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Abstract—In this paper, we propose a novel method for com-
pression of multiple view images using algebraic constraints.
The redundancy present in multiview images is considerably
different from that in isolated images or video streams. A
three view relationship based on a Trilinear Tensor is em-
ployed for view prediction and residual computation. The
geometric redundancy in the form of common world struc-
ture is exploited during this.

1. INTRODUCTION

A multiview imaging environment consists of an array of
cameras which image the world from different positions and
viewing angles. This kind of imaging is used in creation of
virtual environments, tracking and surveillance applications,
3D reconstruction etc. Multiview imaging is also used for
video-conferencing where an immersive and interactive en-
vironment is preferred. Video-conferencing using multiple
cameras requires transfer of large amount of multiview im-
age/video data. As the number of camera views increases,
the size of the dataset increases linearly. Since all the cam-
eras capture the same world scene the images in the dataset
have considerable redundancy. The redundancy due to this
has to be exploited to encode multiview images together to
reduce the size of the dataset.

Traditional image compression aims to exploit the redun-
dancy due to the spatial distribution of pixels or the limita-
tions of the human perception mechanism. Multiview com-
pression needs to incorporate an additional dimension of re-
dundancy due to the overlap in scene structure. Video com-
pression also addresses the problem of compression of multi-
ple images. However, video frames are taken from the same
viewpoint and a simple subtraction often removes the redun-
dant information. In the case of multiview imaging, a variable
compensation is necessary before subtraction.

The problems we address in this paper and the solutions we
employ can be summarized as follows:

Problem 1: When viewed from distinct viewing points,
3D points get displaced depending on their depth. Sim-
ple subtraction as in mpeg results in large residuals, even if
the world is stationary. We employ a multiview geometric
constraint [7], to achieve variable compensations for image
points.
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Problem 2: When imaged from new viewing angles, the in-
tensity/colour of a 3D point gets modified. Geometric com-
pensation alone is not enough to achieve high compression.
We additionally employ a brightness constraint [8] to ad-
dress this problem. This uses an optical flow constraint for
prediction of intensities in the novel view.

Stereo views can be considered to be the simplest multiview
dataset. Currently, block based disparity compensated pre-
diction methods are used to code stereoscopic views. In these
approaches, the left view is coded independently and the right
view is predicted from the left view using disparity compen-
sation methods [4], [S]. The error between the right view and
the predicted view is then encoded. When this method is ex-
tended to views taken from general positions, disparity needs
to be estimated in horizontal and vertical directions, increas-
ing the computational complexity and size of the residual. At-
tempts have been made to counter this through image rectifi-
cation (which results in virtual parallel views) [1], [2]. But
they require the camera parameters to be known (calibrated
cameras). In [3], image alignment was done by estimating
the fundamental matrix, but it relies on search techniques for
disparity estimation which is again computationally expen-
sive.

All the above mentioned algorithms assume either a parallel
camera setup or known calibration. They cannot be used in
a general multiview environment. Multiple view geometry is
an active area of research in computer vision. Multiple view
geometry [6] provides constraints that relate the features in
multiview images. These constraints are dependent only on
the internal parameters of the camera (like focal length) and
their relative positions. They are independent of the scene
structure. They take the form of the fundamental matrix for
two views and the trilinear tensor for three views. In this
paper, we present a compression scheme based on algebraic
constraints in multiple views. Residual is defined to be the
difference between an already available image and the alge-
braically predicted image. Base image, residual images and
coefficients of the algebraic relationships between features
are compressed together in the proposed scheme. Experi-
ments are conducted to verify the applicability of the algo-
rithm. Performance of the compression strategy is presented
with the help of the statistics of the residual image. Coding
of the residual images considering the geometric distortion is
beyond the scope of the present paper.



We briefly compare the different compression problems in
Section 2, highlighting the special difficulties associated with
the Multiview compression. The algorithm to code multiple
views is described in Section 3. Use of brightness constraints
is described in Section 4. Results of the algorithm are pre-
sented in Section 5. We conclude the paper in Section 6.

2. COMPARISON OF MONO, STEREO, VIDEO
AND MULTIVIEW IMAGE COMPRESSION

Compression of images is a classical problem, with numer-
ous algorithms being present for different classes of images.
Mathematical tools starting from Fourier and Wavelet trans-
forms to Neural Networks and Fractals are popular to solve
this problem [9]. Traditionally the focus has been limited to
exploit the human visual limitations. Performance of the al-
gorithm may depend on the signal characteristics of the im-
age. The challenge faced in compressing multiple images is
considerably different from that of isolated images. Here,
one has to take care of the overlap between the images in
terms of content of the scene. In video, even if there are
multiple frames, images differ due to the motion components
of objects. However in stereo and multiview, the dispar-
ity/displacement varies across pixels and the traditional mo-
tion vector based approaches become insufficient.

Disparity compensated prediction for stereo image coding
and motion compensation used in video coding are very sim-
ilar. We take a cue for coding multiview images from this.
However stereo, video and multiview images differ in certain
characteristics as described below.

For typical video sequences where low bit rate coding algo-
rithms are employed, background objects do not generally
move from one frame to the next and only a small percent-
age of the scene undergoes motion. The displacement for
the moving objects, which may be modeled as purely trans-
lational usually, does not exceed a few pixels. By contrast,
every object in a stereo pair is displaced and the displacement
may be large when compared to video sequences. As a con-
sequence the performance of disparity compensation is lower
than motion compensation applied for video coding. In case
of multiview images, motion cannot always be modelled as
simple translation of cameras.

Standard block matching algorithms such as MSE or MAD
assume constant intensity along the displacement trajectory.
While this is generally valid for video sequences, it is rarely
true for stereo pairs and multiview images. In addition to
the geometric errors, the reflected intensity at a point in these
cases depends on the object surface properties.

Yet another difference is the source of occlusion. In video
sequences, occlusion occurs due to moving objects. In stereo
pairs and multiview images, occlusion occurs when some part
of the scene can only be captured by one of the cameras due
to finite viewing area, referred to as framing error.

3. COMPRESSION PROCEDURE

Consider a multiview imaging environment where images of
the scene are taken using cameras in different spatial posi-
tions. We assume that there is considerable overlap in the
scene being imaged by adjacent cameras. Let I ={I1, I» ...
I,,} represent the set of images taken by these cameras. We
select two images from I to be the base views. These views
are coded independently using a stereo image compression
algorithm. The third view is then predicted from the base
views usingAthe trilinear tensor 7 [6], [7]. APrediction of I3
is given by I3, which can be expressed as I3 = f(I1, >, 7).
Where 7, the trilinear tensor relates the views Iy, Is and Is.
Predicted image may differ from the observed image obtained
from the camera, resultingAin aresidual. The residual is com-
puted as Res(I3) = (I3 — I3). Each of the remaining views is
coded similarly using two views in the encoded set as the base
views. Thus the basic algorithm needs to handle the compres-
sion of triplets of images. The algorithm to code three views
I, I, and I3 is described in the rest of this section.

Trilinear Constraints

The geometry of multiple view images is analyzed in detail in
recent past [6]. It is being shown that the locus of the image
of a world point in an image can not be arbitrary given its co-
ordinate in one or more other views. This resulted in epipolar
(for two views) and multiview geometry. Coordinates of cor-
responding points in two views are related by a fundamental
matrix [6].

The trilinear tensor for three views plays a role analogous to
the fundamental matrix for two views. It encapsulates the
(projective) geometric relations between three views that are
independent of the scene structure. The tensor only depends
on the motion between views and the internal parameters of
the cameras. This is defined uniquely by the camera matrices
of the views. However, it can be computed from image corre-
spondences alone without requiring knowledge of the motion
or calibration [6]. The trilinear tensor 7 is a3 x 3 x 3 repre-
sentation with 27 elements. Derivation of the trilinear tensor
constraint for three views is given in [7].

Let P(z,y,1,A) be a point in the 3D space that is projected
onto 3 views with image points p; (z!, y', 1), p2(22, 32, 1)
and p3(x®, y3, 1) respectively. The equations relating these
image points to 7 can be represented using tensorial contrac-
tion as ‘

plisé-‘rzrijk =0 (1)

Where i,j,k =1,2,3and pu, p = 1,2.
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The tensor 7 relates the points in three views and can be com-
puted using corresponding feature points in three views. If
T is known, using image co-ordinates in two views we can
predict the image point in the third view.
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Figure 1. Overview of compression procedure

Prediction

Given two images, one could think of computing the 3D
structure and projecting to the third camera for view predic-
tion. However, this needs accurate calibration of cameras,
which is impossible in uncalibrated environment. Instead,
given only a weak calibration, we can predict the view us-
ing the algebraic relationships between corresponding points
in these images [6]. We employ the trilinear relationships.

We first compute the corresponding feature points in the three
views. Every corresponding triplet contributes four linearly
independent equations represented by Eq. 1. We require
a minimum of 7 corresponding triplets to determine 7. If
we have more than 7 triplets, we get an overdetermined set
of equations which can be solved using linear least squares
method [6] to obtain the 27 coefficients of the trilinear ten-
sor. The feature correspondences in I; and I, are projected
to I3 using 7. The feature points in I; are divided into non-
overlapping triangles using Delanauy triangulation. These
triangles in I; are then mapped to triangles formed from the
predicted points in I3 and corresponding textures are mapped.
This texture mapped image gives I3, the prediction of I3.

Residual Computation

Once the algebraic relations are computed, we represent the
triplet of images using the trilinear tensor coefficients, stereo-
compressed base images and the residual image.

By analyzing the properties of the residual image, we can
conclude the amount of information present in it. The statis-

tics (like mean intensity) of the residual image indicate how
well the view was predicted from the base views. Residual
image compression based on its frequency characteristics was
studied in [4], [5]. However, the residual compression for
multiview situation will have to take into consideration the
effects on geometric reconstruction.

The encoding and decoding procedure is presented below. A
pictorial representation of the three view compression is also
given in Figure 1.

Encoding

1. Let I; be the base view. Hence it is coded independently
using a still image compression algorithm.

2. Using a correspondence computation algorithm, we find
a set of corresponding features between I; and I». These
features are tracked to I3. Using these correspondences, we
compute the 27 trilinear tensor coefficients. Let the corre-
spondences be represented as { X} } {X?} {X?}

3. Using the tensor equations, for every pair of corresponding
points in I; and I», we can predict a point in I3. This is done
for all the correspondences computed in step 3.

4. A triangulation algorithm is employed to find a triangle
mesh of the predicted points in /3. We use I; to texture map
these triangles. Thus we obtain a predicted view I3 of I5.

5. Residual of [3, denoted by Res(l3), is formed as
RCS(I3) = I3 bl I3

6. I, is coded using a stereo compression algorithm. It is
to be noted that the effectiveness of the stereo compression
algorithm will depend upon the relative camera geometry of
I; and I. To improve the results, we can encode I similar



to I5 i.e. find the triangle mesh of points in I» for which we
know corresponding points in I; and texture map I; onto it
to form the fz, the predicted view of I,. This method in a
way models the perspective distortion between the views and
is expected to give a better prediction. But this method calls
for storage/transfer of point correspondences between I; and
I, as opposed to the motion vectors in the stereo algorithm
case. Similar to the previous case: Res(I3) = I — L

The output of the encoder consists of I, Res(I3), motion vec-
tors of I or correspondences between I and I, Res(I3) and
27 trilinear tensor coefficients.

Decoding

1. Using either the motion vectors or the correspondences,
we find the I5. Then I, is decoded using Iy = I + Res(l>)
2. It is assumed that the algorithm to find and track corre-
sponding points across views is known at the decoder end.
Hence we find correspondences in the 3 views as in step 2 of
encoding.

3. We find I3 by following steps 3 and 4 in the encoding al-
gorithm. T3 is decoded as Is = I3 + Res(I3)

4. BRIGHTNESS CONSTRAINT

In the previous section, we have used the geometric redun-
dancy between views to obtain compression. However, in
practice, brightness of corresponding points also vary across
views. This results in considerable increase in residuals.

The optical flow constraint provides a relationship between a
point in one image and a line passing through the correspond-
ing point in the second image. It is given by

Wl +0' I, +I =0

where (u',v') are the optical flow values at (z,y) between
image 1 and image 2 (i.e. v’ = ' —z and v’ = y' — y). The
spatial and temporal derivatives at the coordinates (z,y) are
given by I,,I,, and I} . In practice, I} = Ir(z,y) — I1(z,y).
The geometric constraint discussed in the previous section
can be combined with the optical flow constraints to result
in a brightness constraint [8].

If a point p in image 1 corresponds to p’ and p#/ in images 2
and 3 and s, s" are the lines passing through them, then the
tensor brightness constraint is given by

spsipiti* =0 3)

where s’ = (I, I, I} — 21, — yI,)T and s" = (I, I,,, I} —
zl, — ny)T The derivatives I, and I,, are computed at p'
using the operator [—1 0 1]. For every point in the third view
I}’ is computed using the tensor brightness constraint Eq. 3.
Its brightness value I3 (z, y) is then computed using

I(z,y) = I + Li(z,y)

Thus we can also predict the intensity of the points in the
third view. The predicted third image is subtracted from the

original image and the residual is compressed along with the
base images as discussed in the previous section.

5. RESULTS

We have explored the possibility of using algebraic con-
straints for multiview compression in the previous sections.
We conducted some experiments to verify the applicability of
the algorithm proposed in Section 3. We here show results on
two synthetic datasets which were generated by simulating a
multiview environment. The Face dataset consists of views of
a texture mapped human face. Three of the views are shown
in Figure 2 (a),(b),(c). The images are of size 600 x 528. The
foreground pixels cover about 21% of the image. The Teapot
set consists of views of a teapot obtained by rotating the cam-
era. One of the views of the teapot is shown in Figure 2(g).
The images in this dataset are of size 512 x 512 with around
14% foreground pixels. The teapot is illuminated by ambient
and diffuse light and the surface does not contain any texture
information.

After applying the compression procedure on the face data
set, it was found that the mean gray value of the residual im-
age (Figure2(d)) is only 8.3 where as the original image had
a mean value of 151.7. It was also seen that the dynamic
range of the residual was nearly halved from 0-255 to 0-135,
and nearly 88% of the foreground pixels were in the range 0-
14 as can be seen from the histogram shown in Figure 2(e).
The statistics were computed only using the foreground pix-
els. This indicates that selection of an appropriate algorithm
that can exploit the characteristics of the residual can lead to
a good compression ratio.

In the teapot dataset, the original image had a mean gray level
of 217.9 and the residual had a mean value of 9.5. Nearly
93% of foreground pixels in the residual were in the range 0-
14. This shows that the predicted view was very close to the
original view.

Brightness constraints described in Section 4 were used on
the teapot dataset. Dense point to point correspondence of the
visible points was used to test the algorithm. Use of bright-
ness constraints resulted in smaller values of residual at most
image points (closer to zero). The residual image shows cer-
tain bright regions (refer to Figure 2(h). This is because, the
intensity value computed at points with large intensity gra-
dients lead to a poor estimate of the brightness value. The
use of brightness constraints can be improved by identifying
points where its use is valid.

Statistics of the residual obtained in all the cases clearly
shows that the predicted view is very close to the original im-
age. This implies that by adopting an appropriate algorithm
to code the residual, we can obtain good compression ratios.
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(a),(b),(c) : Three views from the Face dataset. (d) : Residual of image (c) obtained without using brightness

constraints. (e) : Histogram of (d). (f) : Histogram of (c). (g) : A view from the Teapot dataset. (h) : Residual of (g) obtained
using brightness constraint. (i) : Histogram of (h). (j) : Histogram of (g)

6. CONCLUSION

The paper describes an approach to compress multiple views
using algebraic constraints. The evaluation of the algorithm
has been carried out using the statistics of the residual image.
It is seen that the residual carries considerably less informa-
tion than the original image. In a true multiview environ-
ment, a more generic multiview constraint may be employed
in place of a trilinear one. The set of images may be alter-
natively analyzed in a joint image space. Future work will
focus on coding of the residual image and improving the use
of brightness constraints.
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