Configurable Hybrid Architectures for
Character Recognition Applications

M. N. S. S. K. Pavan Kumar and C. V. Jawahar
Centre for Visual Information Technology
International Institute of Information Technology
Hyderabad, INDIA

jawahar@iiit.ac.in

Abstract

Character recognition is a multiclass problem with typ-
ically large number of classes. Hierarchical classifiers are
found to be suitable for such classification problems due
to their low space and time complexities. However, most
hierarchical classifiers employ similar classifiers at dif-
ferent levels of the hierarchy. This may not be ideal, as
the complexity of classification is not same at all the
stages. In this paper, we propose an algorithm to build
a hybrid hierarchical classifier by choosing the classifiers
of appropriate complexity at each level of the hierarchy.
We demonstrate that hierarchical combination of com-
plex classifiers improves the classification performance
significantly.

1. Introduction

Optical Character Recognition (OCR) applications
range from massive tasks like digitization of large doc-
ument databases, to tiny applications in a PDA or a
cell phone for text access while being mobile. Each of
these applications have different requirements and con-
straints on parameters like the size, speed and accu-
racy. English has smaller set of characters which makes
it easy to build OCR applications of different sizes
and performances. However, this was not possible with
Asian and African scripts owing to the large size of
their alphabet.

In many of the Asian and African scripts, the char-
acters are formed by conjunctions of basic shapes. Ow-
ing to the large number of possible combinations, these
scripts have a very large number of characters. More-
over, the characters which share one or more basic
shapes are highly similar to each other, making the
classification task further difficult. Building a classifier
to recognize all the characters independently is not pos-
sible as the resulting classifier would be prohibitively
large. Many of the characters can be segmented into

their basic shapes. However, this only reduces the num-
ber of characters to a lesser number of classes to recog-
nize. Table 1 shows the details of few Asian and African
scripts in the form of the number of basic alphabet,
the number of characters that arise from their combi-
nations, and the approximate number of classes that
are used in a typical character recognizer.

Hierarchical classifiers [1, 8] are found to be suitable
for large class classification, as they have low space and
time complexity. They are highly modular in nature, al-
lowing use of a variety of classifiers at each node. How-
ever most existing designs do not explore this modu-
larity, and use similar classifiers at all the nodes [7, 8].
This results in classifiers which under-perform, as the
classification problems at each node are quite differ-
ent from each other. An effective way to build a clas-
sifier is to evolve the hierarchy by choosing appropri-
ate classifiers at each node in the hierarchy. The appro-
priateness of a component classifier can be measured in
terms of speed, size and accuracy, depending on the re-
quirements of the system.

In this paper, we present a formulation for the prob-
lem of building classifiers with hybrid design. A brief
discussion on existing multiclass classification meth-
ods and a comparison with hierarchical classifiers is
presented in Section 2. A classifier combination design
called Binary Hierarchical Combination of Decision Di-
rected Acyclic Graphs (BHCD), and an algorithm to
build this classifier is presented in Section 3. Complex-
ity and error analysis of the algorithm is presented in
Section 4. The results of this algorithm are shown on
many datasets in Section 5.

2. Hierarchical Classifiers for Character
Recognition

Multiple classifier combination approaches for multi-
class classification have received increased attention in
the recent past. For an N-class classification problem,

| Language | Alphabet | Characters | Classes |
Devanagari (India) 57 64000 165
Telugu (India) 56 64000 432
Hangul (Korea) 67 11772 2350
Hiragana (Japan) 46 5000 1945
Ambharic (Ethiopia) 34 310 225

Table 1. Few Asian and African scripts, the num-
ber of basic alphabet, possible characters and
classes in a typical OCR system are shown.

one-vs-rest approaches build N classifiers, each with
samples from one class as positive, and from rest of the
classes as negative. These classifiers are shown inferior
to one-vs-one approaches in both accuracy, as well as
training time. One-vs-one methods train N(N — 1)/2
classifiers, one for each possible pair of classes. The
combined classification system usually has high perfor-
mance in terms of accuracy. However, they are large
in size and take longer time for classification. This has
been overcome by an approach called Decision Directed
Acyclic Graph (DDAG) [9], which connects the pair-
wise classifiers as a directed acyclic graph (DAG). The
sample is initially presented to the root node of the
graph, and depending on the decision taken, either left
or right sub-DAG is selected for the next evaluation.
This ends when a leaf node is reached, where a deci-
sion is made about the class of the sample. Another
popular approach is to use a binary tree based classi-
fier, where each node in the tree acts as a binary classi-
fier between two subsets of classes. A label is assigned
to the sample after the two-class decision at the leaf
nodes of the classifier.

Hierarchical classifiers have been used for large-class
OCRs in [1, 3, 8]. The hierarchy in these systems was
determined manually based on perceptual similarity,
or using simple cues like the positional information of
characters (using zonal information [3]). In manual hi-
erarchy building, a high correlation has to be main-
tained between the perceptual similarity and the fea-
ture representation in order to obtain hierarchies which
give good performance.

Limitations of these manual or rule-based hierar-
chies were overcome recently, by automatically learning
the class hierarchies [7, 10]. Binary Hierarchical Classi-
fier (BHC) proposed in [4, 7] learns the hierarchy by di-
viding the samples available at each node into two clus-
ters, and building a classifier for those samples at that
node. DB2-SVM [10] was another approach which at-
tempted to build a hierarchical SVM using basic clus-
tering algorithms at each node. These approaches aim

at the simplicity of the classifier, sometimes even at the
cost of accuracy.

We demonstrate that use of a hierarchical combina-
tion of complex classifiers preserves both the simplicity
of the system, as well as its high performance. A con-
figurable design for a hybrid tree, which combines mul-
tiple DDAGs using a tree is described below.

3. Hybrid Hierarchical Classifier

A binary hierarchical classifier connects several two
class classifiers in a hierarchy such that a sample is
classified in a series of steps. The classification starts
with broad and simple decisions and narrows down in
stages to a precise decision at the leaf. Fach node di-
vides the set of available classes into two groups. How-
ever, all the classification tasks at the component clas-
sifiers are not equally complex. Many a time, binariza-
tion can not be done effectively for all possible subsets
of classes, where a more complex multiclass classifier is
required.

The hybrid classifier is a hierarchical arrangement
of dissimilar classifiers, each chosen according to the
complexity of the classification task. The current al-
gorithm builds a hybrid classifier using two kinds of
component classifiers, a linear binary classifier for sim-
ple classifications and a DDAG for complex multiclass
groups. A DDAG is a high-performance classifier, but
the number of component classifiers increase rapidly
with increase in number of classes. The BHCD algo-
rithm hence uses DDAG only on smaller subsets of
classes which are difficult to classify within each other.
A BHCD for a set of Devanagari characters is shown in
Figure 1. The ovals are the binary classifiers between
groups of classes, which are easy to classify. DDAGs
are used to perform the within class classification of
these groups, and are shown as triangles in the Fig-
ure 1.

3.1. BHCD Algorithm

A recursive algorithm is proposed to learn the hier-
archical classifier. At each step of creating a node in the
hierarchy, a selection is made between a binary classi-
fier and a DDAG. For the binary classifier, a cluster-
ing algorithm is used to split the dataset into two sub-
sets. The difficulty of classification of this binary clas-
sification is estimated. Of these two, the classifier with
greater expected accuracy is chosen. To select the ap-
propriate classifier, a “goodness” measure resembling
its error estimate is needed. Section 3.2 describes the
measure used in the algorithm.

Figure 1. The BHCD classifier. The ovals are
the binary classifiers for broad classification into
groups of classes. The triangles are the DDAGS
built to classify high-resemblance classes.

A DDAG is a multiple classifier method, which per-
forms well due to the redundancy provided by the pair-
wise classifiers. Error estimates are always low for a
DDAG because of the simplicity of pairwise classifi-
cations when compared to arbitrary binary classifiers.
If a DDAG is always preferred, the resulting classifier
suffers from large size and classification time. To dis-
courage the selection of DDAG always, a parameter A
is used to weigh the advantage obtained while select-
ing the component classifiers at each node. The user
provides the parameter A to specify the relative impor-
tance of accuracy to the size and classification time of
the hierarchical classifier.

Let f denote the the hybrid classifier with K nodes,
and 6;,7 = 1--- K be the parameters of the classifier at
the ith node. At each node i, Q) denotes the set of la-
bels of the classes that reach that node, Let Ql(z),ng)
represent the set of classes that correspond to the left
subtree and right subtree respectively, X represent
the samples reaching the node ¢ and the operator & be
used to denote the addition of a set of parameters at the
current node to the existing tree. The functions train-
Binary and trainDDAG are assumed to be the training
algorithms for binary classification and a DDAG re-
spectively. Using this notation, Algorithm 1 describes
the procedure formally.

3.2. Classifier Evaluation

A key step in the algorithm is to compute the “good-
ness” of different classifiers at each step of tree build-
ing, and select the suitable classifier. We use an adapted
version of the classifiability measure proposed in [5] for

Algorithm 1 BHCD(X, \)

f=¢
(Q;”,Qg’)) = Cluster(X,”,2); // Make two clusters
Lpinary = ComputeClassz'fiabilityEstimate(Xi(’), Ir)
Lideg = C’omputeClassifiabilityEstimate(Xi(z), Q;)
if (deag <)\Lbimwy) then
f=r®eb; o
0; = trainBinary()\,’I(’), x4
if (n(2®) > 2) then
BHCD(A;, \)
BHCD(X,, \)
end if
else
0; = trainDDAG (X))
f=reb
end if

computing the possible error estimate on the datasets.
The measure is closely related to the Bayesian error,
and is easily computable. To start with, define an ap-
propriate neighborhood size r. For each pattern z(?)
which belongs to class w; € (2, obtain a co-occurrence

matrix W (z(®) of size N x N, whose element w(xﬁ))

is defined as w(mgzk)) = EZZ“I f (2 z(m) where (™)
is a sample of class wy. f(.) is 1 if ||z — 2(™)|| < r
and j = [, 0 otherwise.

Compute the overall coocurrence matrix [5] as the
sum of coocurrence matrices of all the samples, i.e
A= 2%21 W (2(™). Normalize the elements a;; of
A such that sum of all the elements is 1. Then the clas-
sifiability L can be computed as,

Cc Cc
L = Zaii — Zajk.
i=1 ik

However, this measure computes the classifiability of
all the classes together. The classifiability of datasets
is different when pairwise subsets are considered. Here,
we adapt this measure to provide an error estimate of
the pairwise classifier, by taking average of pairwise
classifiabilties. Let L, be defined as the classifiabil-
ity between classes wy,wn,. The pairwise classifiability
Ly, is defined as

Lpw = Z Lim.

1,meQ0) I£m

If Lgdag — ALpinary is negative, the binary classifier is
used at the node. Otherwise, a DDAG is built between
all the classes at that node.

4. Analysis

Generalization ability and computational complex-
ity are important parameters to measure the effective-
ness of a classifier. An analysis of the BHCD algorithm
from these perspectives is presented in this section.

4.1. Generalization

For a classifier to perform well on unseen samples,
the learning algorithm has to reduce the generalization
error of the classifier. Many of the Asian and African
scripts are characterized by groups of classes spread
around in the feature space. One group of classes is dis-
tinctly separate from the others, but the classes within
a group resemble each other and are difficult to classify.
If a simple classifier is used for all the classes together,
the classifier under-performs for the within group clas-
sification. If a very complex classifier is used, it per-
forms well within the groups, but over-fits and takes
large space and classification time. Since, BHCD algo-
rithm evolves the hierarchy by selecting the classifier
of required complexity at each level of the hierarchy, it
generalizes well.

The path taken by the sample from the root node
to the leaf node of a hierarchy while being classified
is called the evaluation path. In [2], it was shown that
the generalization error of a tree classifier depends on
the length of the evaluation path 7" and the margins of
nodes on the path. According to [10], the best case per-
formance of a tree based classifier where T' = 1, is bet-
ter than a DDAG, where T = N — 1 and both classi-
fiers are equivalent in the worst case. When there are
large number of classes, a BHC has a lower generaliza-
tion error bound than a DDAG, owing to the difference
in the lengths of evaluation paths [10]. At the deeper
nodes of a hierarchical classifier, the difference between
the lengths of evaluation paths between a DDAG and a
BHC is less as there are fewer number of classes. How-
ever, at this stage, the pairwise margins obtained in a
DDAG are higher than the margins obtained by an ar-
bitrary binary classifier in BHC. This shows that the
BHCD algorithm selects classifiers to reduce the over-
all generalization error of the hierarchical classifier.

4.2, Complexity

Table 2 presents the orders of space and testing time
complexity in classifiers for various popular classifier
combination architectures. The testing time complex-
ity, expressed in terms of number of classifiers evalu-
ated for each decision to be made is denoted using C.
As an example, consider an OCR for an example Indian
language say, Telugu. It has approximately 430 classes

| Architecture | Space | Chest | Cavg | Cuworst |
One vs Rest O(N) O(N) | O(N) O(N)
One vs One O(N?) | O(N?) | O(N?) O(N?)
DDAG O(N?) | O(N) | O(N) O(N)
Hierarchical O(N) o(1) O(N) | O(log(N))

Table 2. Table comparing the order of space and
time in best (T}.:), average(T,.,y), and worst
(Tworst) cases in terms of number of classes for
different architectures

to be recognized. Using a one-vs-one training with a
DDAG or a majority vote combiner, and stores around
92,235 classifier parameters, which is prohibitive. Us-
ing a majority vote based approach here would result
in evaluating all the classifiers atleast once per sam-
ple. Whereas, in a hierarchical classifier, there are only
429 classifiers built, of which on average 7 classifiers get
evaluated. This gain in space and time are immense,
even at the cost of a little reduced accuracy, depend-
ing on the requirements of the application.

5. Results and Discussion

Experiments are conducted on character recognition
problems. Four datasets were used in the experiments,
two Indian language scripts Tamil, Malayalam, an
African script — Amharic and the Letter dataset from
the UCI machine learning repository. Tamil dataset has
120 classes, Malayalam has 116 classes, and Amharic
dataset has 225 classes. Each of them have 100 samples
per class. Letter dataset has 26 classes, and 20000 sam-
ples. In each experiment we used 60% of the data for
training and rest for testing. We used a linear SVM as
the classifier at all nodes of the hybrid classifier built in-
cluding the pairwise classifiers in the DDAG. Results
show that BHCD performs better than BHC always,
and sometimes better than the DDAG, taking signifi-
cantly lesser space than a DDAG, on par with a BHC.

UCI Letter Dataset: UCI Letter dataset [6] has 26
classes. In this case, a DDAG requires 325 classifiers to
be built and a BHC requires 25 classifiers. The num-
ber of classifier evaluations made when using a DDAG
is 25, and using a BHC is around 5. Using linear SVMs
at each node, the accuracy obtained with a DDAG is
75.16% and with a BHC is 71.20%. The BHCD algo-
rithm is found to improve the accuracy of the classi-
fier over BHC, and reduces the storage space by 3.1
times and classification time by 4.1 times compared to
a DDAG.

A = High (BHC) A = Medium (Hybrid) A = Low (DDAG)
Accuracy | Storage | Teyqr | Accuracy | Storage | Teyqr | Accuracy | Storage | Teya
Tamil 91.50 119 8 93.6 1029 26 93.4 7140 119
Malayalam 98.2 115 8 98.62 990 24 98.60 6555 115
Ambharic 84.72 224 9 86.82 2250 31 87.20 92235 224
Letter 71.20 25 6 73.23 105 8 75.16 325 25

Table 3. Accuracies of classifiers built with varying \. The size of the classifier (storage) is shown as the total
number of nodes in the classifier. The evaluation time of the classifier (T¢,,;), measured as average depth

of the tree.

Malayalam Character Recognition: Malayalam, a South
Indian language is considered for this experiment. The
number of classifiers required for a DDAG is 6670, and
makes 115 classifier evaluations to make a decision. The
accuracy obtained using a DDAG is 98.60%. The num-
ber of nodes in a BHC is 115, and around 7 classi-
fier evaluations are necessary to classify a given sam-
ple. The accuracy obtained by a BHC is 98.20%. BHCD
yields an accuracy of 98.62% which is better than both
the approaches and reduces the storage space by 6.5
times, and classification time by 4.8 times with respect
to a DDAG.

Tuning the Classifier: Experiments on large class
datasets are conducted to show the effect of the con-
trol parameter A on the design of the classifier.
Hybrid classifiers were generated with varying val-
ues of A\ and the accuracies and size values of the
classifiers are computed. We grouped the A val-
ues into three groups — low, medium and high. For
each dataset, the accuracy, storage and the eval-
uation time are presented in Table 3. When X is
high, the resultant classifier is a binary hierarchi-
cal classifier. When A is low, there is no constraint
on the size, and hence a classifier DDAG. When A is
medium, a classifier of size larger than the tree, but
much smaller than a DDAG is obtained, with per-
formance higher than the tree in all the cases, and
also higher than DDAG in some cases. A large in-
crease in the classifier size as well as the depth of the
tree in the classifier was observed as the value of A de-
creases. In most of the cases, the drop in the accuracy
observed was a minimal compromise for the large re-
duction obtained in size and testing time.

6. Conclusions

An algorithm for building hybrid classifiers combin-
ing the advantages of two algorithms BHC and DDAG
is presented. It is shown that using a hierarchical com-
bination of complex classifiers, suits the problem of

large class character recognition. This results in classi-
fiers with better generalization and with less space and
time complexities.

References

[1] H. Baird and C. Mallows. Bounded-error preclassifi-
cation trees. In D. Dori and A. Bruckstein, editors,
Shape, Structure and Pattern Recognition, pages 100—
110. World Scientific Publishing Co., 1995.

[2] K. P. Bennett, N. Cristianini, J. Shawe-Taylor, and
D. Wu. Enlarging the margins in perceptron decision
trees. Machine Learning, 41(3):295-313, 2000.

[3] B. B. Chaudhuri and U. Pal. An OCR system to read
two Indian language scripts: Bangla and Devanagari
(Hindi). Proc. ICDAR, pages 1011-1015, 1997.

[4] Y. Chen, M. M. Crawford, and J. Ghosh. Integrating
support vector machines in a hierarchical output space
decomposition framework. In IEEFE International Geo-
science and Remote Sensing Symposium, Alaska AK,
volume 2, pages 949 — 952, September 2004.

[5] M. Dong and R. Kothari. Feature subset selection using
a new definition of classifiability. Pattern Recognition
Letters, 24(9-10):1215-1225, 2003.

[6] S.Hettich, C.Blake, and C. Merz. UCIrepository of ma-
chine learning databases. 1998,
(http://www.ics.uci.edu/~mlearn/mlrepository.html).

[7] S. Kumar, J. Ghosh, and M. Crawford. A hierarchi-
cal multiclassifier system for hyperspectral data analy-
sis. Lecture Notes in Computer Science, 1857:270-278,
2000.

[8] S.S.Marwah, S. K. Mullick, and R. M. K. Sinha. Recog-
nition of Devanagari characters using a hierarchial bi-
nary decision tree classifier. In IEEE International Con-
ference on Systems, Man and Cybernetics, pages 414—
420, October 1994.

[9] J. C. Platt, N. Cristianini, and J. Shawe-Taylor. Large
margin DAGs for multi-class classification. In Advances
in NIPS-12, pages 547-553, 2000.

[10] V. Vuraland J. G. Dy. A hierarchical method for multi-
class support vector machines. In Proceedings of the 21st
ICML, pages 831-838, July 2004.

