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ABSTRACT
Advertisements (ads) often include strongly emotional content to
leave a lasting impression on the viewer. This work (i) compiles an
affective ad dataset capable of evoking coherent emotions across
users, as determined from the affective opinions of five experts
and 14 annotators; (ii) explores the efficacy of convolutional neural
network (CNN) features for encoding emotions, and observes that
CNN features outperform low-level audio-visual emotion descrip-
tors [9] upon extensive experimentation; and (iii) demonstrates how
enhanced affect prediction facilitates computational advertising,
and leads to better viewing experience while watching an online
video stream embedded with ads based on a study involving 17
users. We model ad emotions based on subjective human opinions
as well as objective multimodal features, and show how effectively
modeling ad emotions can positively impact a real-life application.

CCS CONCEPTS
• Human-centered computing → HCI theory, concepts and
models; User centered design;

KEYWORDS
Affect Recognition, Advertisements, Human and Computational
Perception, Convolutional Neural Networks (CNNs), Multimodal,
Computational Advertising

1 INTRODUCTION

Advertising is a huge and profitable industry and advertisers
intend to portray their products or services as not only useful,
but also highly desirable and rewarding. Emotions are critical for
conveying an effective message to viewers, and have been found
to mediate consumer attitudes towards brands [10, 11, 19]. Simi-
lar objectives are at play in messages for public health and safety,
where certain life choices are portrayed as beneficial and improv-
ing one’s quality of life, while others are portrayed as harmful and
potentially fatal. The ability to objectively quantify advertisements
(ads) in terms of emotional content therefore has a wide variety of

applications– e.g., inserting the right type of ads at optimal tem-
poral points within a video stream can beneficially impact both
advertisers and consumers in video streaming websites such as
YouTube [26, 27]. Subjective experience of pleasantness (valence)
and emotional intensity (arousal) are important affective dimen-
sions [21], and both modulate emotional responses to ads in distinct
ways [6]. Affective content has also been shown to modulate recall
of key concepts and episodes in movies [22] and video ads [27].

However, affect characterization in ads is a non-trivial problem
as with other stimuli such as music and movie clips examined by
prior works [1, 9, 14, 25]. Given that human emotional perception
is subjective and the detection of specific emotions such as joy,
sorrow and disgust is relatively hard, popular affect recognition
(AR) works represent emotions along the valence and arousal di-
mensions [8, 21]. Also, methods have been devised to estimate
emotions in a content-centric or user-centric manner. Content-centric
methods estimate the emotion evoked by a stimulus by examining
audio, visual and textual cues; a popular example is [9]. Of late,
user-centered approaches that model the stimulus-evoked emotion
via physiological changes induced in the viewer have gained in
popularity [1, 14, 24]. While enabling a fine-grained examination
of emotional perception, which is a transient phenomenon, user-
centered methods nevertheless suffer from subjectivity limitations.

This work expressly investigates the modeling of emotions con-
veyed by ads, and employs subjective human opinions and objective
multimedia features to this end. Firstly, upon carefully compiling
a diverse set of 100 ads, we examine the efficacy of this ad dataset
to coherently evoke emotions across viewers. To this end, we com-
pare the affective opinions of five experts and 14 novice annotators,
and find that the two groups are highly concordant. Secondly, we
explore the utility of Convolutional Neural Networks (CNNs) for en-
coding audio-visual emotional features. As the compiled ad dataset
is relatively small and insufficient for CNN training, we employ
domain adaptation to transfer affective knowledge gained from
the LIRIS-ACCEDE movie dataset [3] for modeling ad emotions.
Extensive experimentation confirms that the synthesized CNN de-
scriptors outperform popular audio-visual features proposed in [9]
especially for valence recognition. Thirdly, we show how accurate
encoding of the ad emotions can facilitate optimized insertion of

ar
X

iv
:1

70
9.

01
68

3v
1 

 [
cs

.H
C

] 
 6

 S
ep

 2
01

7



ads into streaming video, used for income generation by online
websites such as YouTube. A user study with 17 viewers confirms
that the insertion of emotionally relevant ads within the streamed
video can maximize viewer experience. In summary, we make the
following research contributions:

1. Ours is one of the few works to examine AR in ads, and the
only work to characterize ad emotions in terms of subjective
human opinions and objective audio-visual features.

2. We explore the utility of CNNs for encoding ad emotions. We
show the effectiveness of a new CNN, AdAffectNet (AAN)
generated by fine-tuning the Places205 CNN architecture [28]
for AR. For fine-tuning and domain adaptation, we have
employed the extensively annotated LIRIS-ACCEDE movie
dataset [3]. Extensive experiments reveal that the AAN fea-
tures outperform emotional audio-visual descriptors pro-
posed in [9], and the best AR performance is achieved with
multi-task learning which exploits audio-visual similarities
among emotionally homogeneous ads.

3. We show how improved affect modeling with the CNN fea-
tures can facilitate the CAVVA ad-in-video insertion strat-
egy [27]. Our AAN model can especially predict ad valence
better than the baseline [9], which positively impacts viewer
experience.

From here on, Sec 2 discusses related work, while Sec 3 presents
the compiled ad dataset and related statistics. Section 4 describes
our AAN model and associated AR experiments. Sec 5 presents a
user study to evaluate an ad-insertion strategy [27] with different
affect encoding methods, while Sec 6 concludes the paper.

2 RELATEDWORK
To highlight the novelty of our work, we briefly review prior works
examining (i) AR, and (ii) the impact of ad-evoked emotions.

2.1 Affect Recognition
Many approaches have been devised to infer the emotions evoked
by multimedia stimuli in a content-centric or user-centric manner.
Content-centric approaches [9, 25] predict the elicited emotion by
examining audio-visual cues in the analyzed stimuli. In contrast,
user-centric AR methods [1, 14, 23] predict the stimulus-evoked
emotion by measuring physiological changes in users (or content
consumers). Nevertheless, both content and user centric methods
require labels identifying stimulus emotion, and these labels are
compiled from reliable annotators whose affective opinions are gen-
erally acceptable, given human subjectivity in emotion perception.

2.2 Emotional impact of ads
A number of works have studied the impact of ad-induced emotions
on user behavior [10, 11, 19]. Holbrook and Batra [10] remark that
emotions induced by ads strongly modulate users’ brand attitude.
Pham et al. [19] conclude that ad-evoked feelings impact users both
explicitly and implicitly. Ad-evoked emotions are found to change
user attitude towards (especially hedonistic) products.

While a body of works have examined the correlation between
ad emotions and user behavior, very fewworks have exploited these
findings for developing targeted advertising mechanisms. The only
work that incorporates emotional information for modeling context

Table 1: Summary statistics for quadrant-wise ads.

Quadrant Mean length (s) Mean asl Mean val Mean eng

H asl, H val 48.16 2.17 1.02 2.50
L asl, H val 44.18 1.37 0.91 2.23
L asl, L val 60.24 1.76 -0.76 2.47
H asl, L val 64.16 3.01 -1.16 2.56

in advertising is CAVVA [27], where arousal and valence evoked
by video scenes are estimated via [9] to identify optimal ads and
corresponding insertion points which maximize user engagement.

2.3 Analysis of related work
Examination of the literature reveals that (1) AR studies are ham-
pered by the subjectivity in emotion perception, and a control
dataset that can coherently evoke emotions across users is neces-
sary for effectively learning content or physiology-based emotion
predictors; (2) Despite the well-known impact of ad emotions on
user behavior, there has hardly been any attempt to incorporate
emotion-related findings in a computational advertising framework.

In this regard, we present the first work to compile a control set
of affective ads, which elicit concordant affective opinions from
experts and naive users. Also, we synthesize CNN-based emotion
descriptors which are found to outperform audio visual features
proposed in [9]. We also perform a user study and show how better
affect encoding can facilitate the ad-insertion framework [27] to
improve viewing experience. Details pertaining to our ad dataset
are presented below.

3 ADVERTISEMENT DATASET
Defining valence as the feeling of pleasantness/unpleasantness,
arousal as the intensity of emotional feeling and engagement as
the level of interest while viewing an audio-visual stimulus, five
experts carefully compiled a dataset of 100, roughly 1-minute long
commercial advertisements (ads) which are used in this work. These
ads are publicly available on online video websites and found to be
uniformly distributed over the arousal–valence plane defined by
Greenwald et al. [8] (Fig. 1). An ad was chosen if there was consen-
sus among all five experts on its valence and arousal labels (defined
as either high (H)/low (L)). The high valence ads typically involved
product promotions, while low valence ads were social messages
depicting the ill effects of smoking, alcohol and drug abuse, etc.
Labels provided by experts were considered as ground-truth, and
used for all recognition experiments in this work.

To evaluate the effectiveness of the ads as control stimuli, i.e.,
examine how consistently they evoke emotions across viewers,
14 novice users rated the ads for valence (val), arousal (asl) and
engagement (eng) upon familiarization. All ads were rated on a
5-point scale, which ranged from -2 (very unpleasant) to 2 (very
pleasant) for val, 0 (calm) to 4 (highly aroused) for asl and 0 (boring)
to 4 (highly engaging) for eng. Table 1 presents summary statistics
for ads over the four quadrants. Evidently, low val ads are longer
and are perceived as more arousing than high val ads suggesting
that they evoked stronger emotional feelings among viewers.

We also computed inter-rater agreement in terms of the (i) Krip-
pendorff’s α and (ii) Cohen’s κ measures. The α coefficient is ap-
plicable when multiple raters code data with ordinal scores– we



obtained α = 0.60, 0.37 and 0.23 for val, asl and eng implying
valence impressions were most consistent across raters. We then
computed the κ agreement between annotator and ground-truth
labels to determine concordance between the novice and expert
groups. To this end, we thresholded each rater’s asl, val scores
by their mean rating to assign H/L labels for each ad, and com-
pared these labels with the ground truth. This procedure revealed
a mean agreement of 0.84 for val and 0.67 for asl across raters. We
also computed κ between the annotator and expert populations by
thresholding the mean asl, val score per ad across raters against
the grand mean– this method returned κ = 0.94 for val and 0.67
for asl1. Clearly, there is good-to-excellent agreement between an-
notators and experts on affective impressions with considerably
higher concordance for val. The observed concordance between the
independent expert and annotator groups affirms that the compiled
100 ads are suitable control stimuli for affective studies.

Another desirable property of a control affective dataset is the
independence of the asl and val dimensions. To this end, we (i)
examined scatter plots of the annotator ratings, and (ii) computed
correlations amongst those ratings. The scatter plot of the mean asl,
val annotator ratings, and the distribution of asl and val ratings are
presented in Fig. 1. The scatter plot is color-coded based on expert
labels, and interestingly is different from the classical ‘C’ shape
observed with images [17], music videos [14] and movie clips [1]
owing to the difficulty in evoking medium asl/val but strong val/asl
responses. The distributions of asl and val ratings are also roughly
uniform resulting in Gaussian fits with large variance, with modes
observed at median scale values of 2 and 0 respectively. A close
examination of the scatter plot reveals that a number of ads are
rated as moderate asl, but high/low val. This can be attributed to
the fact that ads are constrained to effectively convey a positive or
negative message to viewers, which is not typically true of images
or movie scenes. Finally, Wilcoxon rank sum tests on annotator
ratings revealed significantly different asl ratings for high and low
asl ads (p < 0.00005), and distinctive val scores for high and low
valence ads (p < 0.000001), consistent with expectation.

Pearson correlations among the asl, val and eng dimensions from
the annotator ratings as shown in Table 2. As each rater assesses
multiple ads, we corrected for multiple comparisons by limiting the
false discovery rate to within 5% via the procedure described in [4].
Bold values in Table 2 denote correlations found to be significant
(p < 0.05) over all raters. Rating correlations reveal that the asl and
val dimensions are only weakly correlated, while a positive and
significant correlation is noted between asl and eng in line with
prior studies [1, 14]. Analyses from here on will focus on the asl
and val attributes given the strong connection between asl and eng.
The user study (Sec 5) will focus on user engagement/experience.

Overall, examination of ad labels reveals that (i) Our ads consti-
tute a control dataset for affective studies as asl and val ratings are
largely uncorrelated; (ii) Also, different from the ‘C’-shape charac-
terizing the asl-val relationship for other stimulus types, asl and
val ratings are uniformly distributed for the ad stimuli, and (iii)
There is considerable concordance between the expert and anno-
tator populations on affective labels, implying that the selected

1Chance agreement corresponds to a κ value of 0.

Figure 1: (left) Scatter plot of mean asl, val ratings color-
coded with expert labels. (middle) Asl and (right) Val rating
distribution with Gaussian pdf overlay (view under zoom).
ads effectively evoke coherent emotions across viewers. The next
section describes content-centric ad AR.

Table 2: Mean correlations between self-rated attributes. Sig-
nificant correlations (p < 0.05) are denoted in bold.

asl val eng
Arousal 1 -0.19 0.36
Valence 1 0.11
Engagement 1

4 COMPUTATIONAL MODEL
This section describes the datasets and the computational model
employed for recognizing emotions conveyed by our ads.

4.1 Datasets
Due to subjective variance in emotion perception, careful affective
labeling is imperative for effectively learning content-centric [9, 25]
or user-centric [1, 14] affective correlates, which is why we analyze
ads that evoked perfect consensus among experts. Of late, convo-
lutional neural networks (CNNs) have become extremely popular
for visual [16] and audio [12] recognition, but these models re-
quire huge training data. Given the small size of our ad dataset,
we fine-tune the pre-trained Places205 [28] model using the affec-
tive LIRIS-ACCEDE movie dataset [3], and employ this fine-tuned
model for encoding ad emotions– a process known as domain
adaptation in machine learning literature.

To learn deep features for modeling ad affect, we employed the
Places205 CNN [28] intended for image classification. Places205 is
trained using the Places-205 dataset comprising 2.5 million images
and 205 scene categories. The Places-205 dataset contains a wide
variety of scenes with varying illumination, viewpoint and field of
view, and we hypothesized a strong relationship between scene per-
spective, lighting and the scene mood. LIRIS-ACCEDE contains
asl, val ratings for ≈ 10 s long movie snippets, whereas our ads are
about a minute-long (ranging from 30–120 s).

4.2 FC7 Feature Extraction via CNNs
For ad AR, we represent the visual modality using key-frame im-
ages, and the audio modality using spectrograms. We fine-tune
Places205 via the LIRIS-ACCEDE [3] dataset to synthesize AdAf-
fectNet (AAN), and use the fully connected layer (fc7) AAN de-
scriptors for our analysis.

4.2.1 Keyframes as Visual Descriptors. From each video in the
ad and LIRIS-ACCEDE datasets, we sample one key frame every
three seconds– this enables extraction of a continuous video profile
for AR. This process generated 1791 key-frames for our 100 ads.



L asl, H val H asl, L val H asl, H val

Figure 2: Exemplar spectrograms for varied emotional ads.
x denotes time (0-10 s), while y denotes spectral magnitude
observed at each time instant. High and low frequency den-
sities are respectively shown in red and green shades.

4.2.2 Spectrograms as Audio Descriptors. Spectrograms (SGs)
are visual representations of the audio frequency spectrum, and
have been successfully employed for AR from speech and music [2].
Specifically, transforming the audio content to a spectrogram image
allows for audio classification to be treated as a visual recognition
problem.We extract spectrograms over the 10 s long LIRIS-ACCEDE
clips, and consistently from 10 s ad segments. This process generates
610 spectrograms for our ad dataset. Following [2], we combine
multiple tracks to obtain a single spectrogram (as opposed to two for
stereo). Each spectrogram is generated using a 40 ms window short
time Fourier transform (STFT), with 20 ms overlap. Fig. 2 shows
three exemplar spectrograms indicative of emotional ad content.
Note greater densities of high frequencies in high asl ads, and such
intense scenes are often characterized by sharp frequency changes.

4.2.3 CNN Training. We use the Caffe [13] deep learning frame-
work for fine-tuning Places205, with a momentum of 0.9, weight
decay of 0.0005, and a base learning rate of 0.0001 reduced by 1

10
th

every 20000 iterations. We totally train four binary classification
AAN networks this way to recognize high and low asl/val from au-
dio/visual features. To fine-tune Places205, we use only the top and
bottom 1/3rd LIRIS-ACCEDE videos in terms of asl and val rankings
under the assumption that descriptors learned for the extreme-rated
clips will effectively represent affective concepts. 4096-dimensional
fc7 outputs extracted from the four AAN networks are used for ad
AR.

4.3 AR with audio-visual features
We will mainly compare our AAN network based AR framework
against the algorithm of Hanjalic and Xu [9] in this work. Even
after a decade since it was proposed, this algorithm remains one
of the most popular AR baselines as noted from recent works such
as [1, 14]. In [9], asl and val are modeled via low-level descriptors de-
scribing motion activity, colorfulness, shot change frequency, voice
pitch and sound energy in the scene. These hand-crafted features
are interpretable, and employed to estimate time-continuous asl
and val levels conveyed by the scene. Table 3 summarizes the audio-
visual features used in our AR experiments, and the proportion of
positive audio/video frames for val and asl in our ad dataset.

4.4 Experiments and Results
We first provide a brief description of the classifiers used and set-
tings employed for our binary AR experiments, where the objective

Table 3: Extracted features and +ve class proportions (in %)
for the audio and visual modalities.

Attribute Valence/Arousal
Audio Video aud+vid (A+V)

AAN 4096D AAN FC7 4096D AAN FC7 features by 8192D AAN FC7 features
Features features obtained extracted from keyframes with SGs + keyframes

with 10s SGs. sampled every 3 seconds. over 10s intervals.
Hanjalic [9] Per-second sound Per-second shot change Concatenation of
Features energy and pitch frequency and motion audio-visual features.

statistics [9]. statistics [9].
val/asl 43.8/51.9 43.4/51.6 43.8/51.9

+ve class prop (%)

is to assign a binary (H/L) label for asl and val evoked by each ad, us-
ing the extracted fc7/low-level audio visual features. Experimental
results will be discussed thereafter.

Classifiers: Weemployed the Linear Discriminant Analysis (LDA),
linear SVM (LSVM) and Radial Basis SVM (RSVM) classifiers for
AR. LDA and LSVM attempt to separate H/L labeled training data
with a hyperplane, while RSVM is a non-linear classifier which
separates H and L classes, linearly inseparable in the input space,
via transformation onto a high-dimensional feature space.

In addition to the above single-task learning methods which
do not exploit the underlying structure of the input data, we also
explored the use of multi-task learning (MTL) for AR. When posed
with the learning of multiple related tasks, MTL seeks to jointly
learn a set of task-specific classifiers on modeling task relationships,
which is highly beneficial when learningwith few examples. Among
the MTL methods available as part of the MALSAR package [29],
we employed the sparse graph-regularized MTL (SR-MTL) where a-
priori knowledge regarding task-relatedness is modeled in the form
of a graph R. Given tasks t = 1...T , with Xt denoting training data
for task t and Yt their labels, SR-MTL jointly learns a weight matrix
W = [W1..WT ] such that the objective function

∑T
t=1 ∥WT

t Xt −
Yt ∥2F + α ∥WR∥2F + β ∥W ∥1 +γ ∥W ∥2F is minimized. Here, α , β,γ are
regularization parameters, while ∥.∥F and ∥.∥1 denote the matrix
Frobenius (ℓ2) and ℓ1-norms respectively.

MTL is particularly suited for dimensional AR, and one can ex-
pect similarities in terms of audio-visual content among high val or
high asl ads. We exploit underlying similarities by modeling each
asl-val quadrant as a task (i.e., all H asl, H val ads will have identical
task labels). Also, quadrants with same asl/val labels are deemed
as related tasks, while those with dissimilar labels are considered
unrelated. The graph R guides the learning ofWt ’s, as shown in
the three examples in Fig.3, where SR-MTL is fed with the speci-
fied features computed over the final 30 s of all ads. Darker shades
denote salient MTL weights. Shot change frequency is found to be
a key predictor of asl in [9], and one can notice salient weights for
H asl H val ads in particular. The attributable reason is that our H
asl H val ads involve frequent shot changes to maintain emotional
intensity, while the mood of our H asl L val ads2 is strongly influ-
enced by semantics. Likewise, pitch amplitude is deemed as a key
val predictor, and salient weights can be consistently seen over the
30 s temporal window for HV ads. Finally, more salient weights for
H val ads with the motion activity feature implies that our positive
val ads involve accentuated motion.

2which depict topics like drug and alcohol abuse, and overspeeding.
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Figure 3: Learned MTL weights for the four quadrants (tasks) when fed with the specified low-level features computed over
the final 30 s of the 100 ads.

Metrics and Experimental Settings: We used the F1-score (F1),
defined as the harmonic mean of precision and recall as our perfor-
mance metric, given our unbalanced dataset (Table 3). Apart from
unimodal (audio (A) or visual (V)) fc7 features, we also employed
feature fusion and probabilistic decision fusion of the unimodal
outputs. Feature fusion (A+V) involved concatenation of fc7 A and
V features over 10 s windows (see Table 3), while theWest tech-
nique [15] is employed for decision fusion (DF). In DF, the test label
is computed as

∑2
i=1 α

∗
i tipi , where i indexes the A,V modalities,

pi ’s denote posterior A,V classifier probabilities and {α∗i } are the
optimal weights maximizing test F1-score, and determined via a 2D
grid search. If Fi denotes the training F1-score for the ith modality,
then ti = αiFi/

∑2
i=1 αiFi for given αi .

As the Hanjalic (Han) algorithm [9] uses audio plus visual fea-
tures to model asl and val, we only consider (feature and decision)
fusion performance in this case. As we evaluate AR performance
on a small dataset, we present AR results over 10 repetitions of
5-fold cross validation (CV). CV is typically used to overcome the
overfitting problem on small datasets, and the optimal classifier
parameters (including regularization parameters for MTL) are de-
termined from the range [10−3, 103] via an inner five-fold CV on
the training set. Finally, in order to examine the temporal variance
in AR performance, we present F1-scores obtained over (a) all ad
frames (‘All’), (b) last three frames (L3) and (c) last frame (L)3.

4.4.1 Results Overview. Table 4 presents the asl, val F1-scores
under the various settings. The highest F1 over all the considered
temporal windows, achieved with the single-task and multi-task
classifiers, and via feature/decision fusion are denoted in bold. Based
on the observed results, we make the following claims.

Focusing on unimodal fc7 features and single-task classi-
fiers, val (peak F1 = 0.79) is generally recognized better than asl
(peak F1 = 0.68) and especially with video features. A and V fc7 fea-
tures perform comparably for asl. Much higher asl, val recognition
scores are achievable with the MTL classifier (F1 of 0.96 for val
and 0.94 for asl) due to its ability to exploit the underlying similari-
ties among audio and visual features among similarly labeled ads.
MTL F1-scores are consistently higher with V features for both asl
and val.

Concerning recognition with single-task classifiers and fused
fc7 features, comparable or better F1 scores are achieved with
multimodal approaches. In general, better recognition is achieved

3This equates to estimating the ad asl/val typically over the terminal 30/10 s, when
one would expect the conveyed emotion to be strongest.

via decision fusion as compared to feature fusion4. For val, the best
fusion performance (0.75 with feature fusion and RSVM classifier)
is superior compared to A-based (F1 = 0.66), but inferior compared
to V-based (F1 = 0.79) recognition. Contrastingly for asl, fusion F1-
score (0.75 with DF) considerably outperforms unimodal methods
(0.68 with A, and 0.67 with V). Focusing on the MTL classifer ,
MTL F1-scores in the A+V FC7 + MTL condition are considerably
higher than single-task F1-scores5 analogous to the unimodal case,
even though the best F1-scores are still less than those achieved
with video fc7 features +MTL.

Comparing A+V fc7 vs Han features, fc7 descriptors clearly out-
perform Han features with both single and multi-task approaches.
The difference in performance is prominent for val, while com-
parable recognition is achieved with both features for asl. RSVM
produces the best F1-scores for both asl and val among single-task
classifiers with unimodal and multimodal approaches. However,
the linear MTL model considerably outperforms all single-task
methods with both fc7 and Han features. These observations sug-
gest that while the H and L asl/val features for all ads are difficult
to linearly classify per se, exploiting underlying similarities among
quadrant-specific ads enables better linear separability.

Relatively small σ values are observed for the ‘All’ condition with
the adopted five-fold CV procedure in Table 4, especially with fc7
features suggesting that the AR results areminimally impacted
by overfitting. Examining temporal windows considered for AR,
higher σ ’s are observed for the L3 and L cases, which denote model
performance on the terminal ad frames. Surprisingly, one can note
a general degradation in asl recognition for the L3 and L conditions
with A/V features, while val F1-scores are more consistent. Also,
a sharp degradation in performance is noted with MTL for the L3
and L conditions. Three inferences can be made from the above
observations, namely, (1) Greater heterogeneity in the ad content
towards endings is highlighted by the large variance with fusion
and MTL-based approaches; (2) Fusion models synthesized with
Han features appear to be more prone to overfitting, given the
generally larger σ values seen with the corresponding models; (3)
That asl recognition is lower in the L3 and L conditions highlights
the limitation of using a single asl/val label (as opposed to dynamic
labeling) over time. Generally lower F1-scores achieved for asl with
all methods suggests that asl is a more transient phenomenon as

4The relative efficacy of feature or decision fusion depends on the specific problem
and features on hand.
5We are not aware of MTL-based decision fusion methods.



Table 4: Ad AR from content analysis. F1 scores are presented in the form µ ± σ .

Method Valence Arousal
F1 (all) F1 (L3) F1 (L) F1 (all) F1 (L3) F1 (L)

Audio FC7 + LDA 0.61±0.04 0.62±0.10 0.55±0.18 0.65±0.04 0.59±0.10 0.53±0.19
Audio FC7 + LSVM 0.60±0.04 0.60±0.09 0.55±0.19 0.63±0.04 0.57±0.09 0.50±0.18
Audio FC7 + RSVM 0.64±0.04 0.66±0.08 0.62±0.17 0.68±0.04 0.60±0.10 0.53±0.19
Video FC7 + LDA 0.69±0.02 0.79±0.08 0.77±0.13 0.63±0.03 0.58±0.10 0.57±0.18
Video FC7 + LSVM 0.69±0.02 0.74±0.08 0.70±0.15 0.62±0.02 0.57±0.09 0.52±0.17
Video FC7 + RSVM 0.72±0.02 0.79±0.07 0.74±0.15 0.67±0.02 0.62±0.10 0.58±0.19
Audio FC7 + MTL 0.85±0.02 0.83±0.10 0.78±0.20 0.78±0.03 0.62±0.14 0.45±0.16
Video FC7 + MTL 0.96±0.01 0.94±0.07 0.82±0.25 0.94±0.01 0.87±0.12 0.63±0.29
A+V FC7 + LDA 0.70±0.04 0.66±0.08 0.49±0.18 0.60±0.04 0.52±0.10 0.51±0.18
A+V FC7 + LSVM 0.71±0.04 0.66±0.07 0.49±0.19 0.56±0.04 0.49±0.10 0.47±0.19
A+V FC7 + RSVM 0.75±0.04 0.70±0.07 0.55±0.17 0.63±0.04 0.56±0.11 0.49±0.19
A+V Han + LDA 0.59±0.09 0.63±0.08 0.64±0.12 0.54±0.09 0.50±0.10 0.58±0.08
A+V Han + LSVM 0.62±0.09 0.62±0.10 0.65±0.11 0.55±0.10 0.51±0.11 0.57±0.09
A+V Han + RSVM 0.65±0.09 0.62±0.11 0.62±0.12 0.59±0.12 0.58±0.11 0.56±0.10
A+V FC7 LDA DF 0.60±0.04 0.66±0.04 0.70±0.19 0.59±0.02 0.60±0.07 0.57±0.15
A+V FC7 LSVM DF 0.65±0.02 0.66±0.04 0.65±0.08 0.60±0.04 0.63±0.10 0.53±0.13
A+V FC7 RSVM DF 0.72±0.04 0.70±0.04 0.70±0.12 0.69±0.06 0.75±0.07 0.70±0.07
A+V Han LDA DF 0.58±0.09 0.58±0.09 0.61±0.09 0.59±0.06 0.59±0.07 0.61±0.08
A+V Han LSVM DF 0.59±0.10 0.59±0.09 0.60±0.10 0.61±0.05 0.61±0.08 0.60±0.09
A+V Han RSVM DF 0.60±0.08 0.56±0.10 0.58±0.09 0.58±0.09 0.56±0.06 0.58±0.09
A+V FC7 + MTL 0.89±0.03 0.88±0.11 0.77±0.26 0.87±0.03 0.68±0.17 0.46±0.20
A+V Han + MTL 0.77±0.04 0.79±0.07 0.74±0.15 0.78±0.04 0.73±0.11 0.58±0.22

compared to val, and that coherency between val features and labels
is sustainable over time.

4.4.2 Discussion. As ads are inherently emotional and have
great influencing/monetizing capacity [10, 19], the ability to infer
ad emotions and make optimal ad insertions within video streams
would be highly advantageous for multimedia systems. Therefore,
it is surprising that very few works [18, 27] have attempted to
mine visual and emotional content in ads. In this regard, our work
expressly sets out to model the emotion conveyed by 100 ads based
on subjective human opinions and objective audio-visual features.

We carefully curated a small but diverse set of ads based on con-
sensus among experts, and examined if those ads could coherently
evoke emotions across viewers by acquiring asl and val ratings
from 14 annotators. A good-to-excellent agreement on asl and val
impressions is noted between the expert and annotator groups.
Also, annotator ad ratings are found to be uniformly distributed
over the asl-val plane, with only a weak negative correlation noted
between asl and val ratings.

As the compiled ads are found to constitute a control affective
dataset, we modeled the emotion conveyed by these ads in terms of
audio-visual features. Specifically, we extracted fc7 layer outputs
from the AdAffectNet CNNs fed with key frames and spectrograms
for video and audio-based affect modeling. While CNNs have been
previously used for video and audio-based AR [3, 7], the modeled
scenes are only a few second long snippets. In contrast, we have
explored the validity of CNN-based AR for full-length ads, some of
which are over a minute long, in this work.

Obtained AR results confirm that the synthesized fc7 features are
effective predictors of asl and val. They outperform the audio-visual

features proposed byHanjalic and Xu [9] with both single andmulti-
task classifiers. In particular, while fc7 features are considerably
better for val, Han features provide competitive performance for
asl. Optimal AR is achieved with the MTL classifier, which is able
to effectively exploit the underlying similarities among emotionally
homogeneous ads in terms of audio visual content. Nevertheless,
a significant drop in recognition performance is generally noted
for the terminal ad portion with most methods, and especially
for asl, implying that (a) asl is a more transient phenomenon as
compared to val, and there is less coherence between the employed
AV features and asl labels towards the ad endings, and (b) the use of a
single asl/val over the entire ad duration may be inappropriate, and
one may need to acquire time-varying labels for affective studies.
The next section will evaluate whether the superior AR achieved
with AAN fc7 features translates to optimized ad insertion in a
computational advertising task via a user study.

5 COMPUTATIONAL ADVERTISING- USER
STUDY

Given the superior AR achieved by our AdAffectNet CNN features,
we hypothesized that this should in turn enable optimized selection
and insertion of affective ads within streamed video content, as
discussed in the CAVVA ad insertion framework [27]. Video-in-
video advertising is complex, as it aims to strike a balance between
(a) maximizing ad impact, and (b) minimally disrupting (or ideally,
enhancing) viewing experience while watching a program video
into which the ads are embedded. Also, while ad insertion strate-
gies have modeled ad-video relevance in terms of low-level visual
context [18] and high-level emotional context [27], their perfor-
mance has not been compared against human context assessment.



Table 5: Summary of program video statistics.

Name Scene length (s) Manual Rating
Valence Arousal

coh 127±46 0.08±1.18 1.53±0.58
ipoh 110±44 0.03±1.04 1.97±0.49

friends 119±69 1.08±0.37 2.15±0.65

To this end, we performed a user study to evaluate whether the
ad insertion framework formulated in [27], which employs the af-
fect estimation methodology of Hanjalic and Xu [9], would benefit
from better affect prediction via our deep AAN features. Better
estimation of the affect induced by the video content and candidate
ads can enable optimized selection of ads and corresponding inser-
tion points. Specifically, we compared video program sequences
generated via the CAVVA framework by estimating arousal (asl)
and valence (val) scores for the ads and video scenes via (a) the
baseline method of Hanjalic and Xu [9], (b) our deep AAN model
and (c) human annotators.

5.1 Dataset
For the user study, we chose 28 ads (from the 100 used in this work)
and three program videos. The program videos were scenes from
a television sitcom Friends (friends) and two movies The Pursuit
of Happyness (ipoh) and Children of Heaven (coh), with predomi-
nantly social themes and situations invoking high-to-low val and
asl. Summary statistics of the three program videos are presented
in Table 5. Each program video was segmented into 8 scenes, and
the average scene length was 118 seconds. We obtained val and asl
scores for the video scenes and 28 ads using (a) normalized softmax
class probabilities [5] output by our AAN model, with video and
audio fc7 features respectively used for val and asl estimation (b)
the baseline model (Han) [9] and (c) ratings from three experts
(Manual). We then inserted ads into each program video based on
method-specific affect scores with the optimization strategy de-
scribed in [27], and obtained 9 unique video program sequences
(mean length 19.4 min) comprising the inserted ads. Exactly 5 ads
were inserted in each program video, and 21 of the 28 chosen ads
were cumulatively inserted at least once onto the 9 video programs
(upon being selected via any of the three methods), with an average
insertion frequency of 2.14.

5.2 Experiment and Questionnaire Design
We recruited a total of 17 users (5 female, mean age 20.5 years) to
evaluate the video program sequences. Each user saw one exemplar
sequence corresponding to the three affect prediction strategies.
We followed a randomized 3× 3 Latin square design so that all nine
video programs were covered with three users.

Our user evaluation was in two parts; In line with the twin goals
underlying seamless ad insertion within streaming video, we eval-
uated whether the ad insertion strategy resulted in (a) increased
brand recall, and (b) minimal disturbance and improved viewing
experience. We performed recall evaluation by measuring the im-
pact of the ad insertion strategy on immediate and day-after recall.
These objective measures quantified the impact of ad insertion on
short-term (immediate) and long-term (day-after) memory of view-
ers, on viewing the video programs. Specifically, we measured the

proportion of (i) inserted ads that were recalled correctly (Correct
recall), (ii) inserted ads that were not recalled (Forgotten) and (iii)
non-inserted ads incorrectly recalled as viewed, perhaps owing to
their inherent salience (Incorrect recall). For those ads that were
inserted into program sequences and were correctly recalled, we
also assessed whether viewers perceived them to be contextually
appropriate with respect to program content.

The viewer was provided with a key-frame visual from each of
the 28 ads, as well as a response sheet for every video program
sequence. In addition to the recall related questions, we asked view-
ers to indicate whether they perceived the correctly recalled ads
as being inserted at an appropriate position in the video stream
(Good insertion)6. All recall and insertion quality-related responses
were acquired from users as binary values. We pooled responses
from viewers after they had watched video sequences generated
via deep AAN, Han and manual affective scores for analyses.

While increased ad recall reflects a key desired effect of a suc-
cessful ad insertion strategy, ads that are out of sync with the video
program flow may disrupt viewer experience. In some cases, this
disruptiveness may indirectly contribute to the recall, but would
adversely impact viewing experience. So, mere recall alone does not
indicate optimal ad insertion, relevance of the ad to the program or
an enhanced viewer experience. To address these issues, we defined
a second set of subjective experience evaluation measures and asked
users to provide ratings on a Likert scale of 0–4 for the following
questions, with 4 implying best and 0 denoting worst:

1. Whether advertisements were uniformly distributed across
the video program?

2. Whether the inserted ads blended well with the flow of the
video program?

3. Whether the inserted ads had a content and mood similar to
surrounding program?

4. What was the overall viewer experience while each video
program?

Each participant filled the recall and experience-related question-
naires (provided in supplementary material) after watching each
video program. They also filled in the day-after recall questionnaire,
a day after completing the experiment.

5.3 Results and Discussion
We evaluate the effectiveness of affective scores obtained from (a)
our AAN-fc7 features, (b) Han features [9] employed in CAVVA [27],
and (c) human assessments, for modeling contextual relevance
based on user recall and experience responses.

Fig. 4 depicts user recall and experience-related measures as ob-
tained with the three affect measurement approaches. Focusing on
recall, although ad insertion via Han method [9] results in higher
immediate and day-after ad recall, lower incorrect recall and for-
gottenness (p < 0.05 in all cases), video programs generated with
AAN-based affective scores are found to maximize user experience
(p < 0.05 for insertion uniformity and ad relevance, and p < 0.1
for non-disruptive ad insertion). The significance of these effects
was assessed by comparing the proportion mean distributions for
each question and method, via independent t-tests. Ads placed via
the AAN model and correctly recalled by users were ‘well inserted’

6This was one way of inferring if the ad placements facilitated their recall.
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Figure 4: Summary of user study results in terms of recall and user experience-related measures.

(difference with respect to manual scores significant at p < 0.05)
based on responses compiled immediately upon viewing.

Notably, ad insertions via AAN-based affective scoreswere opined
to be (i) ‘uniformly distributed’ across the streamed video, and (ii)
’most relevant’ in terms of emotional context with the video (Fig.4).
These observations imply that our AAN model is more accurate
than Han in capturing the mood of the ads and video scenes. In con-
trast, while the Han method achieves the best recall from viewers,
it also scores the least with respect to insertion-point distribution
and relevance, implying an adverse impact on viewing experience.

To examine how affective attributes influenced ad recall, we
correlated the ad recall measures with their (manually assigned)
mean val, asl ratings. A meaningful relationship was noted be-
tween estimated ad valence and the forgottenness rate (Pearson
ρ = 0.45,p < 0.05), indicating that positive val ads tend to be for-
gotten more easily. This observation agrees with the prior findings
of Rimmele et al. [20], who discovered that recall performance was
maximum for negative valence images in a memory study.

Surprisingly, ad insertions based on manual affective scores re-
sulted in lowest recall and highest forgottenness among the three
methods, while performing second best with respect to experience
measures. This can be partly attributed to the higher val ratings
observed for the selected ads based on manual scores (µval = 0.6
for 12 unique inserted ads) as compared to ads selected based on
AAN-based val estimates (µval = 0.3 over 11 unique inserted ads).
Ads selected based on Han val estimates had the lowest mean val
(µval = 0.23 over 12 unique inserted ads), suggesting that more
low val ads were selected via the Han approach, resulting in least
forgottenness. Nevertheless, viewers forgot nearly half the ads im-
mediately and most ads a day later with all the considered methods.
This reveals the scope for improving the ad-placement strategy by
placing specific emphasis on ad retention.

To examine the relationship between affective scores estimated
by the three methods and the inserted ads, we first examined if
there was any relationship between manual ratings and compu-
tationally estimated scores. We found a significant correlation be-
tween Han-predicted and manual asl scores (Pearson ρ = 0.4,p <
0.05), but only a weakly significant correlation between manual
ratings and AAN-based asl scores (Pearson ρ = 0.24,p = 0.09) on
considering the 24 program video scenes and 28 ads (52 scores in
total). Conversely, manual val ratings correlated significantly with
our AAN model (Pearson ρ = 0.45,p < 0.001), but only weakly
with Han estimates (Pearson ρ = 0.25,p = 0.08).

The CAVVA optimization framework [27] has two components–
one for selection of ad insertion points into the program video, and

another for selecting the set of ads to be inserted. Asl scores only
play a role in the choice of insertion points, whereas valence scores
influence both components. Our results suggest that accurate val
prediction, as accomplished by our AAN model, plays a critical
role in enhancing the subjective user experience. Although this
improved experience seems to come at the expense of ad recall,
we note that the Han method results in a disruptive experience
despite high recall, and hence solely emphasizing on recall may not
necessarily lead to the optimal ad placement strategy.

6 CONCLUSIONS AND FUTUREWORK
This work discusses affect prediction from ads, and the utility of
better ad affect estimation is demonstrated via a computational
advertising application. A curative set of 100 diverse ads is com-
piled based on expert consensus, and its effectiveness as an affec-
tive dataset is examined based on ratings acquired from 14 raters.
Dataset suitability is confirmed by (1) excellent agreement between
the expert and annotator groups, and (2) uniform distribution of
the asl and val ratings with minimal correlation between them.

AAN-based audio-visual features are then proposed for encod-
ing ad affect, and are found to significantly outperform features
proposed by Hanjalic and Xu [9] for val recognition. Best results
with the AAN features are achieved with the MTL classifier, which
effectively exploits the underlying audio-visual similarities among
emotionally homogeneous ads. Finally, a study involving 17 users
confirms that better modeling of ad emotions facilitates insertion
of contextually relevant ads onto a streamed video. Specifically, the
proposed AAN model is able to estimate ad valence better than the
baseline [9], resulting in enhanced viewing experience.

Future work will focus on the design of other informative (e.g.,
recurrent neural network-based) multimedia features for modeling
affect. Another interesting line of inquiry is affect prediction via
user physiological measurements similar to [1, 14]. Finally, efficient
approaches need to be designed for ad insertion within streamed
video, so as to maximize both ad recall and viewing experience.
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