Indexing and Retrieval of Devanagari Text in Printed
Documents

Mudit Agrawal, M. N. S. S. K. Pavan Kumar, C. V. Jawahar
Centre for Visual Information Technology
International Institute of Information Technology,
Gachibowli, Hyderabad - 500 019, INDIA
{mudit,pavan}@students.iiit.net
jawahar@iiit.net

Abstract
This paper describes a document database system used for indexing and retrieval of Devanagari
document images. These images are acquired by scanning the printed text documents from various
sources. The document images are segmented into textual and image regions. The textual regions
are annotated automatically using an OCR, and are stored in a database with relevant auxiliary
information. The document is generated back according to the formulated queries. Results from
various experiments are provided.

1 Introduction

Wide variety of information, which has been conventionally stored on paper is now being converted
into electronic form for better storage and intelligent processing. The document database indexes and
retrieves the images of documents containing text and graphics. The primary purpose of such systems
is to facilitate retrieval of information which is relevant to a given query. Representation of documents
as images is undesirable, because of impossibility of many common user-level operations like editing,
searching and large storage requirements. These limitations can be overcome by representing the
content as text, which takes very less space, and is also convenient for processing. As an illustration, a
digitized document of A4 size may take 11 MB when represented as image in a database. A typical
document may contain a lot of textual content and a few images. Representing the non-image
portions as text format like ISCII brings down the storage requirement for the whole document,
to a few KB and also makes them suitable for further processing. This kind of conversion can be
achieved using an Optical Character Recognizer (OCR) for the corresponding language used in the
documents. This approach aims at indexing the text in documents in a cost and labor effective
manner. The document database system discussed here, uses an OCR for Devanagari [1] developed
in-house for indexing. This OCR gives an accuracy of about 97% and hence was found extremely
suitabe for indexing purposes.

This paper discusses the building of a Devanagari document database system, along with a
few complexities involved in Devanagari OCRs. Section 2 describes the general issues involved in
processing the document images for applying an OCR on these images. Section 3 deals with training
and classification of the OCR. This is followed by Section 4, describing how this classifier is used
in handling the splitting of samyuktaksharas. Issues regarding the indexing and retrieval of a large
number of pages efficiently are discussed in section 5.

2 Document Image Processing

A document image is processed for extraction of robust and meaningful features for recognition.
This involves noise reduction, binarization, skew correction and most importantly segmentation.

Preprocessing The scanned image usually contains noise. To reduce the effect of noise, a mean
filter is applied to the image. In this process, the intensity of each pixel in the image is replaced by the
average of the intensities of surrounding pixels. The resulting image is then subjected to binarization
and skew correction. The binariztion method used in the system is a global thresholding algorithm

Structure — based Content - based
(eg. keywords)
A
Layout based (eg. Semantic—based (eg.
images, positioning)

based on titles/image

Input Image

Preprocessing & skew
correction

Segmentation of

Text and Images

Script Segmentation

Character
Segmentation

Training

- } Feature Extraction ‘

Data Collection

Figure 1: A block diagram of different modules in an Document Database system. The modules
enclosed in dashed lines denote a future implementation.

based on the K-Means or ISODATA algorithm [2, 3]. Document images are often misaligned to
the standard axes, due to improper placement of the paper on the scanner bed. Skew correction is
performed to align the document axes properly to the coordinate axes. Since Devanagari text has a
sirorekha, projection profile-based method is found to be appropriate [1, 3].

2.1 Page Segmentation

Segmentation is the process of subdividing the image into its constituent parts based on some
predefined criteria [4, 5]. A logical subdivision of a document image would be initially into text and
images. Since OCR has to operate on an image of a text only, it is necessary to give isolated text
portions of the document image for OCR, and to store the image portions directly in the database
with appropriate location-details. A method based on horizontal and vertical projection profiling is
used for this.

The histogram of pixels along horizontal and vertical axes gives a clue of the boundaries of the
images. The boundaries are generally darkened and their projections on the axes produce a high
value. The images are separated from text by a margin generally greater than the line-spacing
between the text. The line spacing is calculated for a given font by noting the difference between
the first scan line which has horizontal projection greater than a threshold and the first scan line
after the above one which has the horizontal projection less than the given threshold. If any spacing
is found greater than this difference, it denotes the boundary of a graph or of an image. The pixel
locations (z,y) of these bounding rectangles are stored along with the image so that the page can
be regenerated exactly at the time of retrieval.

The portions containing text are given to the OCR. The processing of the OCR [1] is described
below in brief.

Line Segmentation: Identification of the lines in a document image is called line segmentation.
To perform this, the horizontal projection of the character pixels in the document image is com-
puted. The valleys in the histogram correspond to the gaps between the lines in the image [1](see
Figure 2(a)).

Word Segmentation: After the above step, the boundaries of each line - its top and bottom
are known. Word segmentation is extracting the boundaries of words from these lines. Lines are
processed in the similar way as in line segmentation to get the words but with vertical profiling [1].
Each word is width delimited by the starting and end points of such valleys (see Figure 2(a)).

B 4 AT 51 &9 7 ofimar 39 e
% =10 O 7S W BN 99 AE A9 [mm—
|9 @ AT G S T AT B —

CaE i @ A WA Al |gh Taaf —— (N (AN
WiIRPHm MR i

(a) (b)

Figure 2: Horizontal and Vertical projection profiles of a section in a Devanagari document image.
The valleys correspond to gaps between lines/words and are used to isolate them.

These words are further split into sub-zonal components using projections on the words after
deleting the sirorekha, and dividing the line into 3 zones, the upper zone, middle zone and the lower
zone. An example segmentation of a word is shown in Figure 2(b). Features are then extracted
from these components. The current OCR uses images scaled to a standard size, with their rows
concatenated to form a vector, as features. The classifier used in the OCR is a Multi class Support
Vector Machine classifier called Directed Acyclic Graph SVM(DAGSVM). The theory of SVM and
DAGSVM is briefly discussed in section 3.

Once a page is stored in the database, it is generated by rendering the contents matching a
formulated query. The details stored along with the text and images in the database are used to
generate the page in its original form, by pasting them as and where required.

3 Training and Classification

The OCR uses a SVM classifier. SVMs are a good example of classifiers which can perform gener-
alization. Also, they are better suited to problems where the dimensionality of the input data and
number of classes are very high as in this case. A brief discussion on SVMs is given below.

3.1 Support Vector Machines

Since their introduction by Vapnik and his co-workers, SVMs have been successfully applied to a
number of problems like isolated hand-written character recognition (Cortes and Vapnik, 1995),
object recognition [6], and face detection. A detailed description of SVMs is given in [7]. SVMs are
defined for two class classification problems, which are later extended to multi-class classification
problems. To start with, consider the following two-class classification problem. Given a training
dataset of [independently and identically distributed samples. SVM constructs the decision function
by finding the hyperplane that has the maximum margin of separation from the closest data points in
each class. Such a hyperplane is called an optimal hyperplane. Training an SVM requires solving a
quadratic optimization problem, and the classification is done just by a simple evaluation of a kernel
function over a dot product of two feature vectors. This makes SVMs very fast when compared to
other classifiers like KNN.

Although the theory for two-class SVMs is well developed, multi-class SVM is still an unsolved
research problem. Multi-class SVMs are usually implemented as combinations of two-class SVMs.
The one-Vs-one method, which constructs a classifier for each pair of classes is used here. A directed
acyclic graph (DAG) is constructed, where each node corresponds to a two-class classifier for a pair
of classes [8]. The multi-class classifier built by this algorithm is a Rooted Binary DAG. It can
be observed that the number of binary classifiers to be built for a N class classification problem is
N(N —1)/2, one for each pair of classes.

Based on our experience we have used a quadratic polynomial kernel SVM in the OCR.

A gsyllable in Indian languages, may be composed of a few consonant and vowel modifiers. If the
syllables are not separated, a prohibitively large number of classes have to be handled in the system,
but separation of them into base and modifier classes yields very less classes for the classification.
Separation of consonant modifiers from the base modifier is a nontrivial task as they are attached
to the base character.

Multiple Classifiers: A Devanagari word can be divided into 5 components: The upper matras,
the lower matras, numerals plus special symbols which do not have sirorekha, full characters and

samyuktaksharas (refer Figure 4(a)). All these classes sum up to 168 in Devanagari. If just one
classifier is used to classify all of them, misclassifications may occur. e.g. the numeral 2 and Hindi
“r” or numeral 7 and “u matra” can be easily misclassified (see Figure 3), due to their resemblance.

Figure 3: Similarity of numeral r & 2

The difference in them lies on the mere fact that no numeral has a sirorekha. Once the is absence
of sirorekha is observed, the numeral is given to the first classifier hence removing any ambiguity.
Thus, numerals and other special symbols which do not have sirorekha are recognized by the first
classifier. The numbers from 0 to 9 plus the special symbols like “- | .” makes up 16 classes. Word
segmentation easily extracts upper and lower matras as explained in the previous section. They
are recognized by one of the classifiers. Full characters with height to width ratio below a specific
threshold are recognized by the third classifier. Number of classes are highest in this category and
sum up to 115. And finally the wide characters, called samyuktaksharas (21 in Devanagari), are
recognized by the fourth classifier. This classifier recognizes the samyuktaksharas as discussed in
the next section.

4 Recognition of Samyuktaksharas

The Devanagari Optical Character Reader poses a lot of interesting problems due to a large set of
Devanagari letters (called “Aksharas”). The akshara is the basic unit or quantum from a linguistic
point of view and computer programs processing text in Indian languages should be able to efficiently
deal with this quantum. The words in Devanagari are not only built from basic set of these akshara,
but also from vowels, consonants and conjunct characters called “samyuktaksharas”. Once we have
broken a document page into a number of sentences, each sentence into words, then the removal of
the sirorekha separates all the characters from a word. Similarly if a word has some matras, then
the separation of matras above the sirorekha, the akshara and the matras below them separates the
glyphs apart. In case of samyuktaksharas, the characters separated out by the removal of sirorekha
will not be an akshara alone but a conjunct! i.e. a combination of a half character with a full
character(see Figure 4(b)).

s = 4, e, i vy

(a) (b)

Figure 4: (a)A Devanagari word (left) and the corresponding components of the word - the sirorekha,
matras and the samyuktaksharas(right). (b)A samyuktakshara(left) and the corresponding compo-
nents of the samyuktakshar(right).

The main task is to separate the half character and the full character in the samyuktakshara so
that they can be analyzed (classified) separately. A few heuristic approaches, and a classification
confidence based algorithm, which gave very good results on all samyuktaksharas, are discussed
below along with their merits and demerits.

Iso-data Algorithm Iso-data algorithm was first applied to separate the two characters. The
projection along each column was calculated and iso-data techniques were used to identify the ’valley’
or depression in the projection histogram, which probably gives the point where the separation is to
be done. The results were good for characters for which the projection-value was minimum at the
point of conjunction of half character & full character. But the algorithm failed on cases where the
projection-value reached its minima either before or after the ’actual’ conjunct point (Figure 5(a)).

Single Classifier Approach The cut is performed at the point where the classification confidence
of the right-side character (Full character) went to maximum. The cut-point is slided from left to

H]a- W (runs successfully)

CJ o ©™h T (tails) s BT et g
(a) (b)

Figure 5: (a)The first line shows words which were correctly segmented by isodata algorithm, whereas
the second line shows the words which were not. (b) The confidences and classifications of a samyuk-
takshara by one-classifier approach (left). Segmentation of a samyuktakshara using ’two-cut tech-
nique’ in two-classifier approach (right).

right and the classification confidence of the full character are noted.This is not a robust approach
as many characters when cut partially, resemble another full/half character in Devanagari (Figure
5(a)). This emphasizes the importance of having a separate classifier for half characters.

Confidence Values

0 L L L L n L
40 50 60 7! 80 920 100

70
Distance

Figure 6: A plot showing confidences of cuts at various positions in a samyuktakshara.

Two Classifier Approach In this approach, left part (half character) is sent to its classifier and
the maximum of sum of individual confidences is found. Moreover, the whole scan of the samyuk-
takshara was avoided as the actual cut occurs in the middle-portion only. Thus only the middle
40% of the samyuktakshar is scanned, confidence values are noted and max. is found among them.
Due to the problem discussed above, the confidences were high in some cuts, so the “consecutive”
occurrences of the classes was also taken into account. i.e. if the confidence of left & right part
is high and also if the classes return have occurred consecutively above a threshold (the threshold
depends only on the width to height ratio of samyuktakshara and hence is font independent to an
extent).

Two-classifier - Two-cut technique: Analysis showed that a single cut is not enough for cut-
ting the samyuktaksharas into their constituent characters.The cut where the left character is fully
recognized (i.e. a high confidence is achieved), engulfs some part of right character too, and thus
the identification of right character is poor. Hence, two cuts were moved from left to right of the
samyuktakshara such that the separation between them is minimum and they give the appropriate
portion of the characters to the classifier (see Figure 5(b)).

The isodata algorithm was not combined with it as it shifts the cut towards right or left thus giving
wrong results. The height-width ratio of the full characters can not be used to aid in determination
of cut as this makes it segmentation dependent.

5 Indexing and Retrieval

After segmenting the document image into text and images, applying OCR on text-blocks, followed
by this text-storage, the major picture of Document Database comes into limelight. Once we have

a large collection of document pages in the database, intelligent retrieval is necessary in order to
filter the required text (and images) from the rest.The indexing and retrieval of text and images and
generating the same page structure depends upon the nature of the data to be accessed (fielded, full
text or image) and hence different techniques must be used for creating indexes, formulating queries
and retrieving records.

5.1 Typical Search Categories

Queries in a document database can be either structure based or content based for data retrieval.
Having the ability to capture an accurate representation of both the content and structure is es-
pecially important considering the complex, multi-modal documents that are generally found in
real-life situations.

Structure-based database There are two ways to index a document collection based on struc-
ture: using Physical(layout) structure or using Logical(semantic) structure. The physical structure
of a document generally deals with the organization of text and images in it. Logical structure
deals with meaning the layout conveys, and is a high level representation of the low level structure
features. for example: Structure for news-items implies a “date” in the beginning of every news-item
which marks the day and time of the event.

Content-based Document Database Content-based Document Database deals with the key-
word searches and searches based on the storage-names of various documents. Since the recognized
text need not be 100% accurate, some key-word searches may fail. This is prevented by adopting a
wildcard searching. eg. if no results are found for a keyword “abc” then he should be able to replace
any character by a ? and give the query again, viz. a?c might return what user was looking for.
The block diagram of the Document Database is shown in Fig. 1.

5.2 Searches supported by the system

Page search The data in stored in the system as different pages. During the storage, when OCR
is applied to the page, each page is stored with (i) a page number (ii) the magazine/book name (iii)
other details like issue number, etc. Once the user types in page “x”, the pages numbered “x” of
all the magazines/books will be displayed. Searches on specific magazine name, or issue number are

also supported. The pages are rendered from the content and location information and are shown.

Line search If the user’s query word matches with a word in any line of any page in whole of
the document database, the line containing it is generated back.The keyword entered by the user is
matched against all the words in the database. The sentences with this word (i.e. the set of words
preceded and followed by a “viraam”) are displayed.

Layout search Layout based search involves retrieval based on the information related to the
arrangement of text, images, graphs, subsections and headings/titles. Approximate locations of
the components can be specified by their location, or spatial arrangement etc. For example, user
can retrieve those pages, in which images are on the left/right/top/bottom part of the page. The
location variables (x,y) stored with every image are used to aid in the search.

Word-based search Keyword based search is one of the typically encountered facility in a docu-
ment database. Whenever a word is given, it is searched for in the database and the pages containing
that are generated. If the search contains more than one word, occurrence of all those words is con-
sidered. Unless it is specifically mentioned, the order of the words to be searched is not maintained.
Examples

As the first example to demonstrate some of the capabilities of the system, we scanned document
pages which contain the following text in Devanagari script. We applied our OCR and recognized
text were stored in the database.

1. kal pradhanmantri rashtrapati se holi milne rashtrapati bhavan padhare.
2. Rashtrapati ne pradhanmantri ko hardik badhai di

3. Bharat ke naye Rashtrapati mananiye dr. abdul kalaam hoyenge.

Enter Info About Page(s) To Search For

S
. |
Issue Number 213C

Issue Month March

@0 A Wy o g g b ey 7 faE g o

Enter The Stfing To Search el | TS @ a0 6 A A R

ekl TR fefer A | fed SR R gEeR digar

o o g it g & 1 v faar & et A o fE

G AT A © 0 ¢ ¢ A A | SHH FE TS A

Query ’gm 3 o fomiiet g ST o1 1 %0 3 o o A diwr
@ i sed g 4 o

AT, WO ToT AR g AET & At i

el | forT AR # e AR | gt e #
sl aaré | wedfasd & i #F foes feit e

= (= |

(c)

Figure 7: Various steps involved in a typical Document Database system.(a) Shows the storage of
OCR’d text in the database. (b) Shows the page-wise query-processing. (c) Shows the word-based
query-processing. (d) Shows the Document page generated from the database on the fly.

The outputs of various search-strings are shown below.

e Search string: pradhanmantri rashtrapati

(a) When a search was made for “all the words”, 1 and 2 sentences were matched. (b) When
a search was made for “any one word”, all the sentences were matched.

e Search string: “pradhanmantri rashtrapati” Output: sentence 1 only. This is because, enclos-
ing a string within quotes forces it to be matched with sentences which have its occurrence
exactly in the same manner.

e Search string: pradhanm* Qutput: 1,2 and 3. The use of wildcard ‘*’ implies zero or more
characters following the word ‘pradhanm’.

Enclosing a string in single-quotes gives way to partial string matching. This avoids spelling
mistakes by the OCR or the user.

5.3 Image-based search

Images have been a centre of focus in many areas, both in searches and vision combined. Image
searches enable us to locate the relevant matter by just using the caption of the image. Whenever
the image is segmented out of the text its caption is given to the OCR, the results are stored in
the special “caption” entity of Image. During the image-search, a search is made only on these
captions and a match results on the generation of the page containing the image. Its not always
true that an image has a caption, and even when it has, it is not necessary that it is what a user
may desire. In such cases, user is presented by two options of image-searches. One by searches on
captions and other when the keyword occurs in a page containing an image. For example, we have
a photograph of bomb-shelling in Afganistan by US. The document page is likely to contain words
like “laden”,“bomb”, “afghanistan”. Using these keywords, the page containing such an image can
be retrieved.

5.4 System Description

A brief presentation on the performance of the system is given below. The documents used for testing
were scanned on a Hewlett-Packard HP7670 scanner. The system has been developed completely in
C++. The interface of the system was designed using Qt - a C++ based GUI library. The database
is maintained in MYSQL. Hardware interfacing with scanner has been done using the SANE APIL.
The machine used was a Hewlett-Packard running on 128 MB RAM.

The system consists of four main components — an image editor, a text editor, and the core
OCR engine and the back-end mysql support. Scanned images are displayed in the image editor
along with the segmented parts of the image into different text blocks and images. User selected
portions (Fig7(a)) of the noise free images of the text blocks are sent to the OCR engine. The OCR
engine then performs line segmentation, word segmentation, and character segmentation. The OCR
converted text is shown in the text editor allowing the user to perform any necessary editing. The
“automate” option does this automatically for the user. All the text-blocks are given to the OCR.
The search options allow the user to go for Structure-based as well as Content-based searches(Fig7(b)
& (¢)). The resulting page is created on the fly from the database and is shown to the user(Fig7(d)).
The Document Database system was applied to many datasets, say, one of them has been described
as under:

Cricket pages: Nearly 40 to 50 pages on printed text from cricket news (source: Hindi newspapers
Dainik Jagran and Amar Ujala) were scanned and stored. The common queries like the name of
the cricketers e.g. (1) sachin, generated all the pages (refer previous section) containing the word
“sachin”. (2) “World Cup” generated all the news ranging from present world cup to the old world
cups. (3). “Hyderabad cricket” produced the pages containing the name of Mohd. Azzaruddin, and
various matches played there.

Other queries included: bharat pakistan, scorecard (searched the images of scorecards by using
the caption “scorecard” under them and displayed them), “jayasurya sachin”, “ganguly apne form
ko sudharne ki koshish”, “dravid bharat ke reed ki haddi” etc.

6 Conclusions

In this paper we have presented an indexing and retrieval system for Devanagari printed documents.
The system provides excellent results for structure and content based queries. We are yet to formally
evaluate the performance (precision, recall etc.) on a large database. Presently we are working on
the indexing of Hindi books, adding a new dimension to the digital archival process.

Acknowledgements

The authors would like to thank Uday Kumar Visesh, Arvind Upadhyay, and Puspendra for their
help in implementation and testing of some parts of the system.

References

[1] C. V. Jawahar, M. N. S. S. K. Pavan Kumar, and S. S. Ravi Kiran, “A Bilingual OCR for Hindi-
Telugu Documents and its Applications,” in International Conference on Document Analysis
and Recognition (ICDAR), 2003.

[2] T.W.Ridler and S.Calvard, “Picture thresholding using an iterative selection method,” in IEEE
Trans. System, Man and Cybernetics, vol. SMC-8, pp. 630-632, 1978.

[3] C. V. Jawahar, M. N. S. S. K. Pavan Kumar, and S. S. Ravi Kiran, “Recognition of Indian
Language Characters using Support Vectors Machines,” Technical Report TR-CVIT-22, Inter-
national Institute of Information Technology, Hyderabad, 2002.

[4] R.C.Gonzalez and R.E.Woods, Digital Image Processing. Prentice-Hall, 1994.

[5] R. G.Casey and E. Lecolinet, “A survey of methods and strategies in character segmentation,”
Pattern Analysis and Machine Intelligence, pp. 690-706, 1996.

[6] E. Osuna, R. Freund, and F. Girosi, “Training support vector machines: Application to face
detection,” in IEEE Conference on Computer Vision and Pattern Recognition, pp. 130-136,
1997.

[7] C. J.C.Burges, “A tutorial on support vector machines for pattern recognition,” in Data Mining
and Knowledge Discovery, 1998.

[8] John.C.Platt, N. Cristianini, and J. Shawe-Taylor, “Large margin dags for multi-class classifica-
tion,” in Advances in Neural Information Processing Systems 12, pp. 547-553, 2000.

