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ABSTRACT

Tracking has been considered to be a single view problem
conventionally, where one is interested in the projections
of a particular object in a view over time. Even if many
views of the same event are available, tracking often pro-
ceeds independently in each view. The geometric informa-
tion due to the projection of the same object onto multiple
image planes is not utilized. In this paper, we couple the
stochastic error used by the Kalman filter with a geometric
error term derived from multiview geometric constraints to
achieve improved tracking in individual views. We present
experimental results to evaluate the performance of the al-
gorithm.

1. INTRODUCTION

Visual tracking has been an active area of research in the
Computer Vision community over the past decades. Due to
its practical applications, tracking has gained importance in
both Computer Vision and Computer Graphics [1]. Popular
methods of tracking include the Kalman filter [2], the Con-
densation algorithm [3], etc. The Condensation algorithm
uses a factored sampling approach to propagate the proba-
bility distribution of the parameters that are to be tracked
over time. Kalman Filter has been used not only for track-
ing, but also for structure from motion computations[4] due
to its convenient form for on-line real time processing. It is
a set of mathematical equations that implement a predictor-
corrector type estimator, and minimizes the error covariance
under certain assumptions. Kalman Filter is shown to be op-
timal in the linear Gaussian environment. It is popular for
tracking robots [5], radars [1], and for many other practical
applications. The condensation algorithm, though applica-
ble to non-linear densities, requires the prior density to be
predetermined.

The problem of tracking has inherent challenges associ-
ated with it, most important one being occlusion of the fea-
ture point. This has been taken care of in various ways using
the Kalman filter [6] in single views. Due to various reasons

errors get introduced into the process of measuring the ob-
servations. Hence, it is desirable for the tracker to be robust
enough to handle this noise. Kalman filter assumes the noise
in the measurement model to be Gaussian.

In the presence of occlusion or noise, additional infor-
mation from other viewing angles will be of immense help.
Tracking, which has been traditionally assumed to be a sin-
gle view problem, has not taken advantage of the recent de-
velopments in multiview analysis. The algebraic relations
among the projections of a point onto multiple cameras have
been studied extensively in projective, affine and Euclidean
frameworks [7]. It has been recognised that additional views
can provide information which helps to solve the problem of
extracting meaning and structure from images of the scene.
Using a plurality of projections, the lost information about
the third dimension can be recovered. Applications of the
multiview constraints is not limited to the reconstruction of
the third dimension from a set of projections. They have
been applied to view generation, object recognition, video
stabilization, etc. [7].

In the past few years, multiple view tracking has gained
considerable importance [8, 9, 10]. In spite of its impor-
tance, the geometric information available in multiple views
has seldom been used [11]. Tracking has been performed on
different views independently without utilizing their inter-
relationships. We present a solution to the tracking problem
by modifying the standard Kalman filter formulation in this
paper. Based on the multiview relations among different
views of the same scene, a new error term – called the geo-
metric error – is used in the tracking process. The stochastic
error minimised in the conventional filter has been coupled
with this geometric error to get better tracking. Tracking
proceeds by estimating the state (position) of the object at
each time instant. The estimate obtained at each instant is
corrected according to the error at that instant. This dy-
namic correction of the error makes tracking real-time and
helps achieving faster results. Due to the incorporation of
the multiview information at each stage, there is more than
one measurement with which we correct our estimate. We
present the formulation for two views in this paper; it can



be extended to any number of views easily.
In section 2 we present the problem formulation for two-

view tracking. The standard Kalman filter is briefly intro-
duced along with the notations used, motion models, etc.
The underlying assumptions are also discussed. Section
3 deals with Kalman Filtering in two views. Tracking in
image space is discussed in Section 4 along with a discus-
sion on occlusion and generalizations. Numerical results to
validate the claims are presented in Section 5. Section 6
presents the conclusions.

2. TRACKING WITH GEOMETRIC
CONSTRAINTS

The Kalman filter estimates the state in a two-stage manner
by using feedback control. Based on the feedback obtained
through the noisy measurements it updates the estimates of
the state. It is a predictor-corrector algorithm where the pre-
diction is done by the time update equations and the cor-
rection is done by the measurement update equations [12].
The time update equations are responsible for obtaining the
state and error covariance for the next time step. The mea-
surement update equations are responsible for updating the
estimates using the noisy measurements. The Kalman filter
algorithm is summarized below.

1. Initialize estimates of state and error covariance.

2. Predict the next state and the error covariance based on
the best estimate till the present time instant.

3. Take the measurement at that time instant.

4. Correct the state and error covariance estimates based
on the measurement made.

5. Repeat steps 2 - 4 for the next time instant.

Now we discuss the multiview tracking problem using the
Kalman filter based approach. Let ������� ���
	����������� be
the 3D position of a point at time instant � . Let the point
move as per a linear motion model as� � ����� ���������! (1)�  represents the process noise that is assumed to be in-
dependent, with normal probability distribution "$#&%('*)+ #-,/.102' . � is a 35463 matrix which defines the motion
of the point.

Mathematically, any camera can be represented as a 7843
matrix, known as the camera projection matrix [7]. The re-
lation between a world point � � being imaged and the cam-
era matrix is given by 9�:�; �<�>= : �/� (2)

where
9�:�; �2�?� @ : �BA :� ����� denotes the image point in view C

at time � represented in the homogeneous notation [7] and= : denotes the 7�4D3 camera matrix for view C . We assume
the projection model to be affine [7] wherein the Gaussian
noise in the world remains Gaussian in the image space. E 9 :�; �
represents the noisy measurement of the projection at time� , F9 :�; � is the corrected estimate of the projection at time � ,
while F9 �:&; � is the predicted estimate of the projection at time� . We construct a measurement vector by concatenating the
measurements in each view, G �H�I� @ ��JA �� �K@�L�8A L� ����� . EG � is
the noisy measurement, the best estimate is denoted by FG � ,
while the predicted estimate is denoted by FG �� . F� �� is the a
priori estimate of the location of the world point at time �
given knowledge of the process till time �NM � , and F�O� is
the a posteriori estimate of the location of the world point
at time � given measurement EG � . The measurement model
is given by EG � ��PQ� �J��R� (3)

where PS�UT = �=ILWV is a X24Y3 matrix. The measurement

noise R� is assumed to be independent, with normal proba-
bility distribution "�# A '�) + #-,/.[ZN' .

In the conventional Kalman filter, the a priori estimate
error \ � is defined as the difference between the a priori
estimate of the world location, F� �� and the actual world lo-
cation �/� . Similarly, the a posteriori estimate error \  is
defined as difference between the a posteriori estimate of
the world location, F��� and the actual world location. The
stochastic error in measurements is characterized by these
errors.

The a priori estimate error covariance is the expectation
of the outer product of the a priori estimate error \ �� with
itself given by ] �� �>^�� \ �� \ � �� � . (4)

and the a posteriori estimate error covariance is the expec-
tation of the outer product of the a posteriori estimate error\ � with itself given by] � �_^�� \ � \ � � �a` (5)

Kalman filter minimizes the a posteriori estimate error
covariance given by equation 5.

2.1. Geometric Error

To include geometric information into the tracker, we de-
fine a geometric error in addition to the stochastic error em-
ployed in the conventional Kalman filter. Let b
ced ; f1.ag �� .1h and fji� g be the 7!4N7 fundamental matrix [7] between
view f and view g . A row of zeros is added to the funda-

mental matrices to get 3D4k7 matrices l�ced � T b8ced, � V . The

a priori geometric error m �� is defined asm �� � #nl cod F9 �d ; � Mpl ced 9 d ; � ' � #nl d[c F9 �c ; � Mpl d[c 9 c ; � ' ` (6)



The term #-lqcodrF9 �d ; � M�lqced 9 d ; � ' represents the geometric er-
ror in view g and the term #-l�d[csF9 �c ; � M6l�d[c 9 c ; � ' represents the
geometric error in view f . This error in each view can be
visualized as the vector difference between the actual and
the predicted epipolar lines [7]. It is shown pictorially in
Figure 1. The a posteriori geometric error m � is also de-
fined on similar lines. For simplicity, we used two views
of a scene in the formulation. It can be extended to more
views by considering geometric errors corresponding to all
the views.

Fig. 1. The dark lines in black indicate the actual epipolar
line , the dashed lines indicate the predicted epipolar line.
The difference between these lines is denoted as the geo-
metric error for that view.

t u<vxwyvqz/vr{}|�~
t ���v�� �v {}| ~ t ���v�� �v {}| ~

In the dual space, due to the duality of lines and points,
the geometric error can be interpreted as the distance be-
tween two points, one of which indicates the actual value
and the other indicates the predicted value of the epipolar
line.

3. KALMAN FILTERING IN TWO VIEWS

The error in the measurements has two components:
stochastic and geometric. We can combine these errors to
define a new formulation for the Kalman filter. We first de-
rive a set of predictor-corrector equations aimed at estimat-
ing the world location of a 3D point from the measurements
in two views. Then, we show that this can be easily con-
verted to a form that results in a simple set of predictor-
corrector equations for the location of the projections of
the world features in the two views without computing the
world locations.

The a priori geometric error m �� and the stochastic error� F� �� M �/�q� are combined. With equations 2 and 6, we sim-
plify the new a priori estimate error as\ �� � � F� �� M �/�q� � m ��� # 9 � l � L = L � l L � = � '�# F� �� M �/� '� � # F� �� M � � ' (7)

where,
9

is a 3�4D3 identity matrix and ��� # 9 � l � Lx=IL �l L � = � ' . This matrix � embeds the geometric information
obtained from the two views. Similarly, the a posteriori
error is given by \ ��>� # F�/� M �/� ' (8)

Given the a priori F� �� estimate and the measurement EG �
we would like to correct our prediction to get an a posteriori
estimate F� � . This correction is done by the linear combina-
tion of the a priori estimate F� �� and a weighted difference
between the measurement EG � and the predicted measure-
ment P F� �� as F�/�<� F� �� ��� � # EG � M P F� �� ' ` (9)

The 3<4�X matrix � � , the gain or blending factor minimizes
the a posteriori error covariance

] � , i.e. we choose a gain
factor � � such that the a posteriori error covariance is min-
imized, as a consequence of which our estimate would co-
incide with the actual value.

Using equation 7 along with the a priori error covariance] �� in equation 4, we get] �� � ^�� � # F� �� M � � '�# F� �� M � � ' � � � �� �N� � � �
where � � �_^�� # F� �� M � � '�# F� �� M � � ' ��� , implying�!�<�>� ��� ] �� � � � (10)

�

� �
2. Project the error covariance

1. Project the state
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CORRECT

1. Compute the Kalman Gain� v �6� � � � �v � � ~���~�&� � � � � � �B�vj� � ~ � ~�� � �
2. Update the estimate with measurement�� v � �� �v!� � v��1�  vK¡ � �� �v �
3. Update the error covariance� v � � �v ¡ � � v � � � � � �v6�k� � vq� � ~ v � ~¡ �B�v � � ~ � ~ � ~ v � ~�J� � vq� � � � �B�v(� � ~¢��~ � ~ v � ~

Fig. 2. Time update and measurement update equations for
Two View Kalman Filter.

The location of the world point is predicted by making
use of the knowledge of the motion model (Equation 1) asF� �� �>� F�/�q�£��` (11)



When this prediction equation (Equation 11) and the motion
model equation (Equation 1) are used, the a priori error co-
variance

] �� (Equation 4) can be expressed as] �� � ^�� � # F� �� M � � 'x# F� �� M � � ' � � � �� �2^�� # � F�$�q�£� M �����q�£� M � � '# � F�$�q��� M ���$�q��� M � � ' � ��� �
By grouping the terms appropriately we get] �� � ���2^�� # F� �q��� M � �q��� '�# F� �q��� M � ����� ' � �¤� � � �� � 0 � �� ���D� �£� ] ����� � � � � � � � � � 0 � � (12)

This simplification has been done to eliminate the parame-
ters related to the world space. It provides relation between
the a priori error covariance at time instant � and the a pos-
teriori error covariance at time instant ��M � .

A similar simplification for the a posteriori error covari-
ance can be performed by manipulating equations 5, 8 and
9 as] � � ^K� \ � \ � � �� � # �!� M � �¥PY��� �¦� � Z � � � M �!�¥P � � � ��<� ��PY�!�¥P � � � � ' � �� ] �� M � � �¥PY� �£� ] �� � � � � Z � � � � �M ] �� � � � P � � � � � � �� � �¥PY� ��� ] �� � � � P � � � � � � (13)

We want to choose the gain factor, �k� , that minimizes the
trace of

] � (Equation 13), which is equivalent to minimiz-
ing sum of squared errors. Thus, the stochastic and geomet-
ric errors are minimized together. For this we differentiate
the trace with respect to � � and set it to zero, which yields
the required � � as� �<�>� ��� ] �� � � � P � #nZ � PY� ��� ] �� � � � P � ' ��� (14)

The process of tracking a world point using the above
formulation is stated here. We begin by assigning values
to the initial estimates. Then, the next state and the error
covariance are predicted by using equations 11 and 12. We
then correct our estimates using equations 9, 13 and 14. The
various steps involved in using the two view Kalman tracker
have been summarized in Figure 2.

4. TRACKING IN IMAGE SPACE

In the previous section, we outlined a mechanism for uti-
lizing the Kalman filter for predicting the 3D location of a
world point undergoing linear motion by modeling stochas-
tic and geometric errors. Prediction can also be done in
the image space without explicitly taking measurements in

the world space. This type of independence between the
world and image spaces gives an added advantage. It elimi-
nates the difficult process of measuring 3D world locations
[8]. We show how the time and measurement update equa-
tions for the world point can be transformed to arrive at time
and measurement update equations for the projections of the
world point. To achieve this we take projections of the a pri-
ori ( P F� �� ) and a posteriori ( P F�£� ) estimates of the location
of the world point given by equations in Figure 2 using the
projection equation 2. The error covariance and the gain
factor equations remain the same. The equations for the im-
age space are

Time Update Equations

FG �� � PY�2P �£� FG �q��� (15)] �� � ���2� ��� ] �q�£��� � � � � � � � � 0 � �
Measurement Update Equations

FG �§� FG �� � P � � # EG � M FG �� ' (16)� �¨� � ��� ] �� � � � P � #nZ � PY� ��� ] �� � � � P � ' ���] � � ] �� M � �Q� PY� �£� ] �� � � �Q� Z � � � � �M ] �� � � � P � � � � � � �� �Q� PY� ��� ] �� � � � P � � � � � �
Discussion: We formulated the tracking problem for an
affine model, which is linear in nature. Extensions for the
projective model can be worked out using a non-linear fil-
tering mechanism. Tracking of multiple objects is another
possible extension. These are out of scope of this paper.

Occlusion can be handled as follows. Consider a situa-
tion where we have three views � .1h and 7 of the object in
known cameras. The pair-wise fundamental matrices l � L ,l L[© and l © � (refer section 2) between these views is also
known. The object is tracked in all the three views simulta-
neously. When it is occluded in only one of the views, say
view 2, for some duration, measurements in that view can-
not be obtained. Since the object is seen in the other views,
we can use the corresponding trackers to predict the loca-
tion of the object in them. From the two predicted locations
in those views ( F9 � ; � and F9 © ; � ) we can find the epipolar lines
corresponding to these points in the third view as l � L F9 � ; �
and l ©}L F9 © ; � . The point of intersection of these epipolar lines
gives the predicted location of the object in the third view.
This can be used as the measurements when the point is oc-
cluded.

5. RESULTS

We tested the Kalman filter based tracker using geometric
and stochastic errors by performing various experiments on
synthetic as well as image data. The performance of the
one-view and two-view trackers is compared in the rest of



the section. The two-view tracker performs better in terms
of convergence, accuracy, robustness to noise.

5.1. Faster convergence

Kalman filter works by minimizing the trace of the a poste-
riori error covariance

] � . This gives a good measure of the
error in prediction. Ideally, this error should approach zero
in a few iterations. Figure 3 shows the value of the trace
in one-view and two-view cases for the first 25 iterations of
the algorithm. As can be seen from the graph, the error in
two-view case approaches zero at a faster rate than it does
in the one-view case. Real image data was used for this
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Fig. 3. Graph showing the decay of trace of a posteri-
ori error covariance in the case of one-view and two-view
Kalman filters.

experiment. It consisted of 25 frames each of two views of
an event, shown in Figure 4. The left hand finger tip of the
person shown was tracked using the one-view and two-view
Kalman trackers (Sections 2 and 3). We calculate trace of
the a posteriori error covariance matrices for both the track-
ers, normalize it by their corresponding initial trace values
and plot it against the frame number. The error decreases at
a faster rate in the two-view Kalman tracker. This is due to
the fact that two measurements obtained from the two views
are being used to update the a priori estimate that we have
at each time instant. This in a way corrects the error at a
faster rate compared to the standard formulation.

Similar results were observed for synthetic data. A 3D
model of a car moving in a linear fashion was used. The
motion of the car was captured using two affine cameras.
Noisy measurements of the center of mass of the car were
used to track it.

5.2. Robustness to noise

The additional information we have in terms of two views
of the same scene can be used to make the Kalman fil-
ter more robust to noise in addition to making it converge
faster. The robustness of the two-view Kalman filter has

(a) (b)
Fig. 4. Observing an event in two cameras (Courtesy - Keck
Laboratory, University of Maryland, College Park)

been tested with different values of measurement and pro-
cess noise. Synthetic data similar to that used in the above
experiment was used so to provide flexibility in changing
the noise values. We calculated the trace of the a posteriori
error covariance matrix

] � for different pairs of measure-
ment and process noise. The resulted are shown in Table 1.
The noise values are indicated by the covariances of the er-
ror distribution function as 0 �«ª�� 9 and Z �¬ª L 9 . The
trackers exhibit similar behaviour even in the case when
different covariance values are used for each dimension.

Measurement Process One-view Two-view
Noise ª � Noise ª L Trace(

] � ) Trace(
] � )

0.15 0.05 0.283957 0.093196
0.15 0.15 0.523717 0.112909
0.50 0.35 0.845190 0.279587
0.70 1.00 1.123014 0.372782
3.00 2.00 2.318295 0.699715
5.50 3.50 4.647049 1.726031

Table 1. Comparison of the one-view and two-view error
values for different measurement and process noise values
after 25 iterations.

From Table 1 it can be observed that two-view Kalman fil-
ter produces lower error values compared to the one-view
case, thereby confirming our claim that two-view tracking
is more robust to noise.

Frame One-view Two-view
Number Distance Distance

0 - 5 0.40311 0.05126
5 - 10 0.42757 0.05570

10 - 15 0.38262 0.04625
15 - 20 0.35815 0.01817
20 - 25 0.35986 0.00932
25 - 30 0.34290 0.00691

Table 2. RMS errors in 1-view and 2-view formulations



5.3. Better accuracy

It is important to know how accurately the object is being
tracked. We quantified the accuracy of the tracker as the
root mean square of the distances (RMS distance) of all the
predicted points from their corresponding actual non-noisy
measurements. Process and measurement noise are inherent
in real data and hence cannot be eliminated by any simple
process. Thus, to obtain the non-noisy measurements we
generated the data synthetically conforming to the equations
in the previous sections. (Sections 2, 3).

For this experiment, we performed tracking using both
the one-view and two-view formulations and measured the
corresponding accuracy values by finding the RMS dis-
tance. Ideally, this distance should be zero for a completely
accurate tracker. The results are shown in Table 2.

5.4. Occlusion handling

To study the effect of occlusion, we considered three views
of a scene along with their pair-wise fundamental matrices.
After introducing occlusion in one of the views, no mea-
surement is taken in that view. Performance of the tracking
algorithm is given in the Table 3. In the one-view case, no
correction term is applied during the occluded period. In
the three-view case, the non-occluded views predict the lo-
cation in this third view using epipolar lines. The distance
between the prediction and the ground truth when the ob-
ject is visible again is shown in columns 2 and 3 of the table
for the one-view and three-view cases respectively. We can
see that the two-view Kalman filter results are superior for
handling occlusion.

6. CONCLUSIONS

We incorporated the additional information that is available
from multiple views of a scene, in terms of geometric con-
straints on the error function, into the Kalman filter frame-
work in this paper. The coupling of stochastic and geomet-
ric errors using two views led to better tracking. This formu-
lation can be extended to multiple views by modifying the
geometric error appropriately. The two-view based tracker
defined in this paper can be used for tracking objects mov-
ing in a linear fashion. Further work is being done to ex-

Occlusion One-view Three-view
duration Error Error

0 - 5 14.78 14.17
5 - 10 5.70 1.47

10 - 15 5.55 2.59
15 - 20 3.10 0.17
20 - 25 0.09 0.005

Table 3. Performance of the tracker under occlusions

tend the tracker for any general motion and any non-linear
projection. The possibility of incorporating other multiview
constraints such as multilinear tensors in place of funda-
mental matrix is also being explored.
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