On Improving the Design of Multiclass Classifiers

M.N.S.S.K.Pavan Kumar and C.V.Jawahar
Center for Visual Information Technology
International Institute of Information Technology
Hyderabad - 500019
{pavan@students., jawahar@}iiit.net

Abstract

The paper gives a general formulation for multiclass
classifier design using pairwise classifiers. Proba-
bilistic error analysis of a Decision Directed Acyclic
Graph(DDAG) Architecture has been presented, bas-
ing on apriori probabilities of the classes, and misclas-
sification probabilities of the classifiers. A design of a
DDAG has been proposed using a greedy algorithm in
a special case, and a branch and bound approach in a
general case.

1 Introduction

Multi class classification has lately received a lot of
attention. Some of the few popular methods being one-
vs-rest, one-v-one classifiers. This paper addresses the
issue of computing probabilistic error estimates of a
given learning architecture of multiclass classifier from
fundamental principles.

Many algorithms have been proposed for two class
classification problems [1]. Similar approaches could
not be directly extended to the multiclass classifiers
with much success. Hence, many approaches for multi
class classification are based on building two class clas-
sifiers for the given data, and then combining the deci-
sions of two class classifiers to emulate multiclass clas-
sification. There are many ways in which a given N
class problem containing classes w = {wi,...,wn }can
be posed as a combination of several two class prob-
lems. Most of the popular algorithms fall under two
classes — one-vs-rest and one-v-one. In one-vs-rest ap-
proaches, there are N classifiers, each trained as pos-
itive for the w; and negative for all the other classes
w — {w;}. One-vs-rest classifiers have been difficult to
analyze theoretically, and also it is complex to train the
individual classifiers when working on a large number
of classes. Methods to combine classifiers and classifier
decisions have been discussed in [2, 3, 4]. Much of
the work on classifier combinations is concentrated on

majority voting classifiers. Error analysis of a DDAG
architecture using SVMs as pairwise classifiers is dis-
cussed in [5]. The current paper discusses a general
formulation of the architecture dependence of multi-
class classifiers and presents an algorithm to design ef-
fective classifiers using the DDAG architecture.

2 Data, Classifier and Architec-
ture

The performance of a multiclass classifier can be af-
fected by three components — data, classifier and the
architecture, unlike the two-class case, where the prob-
lem is just data dependent. In this paper, an analysis
is made at the architecture level, fixing the informa-
tion obtained from data and the individual classifiers.
For example, the information that is obtained from the
training data can be the apriori probabilities P; for each
class w;, and from individual classifiers, g;;, the prob-
ability of misclassification between classes w;,w;.

3 Problem Formulation

Let Q@ = {Q4,...,Qn} be a set of classes in a classi-
fication problem, and n(Q2) = N. Let the set P =
{Pi, ..., Pn} represent the apriori probabilities of the
classes and @Q = {Q1,..., @~} be the misclassification
probabilities of the classes in C' Let there be M classi-
fiers whose decisions are to be combined in some spec-
ified manner to arrive at a class label Q; € € for the
given input sample. Let the decisions of these M classi-
fiers be combined using an arrangement A € A, where
A is the set of all possible arrangements for a given set
of classifiers under some constraints. Let us call the
set A of arrangements following some constraints as an
architecture. It can be observed that in general, Q;
does not only depend upon the misclassification prob-
abilities of the individual ¢; 1 < i < M, but also on
the architecture 4, and the arrangement A € A which

is used for classifying the classes. By fixing ¢;s and A
for a given set of classes, an optimal way of arranging
them can be found out. For example, A can represent
a all possible arrangements of the M = N(N —1)/2
classifiers in the form of a DAG. A specific arrange-
ment A € A can be a particular DAG in which the M
classifiers are arranged. The overall misclassification
probability of a specific arrangement A in an architec-
ture A can be expressed as

n()

Ja(4) =Y P:Q;
i=1

Let J7 represent the value least error achievable by all
possible arrangement in A. The objective is to find
out A € A, such that J(A4) = JE"A). Also given two
architectures A and B, sometimes it is possible to show
that J3 < Jg, where it is advisable to use the optimal
classifier that can be found from the architecture A.
The formulation also allows the M classifiers used in
the decision to be of different type as the information
that is needed is the individual misclassification prob-
abilities of classifiers from which ();s can be computed.
This gives a framework for computing the total mis-
classification probability of an arrangement of different
classifiers and finding a best way of combining their de-
cisions, within a given architecture A. The following
section shows this analysis on a DAG architecture.

4 Error analysis of a DAG

A Rooted Binary DAG is a generalized representation
of the decision trees. An example DAG for six classes
can be seen in the Figure 1. Given an input sample z,
it is first given to the root node of the DAG for decision.
Depending on the decision at that node, the sample
takes follows to either left subgraph or to the right
subgraph. A decision is taken at this node considering
as the root node. A sequence of decisions is taken until
a leaf node is reached, where z is assigned the label
corresponding to the leaf. A DAG architecture, with
nodes as pairwise classifiers using SVM is first proposed
in [5].

In a given set of M classifiers, it is not necessary
that each classifier has to classify all the classes. This
is particularly true when pairwise classifiers are used.
A relevant classifier to a class w; is defined as the clas-
sifier which is trained to classify w;, and is irrelevant
otherwise. A probabilistic error analysis of a DDAG
architecture on N classes and using M = N(N —1)/2
classifiers is presented below. Each sample z given to a
classifier using DAG architecture, has to follow a path,
decided by the decision at each node, to reach a leaf

Figure 1: A 6 class DAG arrangement of pairwise clas-
sifiers

node. This path is called the evaluation path. The
evaluation path, can be considered as a series connec-
tion of N — 1 classifiers, where all the nodes need not
be relevant classifiers, but once a relevant classifier is
reached, all the nodes are relevant from then. It is
necessary that in an evaluation path, all the relevant
nodes to give correct answer for the sample to be cor-
rectly classified. A relevant path length is defined as
the number of relevant classifiers in a path.

4.1 The Equal Probabilities Case

This section presents a probabilistic error analysis of
a DDAG in a simple case, and an algorithm to design
the DDAG by minimizing the error term. Let each
relevant classifier on the evaluation path misclassify a
given sample with a probability ¢. The number of eval-
uation paths possible for each class,i.e paths to the leaf
node, are in binomial distribution. For any general
node, the number paths to a node I in mt*layer are
m=1Cy 4. The probability of error of a class is calcu-
lated as a product of the misclassification probabilities
of relevant nodes in the path, and number of such paths
possible, with different relevant path lengths. Given a
class 4, the relevant path length j of that class can vary
between 1 and maxz(N — 4,4 — 1). A class w; can be
reached in R(i,j) ways, where j is the relevant path
length. R(i,7) is given by

R(i,j) =N"72 C; s +N T2 0y

"(C, is defined to be zero when n < r or r < 0. The

correct classification probability for a class i, @; is given

by

maxz(N—i,i—1) oN—j—1

R(i,j) —— 1
(g O

Jj=1

The optimization in this case becomes maximization of

N

J=> Pi(1-Qi)

i=1

Algorithm A greedy method can be applied to solve
the maximization problem. We are given N classes
with apriori probabilities P. Each time a class is se-
lected, a profit of P; * (1 — @;) is earned. The function
can be maximized by choosing two classes with largest
P; at each step and giving them the least available rel-
evant path lengths. It can be observed from the follow-
ing lemmas show that if relevant path length increases,
(); increases.

Lemma 1 Let x,y be maximum possible relevant
path lengths of two classes w;,w;, and if

max(N —i,i—1) > maz(N — j,j—1) (2)

then Q; > Q.

proof Thelemma states that the classes having max-
imum relevant path length higher, have a higher chance
of misclassification. Without loss of generality, assume
that the x = y + 1. The lemma is proved by showing
that @; — @, is positive in this case. Q; — Q; =

2”: W+1,)0-g¢f 1 R(yi)(1-q)
— IN—j—1 n

,4)(A —q)’

22N—y—1 " 2 922N—j-1
Jj=1

Since R(y+1, j)
(2) is satisfied, Q;

— R(y, j) is positive when condition
— @; is positive.

4.1.1 Proof Of Correctness

Lemma 2 Let X be a class list, with aprioris P;,
There exists an optimal class order, where classes z,y
of least apriori probability have the highest relevant
path length.

Proof Let Y be the class order, where the classes a, b
have the highest relevant path length, and let P, >
P, > P, > P,. Let Y' be a solution where the classes
a, b have a lesser path length than the classes z,y.

J(Y) = (Py + Po)Qn + (Py + Pz)Qn—1 (3)
JY') = (Py + P,)Qn + (Pb+ Pa)Qpn_1
J(Y) - J(Y)
= (Po+ Po)(Qn—Qn1)+ (Py+Pr)(Qn1—Qn)
= (B +F) — (Py+ P2))(Qn-1—Qn) <0

This is always negative because (P, + P,) — (P, + Py)
is positive from the assumption, and Q,_; — @, is neg-
ative from lemma 2. Clearly, (P, + P,) — (P, + P,) is
negative, from the assumption. This means, J(Y) <
J(Y"). This shows that Y is a better solution than Y’.

Lemma 3 Let Y be the complete order of the classes.
Let the last two classes, i.e the ones with highest prob-
abilities be removed. The remaining order Y’ is opti-
mal for the remaining classes. In the algorithm, pairs
are being selected from a sorted set. Even if a pair,
is removed the tree still remains optimal, because the
remaining class order is sorted on probabilities.

The greedy algorithm thus produces the optimal or-
der of classes, the proof of which is direct from lemma,
3 and lemma 4.

An Example Let P={0.3,0.1,0.2,0.4} be the apri-
ori probabilities for a 4 class problem with classes
Q = {wy,ws,ws,ws} one optimal DAG order for this
should be the dag with the class order {w1,wa,ws,ws}.
It can be observed that this ordering has the least
misclassification probability when compared to others.
The value of the objective function obtained for the
class order {w,ws,ws,ws} is 0.8892 and while for the
one class order {wy,ws,ws,ws} is 0.8028.

4.2 The Unequal Probabilities Case

The above problem got extremely simplified because of
the assumption of equal misclassification probabilities
for all the classifier pairs. If that constraint is relaxed,
the problem no longer remains greedy. A new recursive
formulation of the problem and its solution is shown in
this section. As an example, in Figure ??, if a sample
z is given to the node 1,6, then two cases arise. Case
1 : The sample z belongs to either class 1 or class 6.
This can happen with a probability of P, + Ps. In this
case the node is classified by the 1,6 classifier with an
error probability ¢16. Case 2 : The sample z belongs
to neither 1 nor 6. In this case a random class is cho-
sen. This can happen with a probability 1 — (P + Fg).
In either case, the classification probability depends on
the classification probability of the sub problems, i.e
the Sub-DAGs from classes 1,5 and 2,6. Let i, j be the

S={1,2} All possible permutations

from the set {1,2,3,4}

S={23}

S=(3124) S= (4123}

S= {1234}

S= {423,1}

Figure 2: Branch and Bound Algorithm for creating
optimal DAG

indices of the classes we are introducing in the DAG,
i.e a root node corresponding to classes w;, w; is added,
along with the other nodes that have to be added along
with it. Let p;; represent the sum of apriori probabil-
ities with respect to the subproblem. Let ¢ be the
solution that is already available before the addition of
i, j classifier. Let 1., ¢; be the rightmost and leftmost
classes in the order ¢). Now, the objective function
J(i,4) in terms of pi;, pi; can be written as,

T0,d) = [= ai)ply + 50— plTGsr) (4)

H(1 = gl + 51—)] TC1)

where
i _ b
Pii =57 p
k=it k
and
o i J
pij = Pij t+ Pij
Using this formulation, the objective is to find the class
order which minimizes this expression.

Algorithm The objective here is to maximize J,
which represents the correct classification probability
of the DAG. The problem is solved using the depth
first branch and bound algorithm, by posing it as a
minimization problem of —J. In this algorithm, the
optimal solution minimizing J, can be reached by fol-
lowing a series of decisions. A depth first state space
tree generation for a sample four class problem is shown
in Figure 2. The S in the figure represents the solu-
tion obtained till that point in the search. The initial
node represents the state where no decisions have been
taken. At this point, a decision is made in the form of
choosing an ordered pair of classes from the list of N
classes available, and can be done in " P, ways. This
is represented as the second level in the tree shown in
the figure 2. Selection of a node classifying between
two classes w;,w;, restricts the search to the selection
of only the nodes classifying between the remaining

classes in the subproblem. Each node in the tree of
figure 2, shows a sub problem, where a decision has
to be taken from the classifiers classifying between the
remaining classes. This progresses recursively, until a
solution is reached, which are shown as square boxes
in the figure. When the algorithm reaches the first
solution node, the value of the objective function is
recorded. This is used as the bounding criterion for
the searches proceeding from other nodes to the an-
swer nodes, and is updated when a better solution is
found. It can be easily observed that the J is a decreas-
ing function of number of classes, i.e as more number of
classes are added to the set, the classification accuracy
of the whole class set reduces. i.e -J is an increasing
function. This algorithm yields in an optimal arrange-
ments of the DAG. The final arrangement of the DAG
obtained is optimal.

5 Conclusion

The performance of an ensemble of pairwise classifiers
to emulate multiclass classification system depends on
parameters from data, individual pairwise classifiers,
and the architecture used. A novel formulation for de-
sign of multiclass classifier architectures is presented
basing on this idea. An algorithm for designing opti-
mal multiclass classifiers using the DDAG architecture
are proposed.

References

[1] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern
Classification and Scene Analysis. Wiley, 1973.

[2] Sharkey AJC and Sharkey NE, “Combining artifi-
cial neural nets: ensemble and modular multi-net
systems,” Springer-Vorlag, Berlin, 1999.

[3] H.J.Kang, K. Kim, and J. H. Kim , “A framework
for combining of multiple classifiers at an abstract
level,” in Engineering Applications of Artificial In-
telligence, vol. 10,4, pp. 379-385, 1997.

[4] T. K. Ho, J. J. Hull, and S. N. Srihari, “Deci-
sion combination in multiple classifier systems,” in
IEEE Trans. Pattern Anal. Machine Intell., vol. 16,
pp- 66-75, 1994.

[5] John.C.Platt, N. Cristianini, and J. Shawe-Taylor,
“Large margin dags for multi-class classification,”
in Advances in Neural Information Processing Sys-
tems 12, pp. 547-553, 2000.

