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Abstract. A framework for fuzzy calibration is introduced here. Fuzzy
calibration is necessary to account for the imprecision of the camera
model that can be computed during calibration. It is the first step of a
fuzzy vision framework in which the uncertainties are propagated forward
through the different levels of processing until precise values are abso-
lutely necessary. We present the fuzzy calibration framework for weak
and strong calibration. We also present some thoughts outlining how
such calibration can be used in higher levels of vision processing.

1 Introduction

Calibration is most fundamental to stereo vision. Calibration is the process of
computing the parameters of a standard mathematical model that represents
the imaging process of a camera. The pin-hole camera model is most popular
and adequately represents the projection process of a real camera. For applica-
tions that use lenses of low-focal lengths, the lens distortion parameters can be
recovered and used to correct distortions such as the radial lens distortion. Dif-
ferent calibration algorithms have been proposed and implemented by Computer
Vision researchers in the past couple of decades.

The calibration as used in Computer Vision can be broadly classified into
two categories: Strong and Weak [3]. Strong calibration fits a pin-hole model
to the measured projection characteristics of the camera. That is, given a point
X in the 3D space, its projection Z to the image space can be computed via a
matrix M, called the Projection Matriz, calculated by strong calibration. Weak
calibration, on the other hand, provides the relative geometry between two or
more views of the same scene. The Fundamental Matrix F of a pair of views
encodes the relations of how the mapping of a pixel in one image is constrained
in the other. In presence of more than two views, trifocal tensors and other linear
relationships can provide the weak calibration.

Calibration is a hotly debated area among Computer Vision researchers. One
school of thought believes strong calibration is essential and relies on it for ap-
plications such as 3D metric measurements. Another school discards a priori
calibration because of its unreliability. We believe that a middle path that com-
bines the advantages of each can yield the best results. We will use the best
available calibration tools, but will not trust their output completely. The am-
biguities and uncertainties in the calibration will be modelled and used in the



subsequent levels of processing. Fuzzy set theory can provide a theoretical frame-
work for modelling the uncertainty associated with the ambiguity and vagueness
of image measurements and is best suited to model the ambiguity of calibration.

Fuzzy notions have been employed extensively in image processing and pat-
tern recognition. However, their applications to higher-level vision have been
quite limited in the literature. [1,6,7]. The uncertainty incurred in the initial
stages of camera calibration can cause errors down the line if propagated as
such. We believe that a fuzzy calibration followed by processing of a fuzzy set
of correspondences can preserve the ambiguities in the low-level information so
that a better decision can be taken at a higher level, if more precise information
is available.

Section 2 presents a brief description of the notion of fuzzy calibration and
how it differs from the conventional calibration. Strong and weak camera cal-
ibration schemes are extended to fuzzy notions in Section 3. In section 4, we
describe the scope and applicability of the fuzzy calibration procedures. Section
5 presents a few concluding remarks.

2 Fuzzy Calibration: The First Step

Calibration errors have a great impact on stereo vision systems that use calibra-
tion. The calibration parameters are in practice estimated from a large number
of observations, typically using a non-linear optimization procedure. The param-
eters are used as precise values representing the camera, though the estimation
process is aware of the mismatch between the model and the measurements.
Thus, the uncertainty in the calibration process is ignored completely. This can
result in further errors in the subsequent stages of processing. Thus, it is essential
for the calibration step to preserve the uncertainties that are found. For a task
at a higher level such as stereo vision, a fuzzy set of correspondences can be com-
puted, using the fuzzy calibration data. The uncertainties in the correspondence
should reflect those in the calibration as well as new uncertainties introduced
by the matching step. The depth values computed from these correspondences
will take into account the known uncertainties till then. This process should be
carried forward at all levels till a crisp decision is unavoidable. For example,
crisp depth values could be calculated when the depth map has to be converted
to a triangulated model for display.

Better results can thus be expected if the uncertainty involved is modelled
explicitly and used by all levels of processing. Fuzzy sets and numbers provide
an excellent framework for this. It has already been applied quite successfully
to many low-level vision tasks. Algorithms that take fuzzy inputs can produce
suitable fuzzy outputs representing the uncertainty for the subsequent level of
processing. Most vision algorithms can modified easily to handle fuzzy data
by replacing each operation by its fuzzy equivalent. Well defined processes are
available to convert fuzzy results into crisp ones. The process of handling the
uncertainties in vision should rightly begin with fuzzy calibration, as it is typically
the first step in a vision process.



The right place to start fuzzy vision processing is calibration. Calibration is
computed from a few known points specified manually or computed using an
appropriate algorithm. It is also possible to boot-strap the process starting with
a few manually selected points, as an algorithm can find more known points if an
approximate calibration exists. Calibration data consists of a few parameters for
the camera model. Conceptually, fuzzy calibration uses fuzzy numbers for each of
those parameters. The uncertainties encoded by them will result in different, and
more general, constraints. The fuzzy numbers and their associated membership
functions can be computed from the error measures used by the linear or non-
linear optimization algorithm used for conventional calibration.

3 Fuzzy Calibration Models

In this section, we briefly introduce the models of weak and strong calibration
mathematically and discuss how they can be modified to fuzzy models.

3.1 Weak Calibration

The weak calibration of two cameras is given by the fundamental matrix F that
encodes the constraints between the images of the same world point in two views
[3,4]. If Z and Z' are the homogeneous coordinates of the projections of the same
point in the left and right views, the following relation holds about them.

ZTFz =0 (1)

F is 3 x 3 matrices of rank 2 and can be computed from 8 or more pairs of
matching points using a linear algorithm. In practice, there are linear, nonlinear
and statistically optimal algorithms that use a large number of points matching
points for computing the fundamental matrix [4, 8].

Let us look at a simple arrangement of two cameras, called a parallel, rectified
camera configuration. The fundamental matrix for such a configuration is given
by [4]

fi1 fi2 fis 000
F=|fonfofs|=]001 (2)
f31 fa2 f33 0-10

The arrangement may only be approximately parallel in practice. Equation 1
can be expanded for two matching points [2',y’,1]T and [z,y,1]T as

' (xfir +yfio+ fi3) Y (@for + yfor + foz) + (@fs1 +yfaz + f33) =0.  (3)

Since the overall scale is unimportant, we can safely assume fo3 = 1 for the
parallel rectified situation, since we know that number is non-zero for the ideal
situation. Equation 3 reduces to y' —y = 0 ideally. However, the parallel, rectified
model could be slightly incorrect in a few ways in a practical situation, in spite
of the best efforts at making the cameras parallel and rectified.



1. Incorrect alignment of scan lines. That is, Equation 3 reduces to y'—y+4 = 0.
2. Incorrect magnification. Equation 3 reduces to y' —y(1+~) = 0 in this case.
3. Non-parallel situation. Equation 3 reduces to ez’ + 3’ —y = 0 in this case.

In all these cases, the values 4, ¢, and v are very small, ideally zero. The funda-
mental matrix for a practical parallel, rectified camera arrangement can account
for such uncertainties in measurements and can be given by

0 0 €
F=10 0 1]. (4)
0-(1+7%)0d

At this stage, two important questions are to be answered: (a) Can we estimate
d,€,andy from observations? (b) Can a precise set of crisp values model the
uncertainty in the calibration?

The answer to the first question is in the affirmative. The number of image
measurements is typically more than the number of unknowns and one could
employ a least mean/median square solution [2-4]. The end results give crisp
values for the entries of F, forcing the corresponding point to lie on an epipolar
line in the second image. A better way to capture such uncertainty is to consider
the image measurements as fuzzy measurements, obtained on a discrete 2D grid
using projection of a 3D point. The values of §, €, and v can be computed as
fuzzy numbers using fuzzy regression techniques [5]. We can derive a fuzzy set
in the second image where the corresponding feature point should lie using the
fuzzy F matrix. It will be interesting to investigate what the correspondence
implies in this case. We will discuss this problem in the next section. The notion
of fuzzy feature measurements allow us to handle the points “in and around”
the conventional epipolar line.

3.2 Strong Calibration

The projection equation given the strong calibration matrix M is given by T =
MX. The matrix M is a 3 x 4 matrix as homogeneous coordinates are used
to represent points in both the 2D and 3D spaces due to the mathematical
ease of dealing with rotations and translations uniformly using them. When
the point X is specified in a projective or affine space instead of a Euclidean
space, corresponding projective or affine calibration matrices can be used. The
projection matrix obeys appropriate constraints in each of these spaces and can
be computed from the world and image coordinates of a number of points.

We can decompose the projection matrix into the intrinsic and extrinsic
components

M=PV=|0f00|,"]
0010

f- 000 [R;T], .

where P is the perspective projection matrix for points specified in a coordinate
frame rooted at the camera center, V is the view transformation matrix that



transforms the world coordinate frame to the camera coordinate frame. f, and
fy are the focal lengths in the two directions, and R and T are the rotation
matrix and the translation vector respectively that align the world coordinate
system to the camera coordinate system.

A typical calibration algorithm [9] gives crisp values to the camera param-
eters. Achieving precise parameters from measurements has been a difficult
task [3,4]. However, We can treat the camera parameters as fuzzy quantities
to account for the uncertainties. A discussion on the complete mathematical
formulation of the framework is beyond the scope of this paper. However, we
provide a glimpse of the geometric interpretation of the fuzzy calibration pa-
rameters now.

Let us look at the region of the world (i.e., the subset of IR®) that maps
to a pixel. For that we have to “invert” the projection matrix. We have that
M~! =V 1P~ The inverse of the view transformation matrix is given by

RT:;0][I;-T
-1 __ ) )
v= 0T

since R is an orthonormal rotation matrix. The inverse of P is not uniquely
defined. We can decompose P as [@); 0] where ) is a 3 x 3 matrix consisting of
the left 3 columns of P (see Equation 5). We now can see that,

1/f. 0 0
Q'=1| 0 1/£,0 (6)
0 01

Now, we can “invert” the projection matrix as

M lz=vlplz=v-! [lej] = [%T;(ll] [(I) ; _1T] [lej] (7

where k is a constant that cannot be computed. Together, the above equation
gives the parametric equation of the imaging ray for the pixel Z, the parameter
being k. Equation 7 gives the unbounded volume of space that projects to the
pixel in the global coordinate frame. If P and V give precise projection and
transformation, the volume that projects to the pixel is a ray called the imaging
ray. If uncertainties in the focal lengths or the rotation and translation estimates
can be encoded using fuzzy numbers in the corresponding matrices, these equa-
tions specify an imaging volume, which is the generalization of the imaging ray.
We can compute a membership functions in the fuzzy framework for each ray in
the imaging volume.

Comments We presented fuzzy models for weak and strong calibration in this
section. Fuzzy fundamental matrix can be computed from crisp or fuzzy points
in multiple images, relaxing the strong epipolar assumption. This can account for
the possible inaccuracies of imaging models and the rectification process. Fuzzy
strong calibration can account for uncertainties in estimation of parameters such



as the focal length, rotations, and translations. We can compute the geometrical
imaging volume with associated distribution of uncertainties within it as the
possible locations of the 3D scene point that projects to each pixel.

4 Fuzzy Vision: Beyond Calibration

In this section, we outline how the fuzzy calibration can be used for other kinds of
vision processing. There are multiple ways to handle the imprecision of the cali-
bration process and to develop algorithms using it. We present simple approaches
to some problems in this section. We use the notion of fuzzy correspondence for
the examples given here. Fuzzy correspondence gives a set of points in the right
image with associated membership functions for each pixel in the left image,
based on fuzzy feature measurements that encode similarity [7]. We can study
fuzzy correspondences and fuzzy depth maps with the help of the rich literature
available on fuzzy arithmetic.

Fuzzy Correspondences and Weak Calibration: In a typical situation,
we have two problems: obtaining the fuzzy correspondences and estimating the
fundamental matrix from them. Here, we outline an iterative algorithm which
carries out both simultaneously starting with a set of crisp pixel matches given
by a standard matching algorithm.

Let {x1, X2, ...Xn} be a set of pixels in the first image and {y1,y2,-..,¥n} be
the pixels in the second image. We can assign memberships to the corresponding
pairs of matches based on a similarity measure for the feature points. Such
correspondences need not be geometrically valid and the second point may not
lie “near” the epipolar line. If u; is the membership of the pair (x;,y;) in the
fuzzy correspondence, weak calibration can be obtained by minimizing J =
>, wi(d(zi, Fy;) + d(y;, FT;)), where d(z;, Fy;) gives the distance of the point
x; to the epipolar line given by Fy;. The minimization of the above objective
function is carried out in two stages. First, compute the fundamental matrix
based on the eigenvectors of X TM X where M is a diagonal matrix with fuzzy
memberships as the diagonal elements and X is a measurement matrix. More
detailed description of a non-fuzzy implementation of this computation can be
seen in [4]. Second, assign memberships based on the nearness of the point to
the epipolar line. yu; = (d(zi,Fyi)—lfcd(yi,FTm))’ for a constant k. It can be shown
that the above iterative algorithm converges and provides an optimal estimate
of the fuzzy correspondence and the weak calibration simultaneously.

Fuzzy 3D Point from Stereo We saw how fuzzy strong calibration can com-
pute the imaging volume corresponding to a pixel in Section 3.2. When the
correspondence between two pixels of an image pair is known, their imaging
volumes can be intersected like in stereo vision. The correspondence used itself
could be fuzzy as described above, adding an additional level of uncertainty. The
three levels of imprecision are: (a) the pixel of the left image represents a set
of imaging rays with associated membership values u}, (b) the correspondence



pairs it up with a set of pixels in the right image with its own membership val-
ues puf;, and (c) each corresponding pixel represents a set of imaging rays with
memberships u;‘ using the right camera’s calibration data. We can intersect the
viewing volumes taking into account the three uncertainty measures. The result
will be a region in space (a fuzzy subset over IR®) with an associated confidence
measure for each point in the region. The distribution of the confidence measure
is a function of the three membership functions given above. An appropriate T-
norm may be used for this purpose. A more detailed treatment of this is beyond
the scope of this paper. This results in a disparity/depth map where the dispar-
ity/depth estimate at each point is a fuzzy set, or otherwise we have multiple
depth estimates with varying amount of certainty.

5 Conclusions and Future Work

We proposed a fuzzy calibration scheme to incorporate the uncertainty associ-
ated in the imaging process into the subsequent levels of processing. Calibration
is indeed the first step in many vision processes. It is important to keep track of
the uncertainties in calibration and use it at higher levels. A fuzzy framework
is ideally suited for this. We intend to investigate fuzzy notions for higher level
vision processes such as modelling using multiple cameras, new view generation,
etc. We believe the fuzzy framework will yield better results to such problems.
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