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Abstract

Computing correspondences between pairs of images is fundamental to all structures from motion algorithms. Corre-
lation is a popular method to estimate similarity between patches of images. In the standard formulation, the correlation
function uses only one feature such as the gray level values of a small neighbourhood. Research has shown that dif-
ferent features—such as colour, edge strength, corners, texture measures—work better under di0erent conditions. We
propose a framework of generalized correlation that can compute a real valued similarity measure using a feature
vector whose components can be dissimilar. The framework can combine the e0ects of di0erent image features, such
as multi-spectral features, edges, corners, texture measures, etc., into a single similarity measure in a 3exible manner.
Additionally, it can combine results of di0erent window sizes used for correlation with proper weighting for each. Rel-
ative importances of the features can be estimated from the image itself for accurate correspondence. In this paper, we
present the framework of generalised correlation, provide a few examples demonstrating its power, as well as discuss
the implementation issues. ? 2002 Published by Elsevier Science Ltd on behalf of Pattern Recognition Society.
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1. Introduction

A central problem in computer vision is the analysis
and interpretation of 3D scenes. The high degree of suc-
cess of the human vision system on this task and the 3D
conception of space that developed as a consequence can
perhaps be held responsible for the prominence of 3D re-
construction in computer vision research. There have also
been attempts to reason about the 3D world using only
the underlying geometry, without generating a 3D recon-
struction of the scene. Projective geometry has played
a major role in such e0orts. Some researchers exploit
the algebraic relationships between multiple images to
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solve the problems which were hitherto answered after
3D reconstruction [1].

There are a number of methods to reconstruct the
3D information from images. Shading, focus, interre3ec-
tions, motion have all been exploited to extract the 3D
shapes of objects in the images. Depth from multiple
views is an important method, partly motivated by the
human binocular vision system. Two views with known
viewing geometries are suAcient to compute the 3D in-
formation of the visible surfaces. The depth information
can be computed using triangulation once correspond-
ing points are identiBed in the “left” and “right” images.
Replicating most of the human vision capabilities with
computational models is a diAcult task. Humans seem
to subjectively visualize the spectral variations and in-
tegrate the outputs from correlated as well as indepen-
dent sources to visualize a scene. Though there are a few
excellent articles in modeling human vision [2], most
of the computer vision researchers attempt to tackle the
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problem independently. The geometry based methods
that gained popularity recently attempt to build a less de-
manding reconstruction of the scene. Projective and aAne
reconstructions are frequently used. There are also strate-
gies to progressively build projective, aAne and Bnally
Euclidean reconstructions of a scene from multiple—
structured or unstructured—views of it [3,4]. The alge-
braic methods are closely related to these. They avoid
explicitly reconstructing the scene. Instead, they try to
answer the questions posed by the speciBc navigation or
interpretation task using the algebraic relationships be-
tween multiple images of the scene.

A central requirement of all these methods is pixel
correspondence or the identiBcation of the correspond-
ing points in multiple views. The results of the alge-
braic methods of reconstruction are sound if correspon-
dences are accurate. However, correspondence computa-
tion tends to involve a lot of engineering optimizations.
The lighting conditions, camera settings, discretization
and quantization e0ects, signal noise are some of the fac-
tors that complicate precise correspondence computation.
The precision of the computer vision task is bound by the
precision of the correspondences, however. The feature
points used to compute correspondences could be the in-
dividual pixels or derived features like edges and corners.
Sparse and sharp correspondence maps result from us-
ing good feature points such as edges and corners. Dense
maps can be obtained by computing correspondences for
every pixel. Small patches of the image, instead of single
pixels, usually result in better disambiguation, in either
case.

The conventional stereo correspondence schemes em-
ploy intensity values to compute dense correspondences
and edges or corners for sparse correspondences. The ab-
solute and relative geometry of the gray level distribution
is often more important in a matching process; hence in-
tensity values or their derivatives alone may not suAce.
Thus, secondary features derived from the image play an
important role in improving correspondences.

The gray level or colour intensity value, texture mea-
sure, edge strength, etc., are some of the features that can
be used at each pixel for matching. Each works well un-
der di0erent conditions. However, no attempt has been
made to combine this heterogenous collection of features
to produce better results than each individually can. We
provide a framework, called the generalised correlation,
for combining di0erent types of features in a 3exible
way. The framework generalizes the traditional corre-
lation function to compute correspondences based on a
multidimensional feature vector. The components of this
vector could be made of di0erent features, including out-
puts of di0erent spectra of multi-spectral images. The in-
tegration of the results of multiple methods in a 3exible
way provides superior accuracy in the correspondences
computed. A preliminary version of this paper appeared
in ACCV [5].

In the next section, we discuss the basics of a cor-
relation based correspondence scheme. Notations are
introduced there. Section 3 describes the generalised
correlation functions and the facility to emphasise or
de-emphasise a particular set of features. A number of
examples are provided in Section 4 to demonstrate the
power of the method. They include the correspondence
computation of colour images and integration of corre-
lation functions computed using variable size windows.
Relative importance of features and their advantages in
integrating multiple evidences are described in Section
5. In Section 6, various computational aspects of the
proposed functions are described. Section 7 provides a
few concluding remarks.

2. Stereo correspondence with similarity measures

Correspondence computation between a pair of images
involves the identiBcation of the same physical point in
both the images. It is usually posed as the problem of
Bnding the matching points in the second image of the
selected points in the Brst image. An exhaustive search
for such a point can be very expensive computationally.
The epipolar constraint [6] restricts the search to a line
for calibrated cameras. The task is further simpliBed by
restricting the maximum possible value for the disparity
for which an estimate could exist. We restrict our atten-
tion to a parallel rectiBed pair of cameras in this paper.

Major approaches for stereo correspondence are based
on dynamic programming [7,8], relaxation [2,9], and cor-
relation [10–12]. Often stereo matching methods extract
edges, lines or corners in the left image as the feature
points and try to identify corresponding points in the
right image by minimizing a suitable objective function.
Since dynamic programming is an eAcient method of
optimisation for functions with many discrete variables,
stereo correspondence problem is well suited for dynamic
programming. Relaxation based algorithms start with an
initial match and identify the optimal one by iteratively
modifying the matches based on some geometrical con-
straints. These algorithms are highly parallel in nature
and are well suited to simulate the human stereo percep-
tion mechanism.

The process of matching involves identiBcation of a
similar pixel in the second image. Similarity is often
measured in terms of photometric properties such as the
gray level or colour values. Correlation is the most pop-
ular similarity measure. In this paper, the terms correla-
tion and similarity are used interchangeably. We either
minimize the distance between the template vector and
the observation vector or maximize their normalized dot
product to compute the match. Numerous examples are
available in the literature that use correlation for cor-
respondence computation and image matching [10–12].
For a small window W l

pq(i; j) of size p × q around a
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pixel (i; j) in left image, correspondence in right image
is computed by moving a similar window W r

pq(i + d; j)
in the right image along the epipolar line. The location
that optimises a similarity function or a distance function

S(W l
pq(i; j); W

r
pq(i + d; j)) (1)

for all d; is the matching point of pixel (i; j). The function
S is proportional to either W l ·W r or to −|W l −W r|. A
correlation function using the dot product is given in Eq.
(2) and one using the di0erences is given in Eq. (3). We
deBne a real valued correlation function C(Fr ; Fl; p; q; d)
(in short C(d)) at a pixel (i; j) to depict the similarity of
pixels in left and right images displaced by d pixels.

C1(d)=
[Fpql (i; j)]T[Fpqr (i + d; j)]
||Fpql (i; j)|| × ||Fpqr (i + d; j)|| ; (2)

C2(d)=
||Fpql (i; j)− Fpqr (i + d; j)||
||Fpql (i; j)|| × ||Fpqr (i + d; j)|| : (3)

Here, Fpql (i; j) and Fpqr (i; j) are vectors of dimension
pq consisting of the gray level values of a p×q window
around the pixel (i; j) of the left and right images, re-
spectively and d is the disparity being searched for, and

||X || denotes the L2 norm
√

[X ]T[X ] of the vector X .
The correlation function is computed for various values
of d∈ [ − dleft ; dright]; and the disparity d corresponding
to maximum of C1 is chosen as the matching point in the
case of Eq. (2). The minimum of C2 deBnes the match-
ing point in the case of Eq. (3).

These correlation functions can be normalized by sub-
tracting the mean of each of the windows from each pixel
value before matching, reducing the e0ects of di0erences
in illumination or camera gains. The normalized version
of Eq. (2) is given by Eq. (4).

CN1 (d)=
[F̃

pq
l (i; j)]T[F̃

pq
r (i + d; j)]

||F̃pql (i; j)|| × ||F̃pqr (i + d; j)||
; (4)

where F̃
pq
l and F̃

pq
r are the normalized vectors with the

means over the respective p× q windows, Pf
pq
l and Pf

pq
r

respectively, subtracted from each pixel.
An important drawback of this formulation is its inca-

pability to employ multiple features to compute the dis-
parity map. The gray values may yield the best dispar-
ity map in some situations whereas the edge strengths
may be best in other situations. A proper combination of
the e0ects of gray level features, such as the gray value
and texture measures, and the geometric features, such
as edges, corners and lines, can provide better results
in general [13–15]. In our opinion, a good matching al-
gorithm should be able to select the best combination
of features to generate an accurate correspondence map.
The conventional correlation formulation is also not able

to take advantage of multi-spectral images and requires
modiBcations to do so.

Selecting an appropriate window size is crucial to a
window-based similarity measure. Small window sizes
increase the probability of mismatches, but yield better
localization. Large window sizes reduce the mismatches,
but at the cost of localization. It would be advantageous
to integrate the strengths of both by combining large
and small windows. The framework of generalized cor-
relation we present next can not only combine di0erent
types of evidences, such as gray levels, edges and tex-
ture measures, but also integrate multi-spectral informa-
tion as well as di0erent sized windows to compute more
accurate correspondences. We consider the features as a
multidimensional vector, each dimension containing sim-
ilar or dissimilar information. A generalized correlation
function evaluates the similarity between two vectors,
combining the e0ects of their components appropriately.
Our formulation, in addition, has the 3exibility to weigh
the features according to their relative importance.

3. Stereo correspondence with multidimensional
features

We can generalize the notion of the feature vector
given above to include not only the gray level values,
but other derived features like edge strength, texture
measures, etc. Let PF l(i; j)∈Rp and PF r(i; j)∈Rp be two
p-dimensional feature images, with PF

k
l (i; j) as the kth

component of the feature vector of the pixel (i; j) in the
left image. The dimension p of the vector is not directly
linked to the window size used for matching. The term
feature is used quite liberally. Di0erent feature types can
have di0erent windows of support in the image. Some
of the components may have values derived from photo-
metric features and others from geometric features. The
p-dimensional feature vector is formed for each pixel
by stacking the values from the windows of support for
each feature. It is possible to use correlation deBned
in the previous section over a 3 × 3 window as one
feature and the same over a 5 × 5 window as another,
for instance, providing the ability to combine multiple
window sizes. We can modify the correlation function
given in Eq. (2) as follows:

C′
1(d)=

[ PF l(i; j)]T[ PF r(i + d; j)]
|| PF l(i; j)|| × || PF r(i + d; j)|| : (5)

A similar function based on generalized distance between
feature vectors similar to the one given in Eq. (3) can be
written as

C′
2(d)=

[ PF l(i; j)− PF r(i+d; j)]T[ PF l(i; j)− PF r(i + d; j)]
|| PF l(i; j)|| × || PF r(i + d; j)|| :

(6)
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Each component of the feature vector can have di0er-
ent magnitudes and will need to be scaled appropriately.
Flexibility in giving di0erent weights to di0erent feature
components would be welcome to adapt the framework
to di0erent situations. To achieve this, we replace the
popular L2 norm with the following matrix norm

||X ||M =
√

[X ]TM [X ]; (7)

where, M is a p × p positive semideBnite matrix that
encodes the relative importances as well as the cross re-
lationships among the components of the feature vector.
The Eqs. (5) and (6) can be rewritten as follows to ex-
press the generalized correlation function GC.

GC1(d)=
[ PF l(i; j)]TM [ PF r(i + d; j)]
|| PF l(i; j)||M × || PF r(i + d; j)||M

; (8)

GC2(d)

=
[ PF l(i; j)− PF r(i+d; j)]TM [ PF l(i; j)− PF r(i+d; j)]

|| PF l(i; j)||M × || PF r(i+d; j)||M
:

(9)

Here the feature relation matrixM encodes the relation-
ships among the features as well as their relative impor-
tances. Though the feature vectors are multidimensional,
the correlation function is real valued and the com-
putation of its extrema can be carried out similar to
the conventional correlation techniques by moving the
correlation window with integer increments along the
epipolar line. Normalized versions can also be devised
similarly, but the normalization should be done by sub-
tracting a mean value appropriate for each component
of the feature vector.

It will be interesting to probe the importance of the
feature relation matrix M for evaluating the correlation
function. IfM =[mij] is a diagonal matrix with diagonal
elements mii encoding the relative weights of the ith fea-
ture,GC provides a weighted similarity measure. Clearly,
if mii is zero, the in3uence of the ith feature component
will be zero. The components of the feature vector can
be combined in a 3exible way by varying the elements
in the feature relation matrix.

The elements mij need not be zero or unity. The total
emphasis becomes a weighted combination of the fea-
tures with values other than 0 and 1. If the matrix M is
the inverse of the covariance matrix of the feature compo-
nents, the generalized correlation function becomes con-
ceptually similar to the Mahalanobis distance [16]. This
would be very useful in the presence of features with
widely di0erent statistical properties. M need not be a
diagonal matrix if correlation between feature compo-
nents needs to be taken into account. In such cases, it
will be desirable to know whether features are correlated
or uncorrelated.

The feature relation matrix M need not be a precom-
puted constant matrix; it can depend on the images being
matched. It may also be di0erent on di0erent parts of the
image. Ideally, its elements should be estimated based on
the local statistics of the image regions in terms of the
relative strengths of the components of the feature vector.
It should, thus, be possible to emphasize the edge based
evidence when it is signiBcant, but suppress it when not
so. Estimating the relative importance of each compo-
nent is similar to feature selection in pattern recognition.
In most situations, one can learn or Bne tune M oQine
and use it to compute accurate correspondences in simi-
lar situations. We outline a strategy for estimating M in
Section 5.

The primary advantage of the generalized correlation
framework is its ability to combine multiple types of fea-
tures in a 3exible way. Area-based features produce bet-
ter matches when the patch being compared is large due
to the presence of more information. However, larger
patches produce fattening problem at occlusion bound-
aries due to the inability to localize them. Edge and cor-
ner based features localize the occlusion boundaries bet-
ter, but do not produce dense enough correspondences
unless the edges are present uniformly. The generalized
correlation framework has the potential to combine the
advantages of the multiple methods as is demonstrated
by the examples given below.

4. Examples

We present a set of examples in this section to demon-
strate the e0ectiveness of generalized correlation to solve
the correspondence problem.

4.1. Example 1: colour stereogram

Stereo algorithms are often veriBed on monochrome
images. Though monochrome images are advisable for
a number of real-time applications, there are enough sit-
uations where the colour image can yield better results.
Here we consider a “random colour stereogram” for the
validation of the methodology for stereo correspondence.
The image pair has a three-layered wedding cake struc-
ture embedded in it. It was generated in a manner similar
to the classical random dot stereogram but gray-values
replaced by di0erent colours in a consistent manner. The
images are shown in Figs. 1a and b.

Each band of the colour stereograms is equivalent to a
conventional random stereogram. We consider only one
band initially. The computed disparity map with 3 × 3
window is shown in Fig. 1c. This result is same as the
conventional correlation. Disparity levels are shown in
di0erent shades, with brighter colours used for higher
disparities. Though the images are synthetic and free of
noise, there are mismatches, in particular at the bound-
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Fig. 1. Left and right images of a random colour stereogram along with the computed disparity maps and comparisons.
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aries. Mismatches at the right end of the uniform dispar-
ity regions are due to occlusion. Occlusion occurs when
a pixel is visible only in one image. But there are many
more mismatches in the result. This is due to the multiple
extrema of the correlation function. Additional geomet-
rical constraints can possibly reduce the mismatches.

Next, we compute correspondences between the same
image pair using generalized correlation with the feature
vector comprising of the red, green and blue components
of the 3× 3 neighbourhood of each pixel. The computed
disparity map is shown in Fig. 1d. Clearly, our strategy
results in more crisp and sharp disparity map. The gen-
eralized correlation using multiple features works well
by removing the ambiguity due to multiple extrema.
For a quantitative comparison between the two disparity
maps, we look at the mean disparity of all the scanlines
containing the three disparity levels. They are plotted in
Fig. 1e. A smooth and continuous disparity map is
obtained using generalized correlation; discontinuities
(edges) are also more sharp and precise.

Generalized correlation can take advantage of
multi-spectral images, like colour and satellite images.
A more challenging problem in correlation-based cor-
respondence scheme is achieving localization and pre-
serving the sharp discontinuities. If one employs a larger
window, localization will be lost at the expense of re-
duction in number of mismatches. These errors will be
prominent at the depth discontinuities. Therefore a good
stereo correspondence algorithm based on correlation
should be able to employ variable window sizes and
incorporate the advantages of each of them [17].

4.2. Example 2: variable size windows

The generalized correlation formulation acts as an in-
tegrating mechanism for various stereo correspondence
strategies. In this example, we demonstrate the perfor-
mance of an integrating mechanism, which will merge
the positive aspects of small and large window sizes (i.e.,
localization and reduction in mismatches).

In Figs. 2a and b, we show a pair of images with a
wedding cake structure embedded on it. Unlike a syn-
thetic random dot stereogram, the structure and the nat-
ural gray-distribution in the scene will lead to a large
number of mismatches if one employs a small window.
Matching results with a 1 × 1 window (pixel to pixel
match) is shown in Fig. 2c. As the window size in-
creases, the number of mismatches decreases, but with
loss in sharpness of edges. Disparity maps for 3× 3 and
5 × 5 windows using ordinary correlation are shown in
Figs. 2d and e. The results of generalized correlation is
shown in Fig. 2f. It clearly integrates the advantages of
both small and large correlation windows. To investi-
gate the performance further, we added a small additive
noise to the right image to study the performance of the

Fig. 2. Performance of the generalized correlation scheme with
variable window sizes (for more details, refer e.g. 2).

methodology in presence of distortions. Respective re-
sults for windows of size 1 × 1, 3 × 3, 5 × 5 and the
proposed method are shown in Figs. 2g–j.

In both the cases, we construct a feature vector com-
prising of elements from all the three (1 × 1, 3 × 3 and
5×5) windows. In this case, the dimensionality of the fea-
ture vector considered is 35 (i.e, 25+9+1). The feature
vector is an ordered array of gray-values from these three
windows. We have used the same weight for all pixels
from a single window. This results in a diagonal feature
relation matrix with exponentially decreasing weights as
the window size increases to weigh them appropriately.

Gray level values are used widely for computing cor-
respondences. Other features can be useful in other sit-
uations. It is advantageous to integrate multiple types
of features. In the next example, we demonstrate how
the integration of dissimilar features help correspondence
computation.

4.3. Example 3: multidimensional features

We use the image of a natural scene (Fig. 3a) as
the left image and generate a right image by Brst
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Fig. 3. (a) Natural texture used for the experimentation. Dis-
parity maps computed with Gray value (b), Edge strength (b)
and Texture measure (c).

photometrically distorting it by equalizing its histogram
and then imposing a wedding cake structure on it. Also
an additive Gaussian noise (mean =0; �=3) is added
to the right image. The image regions which were oc-
cluded in the left image are Blled randomly in the right
image. Here we demonstrate that the features vary in
their performance and their combination is the possible
option in a generic environment.

Initially, we employ a conventional correlation using
gray-value alone. Disparity map computed based on cor-
relation of gray-values in a 5×5 neighbourhood is shown
in Fig. 3b. It identiBes proper matching pixels only at pix-
els wherever there is a reasonable variation in gray-values
within a neighbourhood. This performs poorly at bottom
and top half of the image.

We additionally tried edge information for correspon-
dence computation. Edge strength given by√(

9I(x; y)
9x

)2

+
(
9I(x; y)
9y

)2

is considered as the feature. This resulted in a dispar-
ity map as shown in Fig. 3c. One may notice that the
performance is poor wherever the edge information
is less.

As a third feature, we tried a texture measure, which is
invariant to the photometric distortions. If a1; a2; : : : ; a8

are the neighbours of pixel a, then the texture unit

Fig. 4. Disparity maps computed with combinations of fea-
tures. (a) Gray value and edge strength. (b) Gray value and
texture measure (c) Edge strength and texture. (d) All the three
together.

number [18] corresponding to a is deBned as

Ta =3iE(ai; a);

where E(ai; a) is 0,1 or 2 according to the gray-value
of ai is less, equal or more than that of a. The disparity
map computed using texture number is shown in Fig.
3d. Since the texture measure employed can take care
of the photometric distortion, this performs better than
the rest.

In the next phase of the experimentation, we try all
combination of these features. Results are shown in Fig.
4. While integrating, the features were normalized to a
common range of [0; 255]. The combinations are found
to perform better than the individual features. A combi-
nation of gray value and edge strength integrated the ad-
vantages of both these features as can be seen in Fig. 4a.
Combinations containing texture number performs better
as can be seen in Fig. 4 (b) and (c). A combination of
all the three (Fig. 4 (d)) combines the advantages of all
the features.

Indeed, if one can decide on the importance of
these individual features a priori, a better performance
can be expected. In this experimentation, all the fea-
tures were equally emphasized with a diagonal feature
relation matrix. The issues related to the automatic
emphasis=deemphasis is discussed in detail in the next
section.
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5. Estimating the feature relation matrix

Generalizing the feature vector to one of heteroge-
neous components and incorporating a feature relation
matrix to encode the relative importances and mutual re-
lationships between the di0erent features has signiBcant
beneBts. The estimation of the feature relation matrixM
to be used in real situations, however, becomes crucial
when this is done. The matrix need not be the same for
the entire image either; it can change with the local prop-
erties of the image.

Any prior knowledge about the relative importances
of the di0erent features used and the cross relationships
between pairs of features, if known, can be used to esti-
mate M . Otherwise, M can be computed from the local
statistical properties of the images. The behaviour of the
correlation function near the matching point can also be
used to computeM . It is often the case thatM can be es-
timated o0-line from selected example images and used
later with the real images.

Estimation of the feature relation matrix M satis-
fying some optimality constraint and validation of the
eAciency of the methodology is quite similar to the
feature selection problem in pattern recognition. A de-
tailed discussion on this topic is beyond the scope of
this paper. The feature relevance estimation may be
attempted in a supervised or completely unsupervised
manner. If the ground truth is available, one can es-
timate the importance of individual features based on
the relative performance in the computation of the pre-
cise matches. However, the availability of groud truth
is not a valid assumption in many real-life situations.
In such situations, one could formulate an algorithm
which optimally estimates the importances of fea-
tures while identifying the appropriate matches. The
feature-relevance adaptation can be an iterative process
in the case of dynamic stereo. An appropriate learn-
ing paradigm like neural network can be employed for
this.

Here, we outline a simple strategy to heuristically
evaluate the relative importances of features. For the
sake of this discussion, two simplifying assumptions
are made. (1) The di0erent components of the feature
vector are uncorrelated. Thus, M is a diagonal ma-
trix. (2) The same feature relation matrix is used for
the whole image. We include a few comments at the
end of the section about the impact of relaxing these
assumptions.

We can look at how the partial correlation function
for each component of the feature vector behaves around
the matching point. A strong peak in the partial corre-
lation function indicates a good match; it also validates
the use of the particular feature for matching. Thus, we
should emphasize the entries of M corresponding to the
features with strong peaks and de-emphasize the features
with weak peaks. An implementation of the scheme is as

Fig. 5. Estimating M from the images. (a) The disparity map
computed with equal weights. (b) Same using the estimated
feature relation matrix.

follows:

1. Start with mf set to 1 for all features.
2. Compute the generalized correlation GC function and

the partial correlation functions GCf for each compo-
nent f of the feature vector for a few good matches
or for all points.

3. Estimate the sharpness of the partial correlation func-
tions GCf for each f at the matching point. A sim-
ple measure of sharpness could be obtained by con-
volving the partial correlation function with the mask
[− 1;−2; 6;−2;−1]. Let sf be the average sharpness,
over all points considered, of the partial correlation
function for feature f.

4. Set mf proportional to a sharpness measure of the
partial correlation function at the matching point. Let
smax be the maximum average sharpness among all
features. Set mf to sf =smax for each feature f. This
de-emphasizes features with low peaks and empha-
sizes those with high peaks.

The last three steps can be repeated till the diagonal
elements mf are reasonably stable. The estimate of M
given above will be tuned for the pair of images used in
the computation.

5.1. Example 4: relative importance of features

We applied the above estimation procedure on the
colour image pair used in the previous section. To sim-
ulate the noisy and unrelated features, we set random,
uncorrelated values to one of the bands of an image. The
disparity map computed with equal emphasis for all the
features worsened, as expected. When we estimated M
using the procedure given above, the weight correspond-
ing to the noisy band was estimated to be 0.054 in the
Brst step itself, while the other two bands retained high
weights of 1.0 and 0.94. We used all the points in the
scene for estimatingM . Note that the methodology does
not assume any a priori knowledge of correct matches.
Thus, this is a fully unsupervised process. Fig. 5 gives the
results of the experiment. The disparity map computed
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using estimated weights is much better compared to the
one computed with equal weightage to all three bands.

Another strategy to estimateM can be used if it is pos-
sible to guide the estimation process with good and bad
match points. An iterative procedure can adjust the en-
tries of M to optimize the number of mismatches, if the
true disparity map is given. A gradient descent scheme
may be used in such situations to estimate the entries
of M . Such a scheme can Bnd applications in dynamic
stereo where the characteristics of the scene remains con-
sistent across frames. The feature relation matrix esti-
mated from the Brst few frames can be used for the entire
video sequence.

Though a constant M will suAce for most applica-
tions, there can be situations where di0erentM matrices
are used for di0erent parts of the image. In this case, the
entries of M can be estimated after a segmentation of
the image. An initial segmentation of the image based on
tone or texture properties can split the image into multi-
ple, mutually exclusive regions. The points in each region
contribute only to theM for that region. There could also
be situations when non-diagonal M matrices are neces-
sary. In such situations, estimating the elements of fea-
ture relation matrix is more involved, and may possibly
be based on the analysis of inter-feature correlations. We
intend to study this aspect in the future.

6. Computation of the generalized correlation
function

Our formulation of the corresponding point has the
following general form,

max
d

T1

T2 × T3
: (10)

Minimum function is used when di0erences are involved.
The term T2 is Bxed for each source window and is inde-
pendent of d. Being a positive constant it has no in3uence
on the maximum and hence the match. The matching cri-
terion using generalized correlation can then be written
using the left image as the source as

max
d

T1

T3
=max

d

[ PF l(i; j)]TM [ PF r(i + d; j)]
|| PF r(i + d; j)||M

: (11)

The computation is similar to that of ordinary correla-
tion. The feature vectors PF l and PF r can be assembled for
each i; j and d and then the multiplication can proceed.
In practice, however, the feature relation matrix will be
a sparse matrix with zeroes making up for most entries.
Full-3edged matrix multiplication need not be performed
as a result. If M is a diagonal matrix with elements mk;

T1(i; j)=
∑
k

mk PF
k
l (i; j) PF

k
r (i + d; j): (12)

This computation can be performed in a recursive man-
ner. The components of the vector PF l and PF r are values
from the pixels in the neighbourhood such as intensity,
edge strength and texture measure. Hence a shift and ac-
cumulate strategy can also reduce the computation in-
volved, as in the case of the computation of correlation
functions. The techniques given in [10] to speed up the
computations of correlation functions like C1 and C2 can
be adapted easily to the computation of the generalized
correlation function also. These methods on average re-
quire only a constant number—2 for normal correlation
computation—of multiply and add operations per pixel to
compute correlations, independent of the image size and
the size of the feature vector. This is achieved by keeping
partial sums for each row and column of the moving win-
dow and computing only the additional elements when
the window is moved. A full correlation needs to be com-
puted for the starting window, and a constant number of
operations is necessary at the start of each row. The total
algorithmic complexity for normal correlations using this
method, therefore, is O(p)+O(rc); where p=w2 is the
size of the feature vector, r is the number of rows of the
image, and c is the number of columns of the image. Since
p is a much smaller number than rc; the computation of
correlation takes a constant amount of time per pixel.

We modiBed this strategy to compute the generalized
correlation function for the case where M is a diagonal
matrix. The Bnal complexity again is O(rc); with prepro-
cessing that takes time O(p); where p is the size of the
feature vector. A pseudo code of the implementation for a
diagonal feature relation matrix is described in Appendix
A. The generalized correlation function is also amenable
to parallel implementation in case speed of computation
is the critical factor.

7. Discussions and conclusions

We presented the framework of generalized correla-
tion that can combine multiple types of image features
in a 3exible manner to obtain more accurate matches
between two images. Generalized correlation can thus
integrate multiple techniques for correspondence com-
putation, compensating for the weaknesses of each us-
ing the strengths of the others. We demonstrated the ef-
fectiveness of generalized correlation using a number of
examples in this paper. Integration of di0erent sorts of
evidences is critical to compute the best possible corre-
spondences in any situation. The framework we laid out
provides an e0ective means to do that.

While our examples demonstrate the power, two ar-
eas remain to be explored, namely, the composition of
the feature vector and the estimation of the feature re-
lation matrix. Which features among gray level, colour,
edge strength, texture number, etc., should be used
in a particular situation? That should depend on the
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properties of the images themselves. We intend to de-
velop a few guidelines for automatic selection of the
components of the feature vector. The estimation of the
feature relation matrix M used in the framework is also
critical. We have given a preliminary procedure to esti-
mate M ; but much more work needs to be done on this
front, especially when the features used for correlation
are correlated and M is not a diagonal matrix.

The matching point provides the best match under the
circumstances. A conBdence measure in the match, how-
ever, could be useful later. A fuzzy measure of conBdence
in the Bnal correspondence output can be of help in deci-
sions taken using the correspondence map. The relative
weights of the components of the feature vector encodes
the conBdences in each implicitly. The value of the GC

function can also serve as a conBdence measure and can
be propagated to the next level of processing. The fuzzy
measures can be propagated till a crisp decision becomes
necessary, but no information will be lost till such a deci-
sion is forced. The framework of generalized correlation
can provide a much more reliable measure of conBdence
by combining multiple features in a 3exible way.

8. Summary

Computing correspondences between pairs of images
is fundamental to many computer vision and pattern
recognition algorithms. Area based matching algorithms
often employ correlation scores as the matching mea-
sure between pixels or regions. Most of these matching
schemes employ only the gray-value for computing the
correspondence. Performance can be improved by ad-
ditionally employing secondary or derived features in
addition to the intensity values. They could be based on
colour, edge strength, corners, texture measures, etc. In
this paper, we presented the framework of generalized
correlation that can compute a real valued similarity
measure using a multi-dimensional feature vector whose
components can be heterogeneous.

Generalized correlation framework can combine the
e0ects of di0erent image features, such as multi-spectral
features, edges, corners, texture measures, etc., into a sin-
gle similarity measure in a 3exible manner. Each of these
features can be emphasized or deemphasized for speciBc
image pairs. The same formulation can also combine re-
sults of di0erent window sizes used for correlation with
proper weighting of each. Relative importances of the
features can be estimated from the image itself for bet-
ter correspondence computation. Examples are provided
to demonstrate the applicability of the generalized cor-
relation under various situations. Features used in these
case studies include, gray-value, edge strength, colours
and texture number. We have also provided a heuristic
method for computing the feature relation matrix from
image to image.

Appendix A. Pseudo code

== Note: Ffr (i; j) is the fth feature of PF r(i; j),
== correlation windows of feature f are of
== size (2hf + 1)× (2wf + 1); mf is the weight of
== fth feature and is repeated
== (2hf + 1)(2wf + 1) times on the principal diagonal
== of the feature relation matrix.
For r ← startRow to EndRow
== Because of parallel camera situation,
== computations can be done row by row
== First, compute all the partial products
== (pNR and pDR) required for this row.
If r equals startRow Then
== For the startRow, there is no short cut.
∀f; ∀c; pDRfc ←

∑hf
j=−hf mfF

f
r (j+startRow; c)

Ffr (j + startRow; c)
∀f; ∀c; ∀d; pNRfcd ←

∑hf
j=−hf mf

Ffl (j+startRow; c)
Ffr (j + startRow; c+ d)

Else
== For other rows, new terms can be
== computed from the previous
== row’s corresponding terms by adding a new
== term and subtracting another term
∀f; ∀c; pDRfc ← pDRfc−mf (F

f
r (r−hf−1; c)

Ffr (r − hf − 1; c) +Ffr (r + hf ; c)F
f
r

(r + hf ; c))
∀f; ∀c; ∀d; pNRfcd ← pNRfcd

−mf (F
f
l (r − hf − 1; c)

Ffr (r − hf − 1; c+ d) +Ffr (r + hf ; c)
Ffr (r + hf ; c+ d))

EndIf
== Partial products required for computation of
== Numerator and Denominator are ready
== Compute the NR and DR so that
== GC(d)=NR(d)=DR can be computed
For c← startCol to EndCol
== Numerator and Denominator can be
== computed by
== adding the partial terms pNRs and pDRs.
If c equals startCol Then
== For the startCol, compute NR and
== DR explicitly

DR(c)←∑
f

∑wf
i=−wf

pDRfc

NR(c; d)←∑
f

∑wf
i=−wf

pNRfcd

Else
== For the rest, compute them incrementally
DR(c)← DR(c − 1)−∑

f pDRf (c−wf−1)

+
∑

f pDRf (c+wf )

∀d; NR(c; d)← NR(c − 1; d)
−∑

f pNRf (c−wf−1)d

+
∑

f pNRf (c+wf )d
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EndIf
EndFor
== Now, Bnd the (pixel) position of maximum
== correlation for each pixel
For c← startCol to EndCol

maxm ← −1:0; disparity(r; c) ← dleft

For d→ dleft to dright

corrFn ← NR(c+d;d)√
DR(c+d)

If maxm¡ corrFn then
maxm ← corrFn
disparity(r; c)← d

EndIf
EndFor

EndFor
EndFor
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