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Abstract

In this paper we propose a novel technique for ro-

bust visual servoing in presence of a large proportion of

outliers in image measurements. The method employs

robust statistical techniques and novel view prediction

for improving the performance. We identify a set of

points from initial and reference images and compute

the essential matrix relating them. The selected points

are predicted from the initial and reference images to

the current frame using essential matrices. A func-

tion of the difference between the observed and pre-

dicted image point measurements is used to identify

outliers. This technique is validated with many exper-

iments and compared with other robust methods in a

simulation framework.

1 Introduction

Visual servoing is the process of positioning the end
effector of a robot manipulator with respect to a tar-
get object or a set of features. This is achieved by
processing the visual feedback and minimizing an ap-
propriate error function. The visual feedback can be
image features (2D) or object pose (3D) with respect
to the camera frame [1].

Based on the visual information, visual servoing
algorithms can be classified to three categories [1]:
position-based, image-based, or hybrid (or 2 1

2D) vi-
sual servoing. In image based visual servoing, 2D

visual information is extracted from the images and
used directly in the control law to generate the con-
trol signal i.e., the screw velocity of the robot end-
effector. This velocity is computed by minimizing an
error function with the help of an image Jacobian or
interaction matrix [2]. The accuracy of the compu-
tation depends on the performance of feature detec-
tion, matching, tracking, and modeling schemes. If
the correspondences between features are noisy, the vi-
sual servoing process fails to converge, and the system
will reach inaccurate final state or a local minima [3].

Traditionally, approaches like increasing the accuracy
of the model of the vision system or improving the
local processing methods for tracking and detecting
features, take care of these errors [4].

In the visual servoing literature, Kragic and Chris-
tensen [5] proposed an algorithm to provide a robust
input to the control law. Their algorithm used voting
and consensus technique to integrate multiple visual
cues. It compensates the effect of outliers in the im-
age processing phase. Andrew et al. [6, 7] proposed
an M-estimator based statistical approach that uti-
lizes redundancy in image features to detect and reject
the outliers. This method is integrated in the visual
servoing control law. Redundant visual features are
used to keep the full rank of the interaction matrix.
The inability to reject outliers in presence of excessive
noise is a drawback of this method. This is due to the
statistical properties of the median operator. Using
RANSAC, the problem of presence of excessive noise
can robustly be addressed. RANSAC [8] has a dis-
criminate function with a threshold value to classify
the points as outliers or inliers.

In this paper, we propose a new method for robust
visual servoing using multiple view geometry. Many
recent visual servoing algorithms use results from mul-
tiple view geometry to improve the performance of vi-
sual servoing algorithms [9, 10, 11]. In contrast to
these works, we employ the epipolar constraints to pre-
dict a novel image and thereby derive an image-based
visual servoing control law which is robust to image
noise.

Our method uses both epipolar geometry and sta-
tistical techniques for robust visual servoing. Image-
based visual servoing needs initial and desired images
for calculation of the motion parameters. We improve
the robustness of this computations with the help of
an additional image with known relationship (say es-
sential matrix that relates them) to the initial frame.
From the image acquired by the camera and a pre-
dicted image, we identify and suppress outliers for im-



proving the robustness. The measured features with
large deviation from the predicted ones are classified
as outliers. The threshold value used for the decision
making is computed using the residuals of the points
with respect to the velocity computed using the pre-
dicted one.

2 Background and Previous Work

2.1 Image-based Visual Servoing

The problem of image-based visual servoing is that
of positioning the end-effector of a robot arm such that
a set of image features S reaches a desired target S∗.
The set S may be composed of the coordinates of the
points that belong to the object. Other kinds of ge-
ometric features like straight line segments, or angles
can also be used. Consider the error function

e(S) = S − S∗, (1)

which is the difference between the current feature vec-
tor S and the desired one S∗. By differentiating this
error function with respect to time, we get

de

dt
=

dS

dt
= (

∂S

∂P
)
dP

dt
= LSV, (2)

where S is a (2N×1) features vector obtained by stack-
ing the image coordinates (ui, vi) of N interest-points.
The velocity V = (vT , ωT )T is the camera velocity, v

is translational velocity and ω is rotational velocity.
The pose vector P = (x, y, z, α, β, γ) is a (6 × 1) vec-
tor, where (x, y, z) represent the 3D coordinates of the
camera frame position and the three angles (α, β, γ)
represent the camera frame direction with respect to
a reference frame. The (2N × 6) matrix LS is called
the interaction matrix or the image Jacobian. It re-
lates the changes in the image space to the changes in
the Cartesian space [2].

Assuming a perspective projection model with unit
focal length, the interaction matrix LSi

for each point
(ui, vi) is given by [2]

[ − 1
Zi

0 ui

Z
uivi −(1 + ui

2) vi

0 − 1
Zi

vi

Zi

1 + vi
2 −uivi −ui

]

,

(3)

where i = 1, ..., N , and Zi is the depth of the point in
the camera coordinate frame. The interaction matrix
LS for the complete set of N points is

LS =







LS1

...
LSN






, (4)

where LS1 and LSN are the interaction matrices given
by Equation(3), and correspond to the N points.

The main objective of the visual servoing process
is to minimize the error function e(S). For exponen-
tial convergence of the minimization process , we need
de(S)

dt
= −λe(S) given in Equation (1). By substitut-

ing this in Equation (2) and using a simple propor-
tional control law, the required velocity of the camera
can be shown [2] to be

V = −λL+
S e(S). (5)

The matrix L+
S is the pseudo-inverse of the Jacobian

matrix LS, and λ is a scale factor.

2.2 Robust Image-based Visual Servoing

A robust visual servoing control law based on M-
estimator was proposed in [7]. They modified the error
function as

e(S) = D[S − S∗],

where D = diag(w1, .., wi, .., w2N ) is a weighting ma-
trix, and N is the number of points. The weight wi is
zero if the point is an outlier and wi is one if the point
is an inlier. The computation of weights wi is done
using Tukey’s robust function [12]. For this objective
function, the control law is derived [7] as

V = −λ[DLS ]+D[S − S∗]. (6)

One can see, in Equation (6), that the matrix D is
being introduced to the error function and the inter-
action matrix. Entries of the interaction matrix that
correspond to the outlier features also will be nulli-
fied by the multiplication of zeros. This ensures the
complete rejection of outliers.

2.3 Novel View Synthesis

A camera is a mapping from the 3D world to a
2D image. A general projective camera is represented
by an arbitrary homogeneous (3×4) matrix of rank 3.
The general projective camera M maps world point X

to image point x according to x = MX . The matrix M

includes internal parameters, i.e. the camera’s focal
length and the skew angle, and the external parameters

which specify the camera’s position and orientation in
the world [13].

Epipolar Geometry describes the relationship be-
tween corresponding points in two views. Suppose x

and x′ are the corresponding points in two views, then
the epipolar constraint has the form [13]

xT Ex′ = 0. (7)



Figure 1: 3D configuration of the proposed method.
In the current image I i, the ◦ is the measured point
features Si and the + is the predicted point features
Ŝi.

The (3× 3) matrix E is known as the essential matrix

and has rank 2. The essential matrix maps a point x′

in one view to a line l = Ex′ in the other view. This
line is called the epipolar line. The essential matrix
describes the relative geometry of the two cameras.
Suppose the relative transformation between the two
cameras is given by T =

[

R, t
]

then, it can be
shown that

E = RT [t]×, (8)

where the matrix [t]× is the antisymmetric matrix
associated with vector t. The pairwise epipolar geome-
try can be used to predict new views [13]. A correspon-
dence between two given images (x ↔ x′) constrains
the point in the third image x′′ to lie on the lines E31x

and E32x
′. The predicted point in the third view is the

intersection of these two epipolar lines, and is given by

x′′ = E31x × E32x
′. (9)

Given a correspondences between two sets of points
in two images, a third novel image, which is defined in
terms of essential matrices, can be produced by trans-
ferring all corresponding pixels from the two given im-
ages to this new image using Equation (9). Many al-
gorithms are available for reliable computation of the
essential matrix between two images [13]. In our pro-
posed method, we use the Equation (8) to compute
the essential matrix.

3 Proposed Method

The robust visual servoing control law presented in
Section 2.2 is able to reject a few outliers. Here we pro-

pose a solution that works even when the proportion
of the noisy points is large. An additional reference
image is used to predict a virtual novel image. The
transformations between the current image and each
of the two initial and reference images are used to pre-
dict the novel image. The predicted image is used to
detect the outlier points in the current image using a
discriminate function. This function uses the residual
value of the data points in the current image with re-
spect to the data in the predicted image. During the
visual servoing process, a constant value is assigned
to the error function which corresponds to the outlier
point feature. The error function given in Equation
(1) is modified as

ê(Si) =

{

Si − S∗ if Si is inlier.

e0(Si) if Si is outlier.
(10)

Here e0(Si) is a precomputed constant value of the vi-
sual servoing error function. This constant is selected
such that it decreases the contribution of the outlier as
much as possible, while avoiding the singularity in the
control law. By substituting the error function given
in Equation (10) in Equation (5), the control law gets
modified as

V̂i = −λL+
i ê(Si), (11)

where ê(Si) is computed using Equation (10). Note
that there are no additional computations when com-
pared to the original image-based visual servoing con-
trol law.

The proposed algorithm is divided into an initializa-
tion (off-line) and two on-line steps. The first on-line
step is the computation of the predicted image, and
the second is the identification of outliers using the
error function computed from the actual current im-
age and the predicted current image. Figure 1 depicts
the geometric configuration of the proposed method.
Consider an initial image I0 of a scene, which con-
sists of a set of 3D points. In addition to the initial
image, the camera takes another image (reference im-
age) Ir with a known transformation between these
initial and reference camera positions T0r = [R0r, t0r].
Select a set of point features S0 in the initial image
I0 and another corresponding set Sr in the reference
image Ir. The novel predicted image at the ith time
instance I i contains the corresponding set Ŝi of these
point features.

The novel image computation is done using the ve-
locity measurement of the camera. At each iteration
of the visual servoing process, the transformations be-
tween the current image and the two (initial and ref-
erence) images T0i = [R0i, t0i] and Tri = [Rri, tri] are



computed. By substituting these two transformations
in Equation (8), the essential matrices E0i and Eri are
obtained. Using these essential matrices and Equation
(9), the current predicted image is computed.

The set of features Ŝi in the current predicted image
corresponds to the sets S0 and Sr. Substituting the
features vector Ŝi in the control law given in Equation
(5) will give the camera velocity in the ith iteration
that is contributed by the features Ŝi

V = −λL+

Ŝi
(Ŝi − S∗). (12)

Consider the term rpred = λ(Ŝi − S∗) as the state of
the current predicted image with respect to the desired
one, and the term ractu = λ(Si−S∗) as the state of the
actual or measured current image with respect to the
desired one. The error required for the discriminant
function is defined as r2

i = (rpred − ractu)2. In litera-
ture [7, 13], these are known as the residual values of
the points Si. Using Equations (2), (5) and (12), The
residual value for each single feature Si in the actual
current image is given as

r2
i = (LSi

V + λ(Si − S∗

i ))2. (13)

The feature Si is considered as an outlier if ri ≥ tσ,
and is treated as an inlier if ri < tσ , where the thresh-
old value tσ =

√
5.99σ [8]. The term σ is a function

of the uncertainty in the velocity measurements of the
robot arm in the ith iteration.

4 Simulation Results

In the simulation experiments we considered a set
of 3D points Xi, i = 1, ..., N . These points belong to
an object in the scene. A positioning task is consid-
ered for the study. The robot arm has to move from
an initial position to a given desired position. The
desired position is specified as a desired image of the
object. The image point coordinates are considered as
features. Since we have N points, the total number
of features is 2N . In other words, features S2i and
S2i−1 are from the point xi. If any of the features S2i

or S2i−1 is found to be an outlier, other one is also
considered as an outlier. The error given in Equation
(10) is used for both features.

We conduct simulation experiments to show the be-
havior of our proposed method. These experiments
differ in the number of the points, which are disturbed
by noise and the amount of this noise. We conduct our
simulation experiments in presence of excessive noise
using two robustness methods. The first one is the
method described in [7] that uses M-estimator based
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Figure 2: Rotational error ‖R‖ in (a), and transla-
tional error ‖T‖ in (b), between final and desired pose
versus the number of noisy points.
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Figure 3: Rotational error ‖R‖ in (a), and transla-
tional error ‖T‖ in (b), between final and desired pose
versus the amount of noise σ added to 8 points out of
12.



algorithm. We call it here ME method. The second
one is the method proposed in this paper. The pro-
posed method is called the novel view based method
and will indicate to it as NV method. We introduce
the noise in the matching and feature extraction step.
We consider the error vector between the final cam-
era pose and the desired one as the convergence error.
This error vector is represented by the measurements
of the norms of its rotational parts ‖R‖ and trans-
lational one ‖T‖. The 3D target object consists of
N = 12 points. To compare the convergence capabil-
ity of the two methods, we conduct the experiments
for the all possible number of noisy points out of the
total 12 points.

Figure 2 shows the rotational ‖R‖ and the trans-
lational ‖T‖ parts of the convergence error versus the
number of the noisy points. For a small number of
noisy points the performance of the both ME and NV
are similar. In contrast, the convergence error in case
of the NV method is much less compared to the case
of ME method when the number of noisy points is
increased.

To prove the results statistically, we repeat the
experiments 10 time for a selected number of noisy
points. We take the average of the convergence er-
ror over the 10 values of the convergence error vector.
Table 1 show the average the rotational ‖R‖ and the
translational ‖T‖ part values of the convergence error
versus a selected number of noisy points.

For a fixed number of noisy points ( say 8 points
out of the total 12), we conduct the experiment for
a different amount of noise. Since we use a Gaussian
noise, the amount of the noise is represented by the
variance value σ2. We conduct the experiments for
the values of σ2 in the range of (10, . . , 50). We can
see the notable difference in the rotational part ‖R‖
of the convergence error between the two ME and NV
methods. This is shown in Figure 3. In the same time,
there is not much difference between the two methods
in the translational part. This can be explained as
the error in the image point affects the rotation mo-
tion more than the translation one. However, in the
both ME and NV methods, the convergence error is
increased rapidly after a certain value of noise amount.

To show the properties of the robust visual servoing
algorithm using the both robust methods, we consider
the case of 8 noisy points and σ2 = 20. Figure 4 shows
the image trajectory of the point features where the
final position is different from the desired one. A lo-
cal minima of the error function is reached instead of
the desired global one. This is depicted in Figure 5.
In this figure the norm of the error vector is shown
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Figure 4: Points trajectory in the image space of im-
age features. The mark + in the image indicates the
desired position of the image point.

No. of noisy points 5 8 11

‖R‖ 0.0054 0.0111 0.0129
‖T‖ 0.0207 0.0393 0.0312

Table 1: The average of the convergance error over 10
repeated times.

instead of its all components. Figure 6 shows a com-
parison between the camera trajectories in the Carte-
sian space in the ideal case where there is no error in
the image feature measurements, and each of our pro-
posed method in Figure 6(a) and M-estimator method
in Figure 6(b). The difference between the final and
desired pose is clear.

We can conclude from the experiments that our
method is superior to the previous one regardless to
the number of image points disturbed by noise. Re-
sults show that it works even in case of all points dis-
turbed by noise. The M-estimator methods are re-
stricted to the case where a little points were disturbed
by noise.

5 Conclusion

A novel robust image-based visual servoing method
is proposed here. This method classifies the image
points to outliers or inliers. The detected outlier is
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Figure 5: The norm of the error vector of image fea-
tures versus the time in seconds.

introduced in the control law with a constant error
value. The core of this method lies in combining sta-
tistical methods with multiple view geometry. As an
improvement to the previous work in the robust vi-
sual servoing, this method can produce a better con-
vergence with large noisy features proportion. As a
future work, this can be extended to visual servoing
architectures like 3D and 2 1

2D visual servoing. Other
kind of features may be considered to improve the ro-
bustness.
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