow field. Further details on this can be found in [8]. We follow this
method and compute the optical flow.

The desired flow parameters between nth and (n+ 1)th frames
are found from the flow field as

vn =
√
v2x + v2y (7)

θn = tan−1(
vy
vx

) (8)

Next, we showcase the utility of the TFG with an application
which is of key interest in medical imaging.

3. SCOPE OF TEMPORAL FLOW GRAPHS

We consider three categories of problems: i) abnormal motion de-
tection such as missing beats and beat-pause, ii) abnormal region
detection and iii) anatomical landmark detection. We use both sim-
ulated and real ultrasound data for our experimentation. Simulated
data was generated by using the Ultrasound simulation package in
[9].

3.1. Abnormality detection

A major task in cardiac motion analysis is abnormality detection.
Abnormalities can be either in motion or in a region. Examples of
the former are Tachycardia, missing beat, and beat pause etc. Clas-
sification of cardiac motion as normal/abnormal has been attempted
by learning on Bayesian networks of LV volume changes [1]. Exam-
ples of abnormality at the regional level are coronary heart disease,
valvular heart disease, etc. Disease type and its extent is generally
decided based on the location of abnormal region. We show that
both types of abnormalities can be detected using the TFG.

3.1.1. Abnormal motion detection

Missing beats often occurs in functional cardiovascular disease, Hy-
perthyroidism and myocardial disease. A ”beat-pause” for morethan
4 seconds is considered as ventricular arrest. It may occur in pa-
tients who suffer from functional cardiovascular disease, such as
myocarditis, myocardial infarctions, cardiac pathological changes,
etc.

Abnormal motions can be detected by a local analysis on TFGs,
such as energy content in the signal in short time intervals. For this
experiment, a synthetic US image sequence was generated in which a
beat-pause was introduced in 58 frames (∼ 2 seconds). The myocar-
dial point on this sequence was automatically detected first using a
series of morphological operations such as smoothing, binarization,
closing and fill holes. Next the TFG was computed for this myocar-
dial point and is as shown in Fig.2(a). The length of the beat-pause is
detected by examining the signal variance associated with beat-pulse
region. This is larger in normal regions compared to the beat-pause
region as it does not have any energy. Hence, a short-time-variance



(a) TFG (b) Short Time Variance plot

Fig. 2. Abnormal motion detection

was used for this purpose. Overlapping windows of size 8 samples
and shift by one sample were used for short-time-variance compu-
tation. The short-time-variance plot for the TFG shown in Fig.2(a)
is as shown in Fig.2(b). Next, beat-pause region is detected (anno-
tated with red color in Fig.2(b)) by a threshold T(=0.2 in our case).
The detected beat-pause length is 54 samples (ground truth is 58)
i.e. 1.86 seconds. Hence, this is classified as missing beats. If the
duration of the beat pause in the TFG graph is more than 4 seconds,
then this is deemed to be due to ventricular arrest. By using a similar
approach, heart rate and its variations can also be analysed.

3.1.2. Abnormal region detection

Detection of dead/dying heart muscle is a key and preliminary task
in diagnosis of many heart diseases such coronary artery disease,
rheumatic heart disease, valvular heart disease etc. Cardiologists vi-
sually inspect a US sequence to observe the motion of muscle, for
diagnosis. Here, we propose a way to automate the process of locat-
ing the dead muscle based on the fact that dead/dying heart mus-
cle does not move coherently with myocardium. For an healthy
heart, all points on the myocardium move coherently (same cyclic
behaviour) even-though their instantaneous displacements are dif-
ferent. This fact is reflected in the variance map of the TFGs of
pixels on myocardium. Hence, an abnormal region can be detected
by simple thresholding on the variance map. A synthetic US se-
quence was generated using [10] in which tricupsid valve is not
moving. This was done in the following steps: a) Detection of my-
ocardium as described earlier; (b) Generation of TFGs for all my-
ocardial points; (c)computation of the variance map; and finally (d)
Thresholding of the variance map. Fig.3 shows the first frame, de-
tected myocardium, color coded variance map and abnormal region
(marked in red color).

(a) (b) (c) (d)

Fig. 3. Abnormal heart muscle detection results: (a)First frame;
(b)detected myocardium; (c)pseudo-coloured variance map; (d) de-
tected abnormal region overlaid on the first frame.

3.2. Anatomical Landmarks detection

Landmarks on ultrasound (US) images are required for point-based
registration applications [11], [12]. These methods often use ex-
ternal markers or manual detection of anatomical landmarks. But

automatic detection of landmarks is of growing interest in general
and for echocardiography, several methods have been proposed in
past decade. Van Stralen et al.[13] proposed a method to detect left
ventricular long axis and mitral valve location by using a circular
Hough transform and dynamic programming. Classification-based
approach has also been attempted for the detection. A cascade of
three classifiers is trained based on boosting techniques using Haar
wavelet-like features and steerable features to detect standard view
planes in [14]. Standard anatomical landmark points (apex, mi-
tral valve points) in two-chamber (2C) and four chamber (4C) view
planes have also been detected using a classification based method
[10].

Here, we propose an automated process of detection of six
anatomical landmarks based on their temporal flow using the TFG
concept. Tricuspid and mitral valve points undergo rapid motion
and hence their TFGs should have maximum variance. On the other
hand, the centres of left ventricle (LV), right ventricle (RV), left
atrium (LA) and right atrium (RA) cavities do not undergo signif-
icant motion and therefore the corresponding TFGs should have
minimum variance. These principles and the domain knowledge
about their spatial relationship in 4C view planes can be used in de-
tecting these landmarks. We propose detecting these landmarks on
ultrasound image sequences through two steps: i) TFG computation
for all pixels in the first frame and ii) extrema computation on the
variance of TFGs for the pixels in the right, left, top and bottom
quadrants of the image. The proposed approach was evaluated on a
dataset which contains 4C view-US sequences recorded on 19 pa-
tients. The positions of those landmarks on first frames of different
US sequences are shown in the Fig.4. The red, blue, yellow and
green colored landmarks are the points with minimum TFG variance
in different quadrants. These are the desired centres of LV, RV, RA
and LA cavities. The cyan and magenta coloured landmarks are
points of maxima in the TFG variance. These are points on heart
valves (mitral and tricuspid). The results were assessed against the
ground-truth marked by an expert. Corresponding location errors
are summarized in Table 1.

Table 1. Average location errors on 4C view of 19 US sequences
Landmark mean (in mm) std (in mm)

Mitral valve point 7.2 3.7
Tricupsid valve point 5.1 5.9

Left ventricle cavity center 10.9 4.1
Right ventricle cavity center 9.6 6.8

Left atrium cavity center 7.5 5.2
Right atrium cavity center 6.7 3.0

We compare the performance of our approach to some published
approaches which identify the mitral valve point. [13] detects the
mitral valve ring and has larger errors than our method (Table 2).
However, other methods [15], [16], [14], and [10] outperform our
method. It should be pointed out that the proposed method was
aimed only at finding the approximate location of the landmark us-
ing a simple technique such as the temporal behaviour. In contrast,
[14] achieves the lowest error at a much higher computational cost
after training on 244 cases. Another interesting departure in the ap-
proaches is that the proposed method is able to detect six landmarks
simultaneously whereas most existing work use different strategies
to locate different landmarks. The output of our method can be used
as a seed for a stage which localises the landmarks more accurately.
The fact that errors of the proposed method and that reported in [13]



Fig. 4. Anatomical Landmarks detection: Positions of landmarks on
first frames of 4 US sequences. Left ventricle center (red), Right
ventricle center (blue), Left atrium center (green), Right atrium cen-
ter (yellow), Mitral valve point (cyan), and Tricupsid valve point
(magenta).

are close is encouraging. It also suggests that our method is accurate
enough to replace the manual interaction.

Table 2. Comparison on MV landmark detection
Method mean(in mm) std (in mm)

Orderud et al. [15] 3.6 1.8
Lu et al. [14] 3.6 3.1

Leung et al. [16] 4.5 2.9
Karavides et al. [10] 5.0 2.5

Van Stralen et al. [13] 8.4 5.7
Proposed 7.2 3.7

4. CONCLUSIONS

A new methodology has been presented for cardiac motion analy-
sis based on the temporal behaviour of some points of interest on
the myocardium. A new signal called the Temporal Flow Graph
which describes the temporal behaviour of the landmark has been
defined. Abnormality detection and anatomical landmark detection
are shown to be simplified using the TFG. The proposed method for
abnormal region detection (section 3.1.2) may not work for the case
of dying heart muscle which has abnormal motion, but same period-
icity. However, training based and feature classification methods can
be helpful in such scenario.

The complexity of TFG production lies in the optical flow (OF)
computation stage. Thus, real-time implementation of TFG-based
cardiac motion analysis is only limited by the choice of the OF algo-
rithm. The proposed algorithms can also be extended for in-vivo
analysis for animal studies and for assessing fetal cardiovascular
health.
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