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Abstract—In this paper we present a new integration method
for improving the performance of visual servoing. The method
integrates image-based visual servoing (IBVS) and position-
based visual servoing (PBVS) approaches to satisfy the widely
varying requirements of the visual servoing process. We define
an integration rule for IBVS and PBVS controllers. Density
functions that determine the weighting factor of each controller
are defined to satisfy the above constraints. We prove that this
integration method provides global stability, and avoids local
minima. The new integration method is validated on positioning
tasks and compared with other switching methods.

I. INTRODUCTION

Visual servoing exploits the visual feedback available in
the control loop to increase the accuracy of the overall
robotic system. This avoids the need to increase the accuracy
of different electro-mechanical parts like end-effectors and
sensors. In addition, visual feedback helps in controlling the
robot pose with respect to a target even in the presence of
calibration errors. As an optimization problem, visual servoing
can be understood as the minimization of an error function
of the object pose with respect to the camera. This error
function could be defined in the Cartesian space [1], image
space [2], or as a combination of both [3]. Visual servoing
has become an attractive area of research, and has recently
received considerable amount of attention [4], [5], [6].

Visual servoing techniques are divided into three categories:
(i) image-based (IBVS), (ii) position-based (PBVS), (iii) and
hybrid visual servoing. These divisions are based on the use
of 2D information from the image space, 3D information
from the Cartesian space, or a mixture of both kinds of
information in defining the error function. While image-
based visual servoing and position-based visual servoing have
complementary advantages and disadvantages, hybrid methods
attempt to incorporate the advantages of these both methods.

In addition to providing accurate control signal, a good
visual servoing scheme has to address the following issues:

1) Feature-visibility: It is desirable for a visual servoing

algorithm to keep the object features always visible in
the camera field of view during the servoing process.
This can help in obtaining reliable feedback signal
during the servoing process.

2) Local minima avoidance: Getting trapped in a local

minima during the optimization, results in the visual ser-
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voing system converging to a final pose that is different
from the desired one.

3) Faster convergence: Time of convergence is defined
as the time needed to regulate the error function to
the desired (or an acceptable) value. This time can be
handeled in the traditional methods like IBVS and PBVS
while it is high in hybrid methods such as switching
methods.

Continuous control signal: Discontinuity in the control

signal can destabilize the process. This problem is of

concern in switching methods. Other visual servoing
methods provide a continuous control signal.

5) Short camera path: The camera path in the Cartesian
space is a straight line if the error in the camera 3D
position is minimized. However, non-straight camera
path may cause the robot arm to get out of the Cartesian
workspace.

4)

In [7], we propose a unique algorithm, which satisfactorily
addresses the above mentioned requirements of a visual ser-
voing algorithm. A framework that integrates the IBVS and
PBVS into one framework is proposed for this purpose. The
integration process uses appropriate weights to determine the
resultant control signal from the individual sub-controllers.
These weights are computed through weighting functions
which are designed to satisfy the above mentioned constraints.
In this paper, we propose a method that computes the weights
from single distribution by means of an energy function de-
fined in the image and Cartesian spaces together. The method
start by PBVS because all features are visibile in each of the
initial and desired views, and end by IBVS because IBVS
is locally robust and stable. The proposed method solves the
visibility and local minima problems efficiently. The camera
trajectory is shown to be highly similar to the ideal straight
path.

II. RELATED WORK

Recent research in the visual servoing field has concentrated
on development of algorithms which satisfy one or more of the
requirements mentioned in Section I. The most comprehensive
solutions are based on potential fields [8], [9], which was
originally introduced to the robotic community by Khatib
in [10] as a solution to the collision avoidance problem.



Mesouar and Chaumette [8] have recently proposed a poten-
tial field based method for path planning in the image space.
This method introduces the visibility and robot joint limits
constraints in the design of the desired trajectories. Essentially,
this is a local path planning method where the local minima
is not ensured to be avoidable when repulsive and attractive
fields are equal. In addition, the camera trajectory is not
predictable when the repulsive forces are involved. In addition
to features visibility and joint limits, constraints like image
singularity, image local minima, and robot singularity are also
considered in [9]. Most of the earlier works tried to address
the visibility problem without any attention toward the local
minima and Cartesian camera trajectory. The method presented
in [9] solved the local minima problem, but the camera path
is neither straight line nor smooth.

Gans and Hutchinson [11] have proposed a switching ap-
proach between IBVS and PBVS. The proposed controller
consists of two sub-controllers for IBVS and PBVS. Whenever
the features tend to get out of the field of view (FoV) of
the camera, the control switches to IBVS, and whenever the
camera starts retreat, the control switches back to PBVS.
However, the global stability is not ensured in this scheme.
This binary switching allows either IBVS or PBVS controller
to work at a specific instance. They did not consider the
potential local minima neither in the image space nor in the
Cartesian space. The potential local minima was demonstrated
in [12]. In addition, a discontinuity in the velocity control
signal can be observed at the time of switching between
the two sub-controllers. This algorithm also needs more time
to converge. The reason behind this is that the image error
may increase in PBVS. Switching from IBVS to PBVS may
increase the image error, which is minimized using the IBVS
controller.

In Chesi et al. [5], a switching approach between elementary
camera movements is proposed. The method decomposes the
homography between the current and desired images and
computes a translational and rotational velocity commands.
A sequence of high level if-then-else rules is used to switch
between camera rotation, translation, or backward translation
along the camera optical axis. This method, shows a discon-
tinuity in the velocity control signal in addition to longer
time of convergence owing to the switching time to keep
features in the FoV. The Cartesian local minima due to errors
in homography estimation is not considered. In addition, the
camera trajectory is not straight line any more because of the
backward translation.

The method proposed in this paper is based on an integration
scheme. It outperforms the reported methods available in the
literature. Experimental results validate our claim in Section-
VL

III. INTEGRATION OF IBVS AND PBVS

Consider that we have N individual visual servoing control
laws represented by the parameters «; where ¢+ = 1,...., N.
For example, if an integration is done between IBVS and
PBVS control laws, then i takes the values from {im,po}.
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Fig. 1. Weighted sum of the velocity estimates

To integrate rotation and translation control laws, ¢ takes
the values from {ro,tr}. When visual servoing applications
need to apply a pure backward translation to satisfy feature
visibility in the image, then ¢ may take the value {ba}.
The optimal estimate of the velocity vector in the proposed
integration framework is the weighted sum of the velocity
values computed from each individual control law. This is
shown in Fig (1). The problem is reduced to the computation
of the velocity in each individual controller in addition to
the computation of the importance factor of each of these
controllers.

In this framework, image-based visual servoing and
position-based visual servoing control laws can be integrated
as R R X

V= w(aim) Viaim) + w(ape) Viape). (1)
Here, V(i) is the velocity computed from the IBVS con-
troller [2] that is given by

éi = JiV(O{im) (2)
V(aim) = =XiJ; ei(s), 3)

where J;© is the pseudo-inverse of the image Jacobian matrix
J; and e(s) is the image error vector. The velocity V' (cy,) is
computed from the PBVS controller [2] that is given by

€p = JPV(QPO) 4)
V(O‘m) = _)‘pJp_lep(s) @)

where J, is the pose Jacobian matrix and e,(s) is the pose
error [1].

The importance factors of each individual control law
w(a;), conditioned on the image measurement x, is deter-
mined by the image and Cartesian constraints to be satisfied
during the process of visual servoing.

The weighting factors are normalized such that they sum

up to one. Indeed, we replace the notation W“’(;’iﬁjga) by
w and #ﬁ:)iw by 1 — w. Therefore,
V=w V(aim) + (1 —w) V(ag), (6)

where 0 < w < 1.
As mentioned above, w is a function of the image and
Cartesian constraints, and of the energy of the task function to
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Fig. 2. The sigmoid function with different values of v. v; < y2 < 73

be minimized. We define this energy function as the sum of
two functions. The first one is defined as the energy function in

the image space &;(t) = %efei, and the second one is defined
as the energy function in the pose space &,(t) = %egep.
Finally, the total energy function is written as
1
E(t) = &Ei(t) +E(t) = = (e e; + egep). (7)

2

Initially, the value of w is assumed to be small and near to
zero. This allows us to start with PBVS where visibility and
local minima constraints are already satisfied. With time the
energy function decreases, and value of w should increase.
This makes the system behave almost like IBVS near to
the desired position. The task function converges to zero
monotonically in the neighborhood of the desired position. A
suitable function for these requirements is the sigmoid function

1
YT lvep [—(E—7)

®)

where E = w. The behavior of this function with
respect to E/ and -~y 1s shown in Fig 2. In this figure one can
see that the value of this function for a given £ is small for
larger ~.

A. Features-visibility and Local Minima

In IBVS, it is easy to show that the feature trajectory in the
image space can be a straight line. If the initial and desired
positions of the image points are well chosen in such a way
that all features are in the camera field of view, the image
points are ensured to be in the FoV during the whole process.
This is subject to the availability of a good estimate of the
depth and robust image measurements. The weighting factor
of the image-based visual servoing controller w, conditioned
on the image measurement x, increases when one of the image
points approaches the image boundary.

Given N image points as feature, let us define the vector
D where its element D; is the distance vector of the ith point
to the nearest image boundary. The weighting factor w should
increase when D,,,;,, is decreasing, where D, ;, is
Therefore, v should decrease in order to increase the weighting
factozr w. The decrement amount in v may be proportional to

D

e Tmin

The evaluation of image local minima is done in terms of
the energy function in the image space
1 T
€i = 5(si = sa) (si = sa), ©)
and its gradient vector G;(t) with respect to time ¢. The
image feature s represents, in case of image point, the image
coordinates. At every time instant ¢, the gradient vector G;(t)
of the energy function &; is given as
o€ 8st
Gi(t,s) = —| = (s¢ —sa)T —-
ibs) =G, = (e = sa)
where J; is the image Jacobian. Image local minima occurs
when the norm of the gradient vector G;(t) is near the zero.
Therefor, the weighting factor w should decrease at or near
to the image local minima. This means increasing 7. The

increment amount in 7 may be proportional to the amount
a2
e v,

= (st — sa)"JiV, (10)

Finally, the parameter ~ is given as
2 A2
v = —e Pmin 4 =, (11)
From (11), (8), and Fig 2, one can observe that the weighting
factor w increases when one of the features point approaches
the image border. However, it decreases near to the image local
minima.
IV. PROBABILISTIC INTEGRATION FRAMEWORK
The integration rule given in (6) can be arrived from a
probabilistic formulation. The weights w(c«;) represents the
probability of using a certain control law.
Let V = {V;}, where V C RS be a set of possible states
of the velocity screw vector commanded to the robot arm

controller. The probability that the velocity vector V' uses the
value V; conditioned to the image measurement vector z is

p(V = Vilz) = p(Viz). (12)

By convention, these probabilities sum to  unity
J,p(Vilz) = 1. The conditioned expected value of the
velocity vector over the universe V is

V=E<v;|x>=/ Vi p(Vila) dVi. (13)
A%

It is possible to rewrite the probability function p(V;|x) as

p(Vilo) = [ p(Vi.als) da= [ pVila,a) plale) da.
[ a (14)
By substituting (14) in (13), the conditional mean of the
velocity can be rewritten as

V= /p(a|x) V(a) da,

«
where, V(o) = Jy, Vi p(Vila, ) dV;, and in the discrete case
V=3 V() plasle),  where Y plagle) = 1. (16)

(621

(15)

Here p(a;|z) is the discrete probability for «;, conditioned on
the image measurement x. Assuming that the value of ¢ is in
the range {im, po}, and replacing p(«;|z) by w(«;), equation
(16) reduced to (1) and consequently (6).




V. STABILITY ANALYSIS
A. Local Stability

Local stability is considered only in a neighborhood of
the convergence (equilibrium) point. An equilibrium point
is locally asymptotically stable if all solutions starting in a
small neighborhood converge to the equilibrium point. stability
of equilibrium point is characterized by Lyapunov function.
Considering linear systems, the local and global stability are
same. The necessary and sufficient condition for local/global
asymptotic stability of a linear system ¢ = e is that the
matrix A describing the system has negative real parts for
all its eigenvalues. Eigenvalues with zeros real part do not
void the stability. However, they need not give robustness
because it may shift to the positive part when the system is
affected by noise or disturbance. In fact, our system is a convex
combination of two linear systems; the matrices .J; and J, are
fixed and non-singular in a neighborhood of the equilibrium
point. Stability for such a system needs to ensure that there
exist a Lyapunov function for this combination.

It was shown in [7] that our integration system is a convex
combination system ¢ = Ae. Here,

A=wA; + (1 —w)As, (17)
[ —Iy 0 (o gt
where A, = _J, J;r 0 and Ay = 0 % ]

As it is proved in [7], V w € [0, 1], the convex combination
of the systems given in (17) is stable and there exist a quadratic
common Lyapunov function. A common Lyapunov function
means that there exist symmetric positive definite matrices P
and @ such that AT P + PA = —Q. In other words,

w(ATP+PA) + (1 - w)(ATP+ PA) = -Q, (18)
wel (AlTP + PAl)e +(1—w) el (AgP + PAg)e

=—¢l'Qe <0, (19)

Ve € R™\{0}. In other words, R™\{0} is covered by the union
of the two open conic regions: (i) ®; = {e, T (ATP +
PAj)e < 0}, and (ii) Ry = {e, eT(ATP + PAy)e < 0}.
Thus, the function V(e) = e Pe decreases along solutions
from A; in region $; and along solutions from A, in region
Ry. While all matrices in the matrix pencil -y, (A1, A2) are
stable, the Lyapunov function V' (e) decreases along solutions
for all w.

B. Global Stability

It was proved in [13] that for both IBVS and PBVS, there
exist a range of camera poses where under a visual servoing
algorithm both image error e; and pose error ¢, decrease to
zero. In addition, if the pose error consists of a translation and
sufficiently small rotation, the system is within this region.
Consequently, pose error with a translation and sufficiently
small rotation can be regulated to zero either using IBVS or
PBVS.

To analyze the behaviour of the proposed integrated system
in the nieghborhood of an image local minima, a 2D projection
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Fig. 3.

Representation of the velocity vectors in 2D space.

of the velocity vector is presented in Fig 3. The point A
represents the current work point in the nieghborhood of an
image local minima represented by the point L. The point G
represents the global minima. In the nieghborhood of L, the
direction of V(ay,) is toward L. Where PBVS is globally
stable or at least local minima may occur in the neighborhood
of the global one G, the vector V(a,) is independent on L
and always points toward the global minima G. It is clear
that the weighted sum of these two vectors V(i) and
V(apo) will drive the system away from the local minima
L toward the global minima G. After a few iterations, the
system escape from the local minima by getting out of its
neighborhood. In case of L is on the straight line from A to
G, the weight w is designed to be much smaller than 1 —w in
the neighborhood of the loca minima L. Regardless the rotation
error has been increased or decreased in the neighborhood of
the local minima, it will start decreasing again after escaping
it up to the reaching the stability region. In the stability region
i.e. the neighborhood of the global minima, both image error
and pose error decrease monotonically to the global minima.
We argue that the rotation part in the pose error decreases to
small value in spite of the existence of an image local minima.
This allows the translation part to start decreasing when the
rotation error becomes sufficiently small. Because 0 < w < 1,
the system avoids the local minima in the image and Cartesian
spaces. In fact, the local minima in IBVS and PBVS are not
correlated and do not tend to happen together. This justifies
the claim that our method is globally asymptotically stable.

VI. SIMULATION AND RESULTS

We present the simulation experiments where our proposed
method is compared to the previous hybrid methods, namely
switching methods proposed by Gans and Hutchinson [11],
[13] and the one proposed by Chesi er al. [5]. In the re-
maining of this paper and for comparison purpose, we call
the first method as Gans’ method and second one as Chesi’s
method. These two methods, in addition to the proposed, are
implemented.

Comparison is carried out for two positioning tasks. First
one is with a 180 degrees rotation error around the camera
optical axis. Using this task we evaluate performance of the
algorithm for keeping the visibility of features. The second
task is a general positioning task that contains rotational



Phcls
]

0 2 40 60 8 100 120 140 160 180
Pixels. Herations|(25/sec)

(a) (b)

0 2 40 60 8 100 120 140 160 180
Pixels. Herations|(25/sec)

(©) (d)

Fig. 4. The image features trajectories and pose error in presence of Cartesian
local minima. Gans method in the first row and our integration method in the
second row.

and translational errors. The task is useful to evaluate the
time of convergence and the continuity of the control signal.
The servoing target object consists of four planar points.
We assume a perspective projection camera model with unit
aspect ratio. The processing rate is considered to be fixed at
25 Frames/Sec.

A. Feature-visibility and Local Minima

The positioning task with 180 degrees rotation error is
attempted here. Our proposed method is compared to Gans’
method. Ours provided satisfactory results for the features
visibility as shown in Fig 4(a). Gans’ method started with
PBVS, producing a pure rotation about the camera optical
axis. When the image features approach the image border, the
control switches to IBVS, in order to keep the image features
visibile. IBVS produces a straight line image trajectory but it
is acompanied with a camera retreat in the Cartesian space.
At the retreat threshold, the control switches back to PBVS
to produce the pure rotation about the camera optical axis
again. The image features stay far from the image border the
control will continue with PBVS till the desired pose. Owing
to errors in the pose estimation process, the system converges
to a local minima in the nieghborhood of the desired pose. In
Fig 4(a), the final position of the image features diffirent from
the desired one while the pose error in Fig 4(b) converges to a
small value near to its zero dsired value. Figures 5(a) and 5(b)
show the local minima where the velocity convergs to zero and
the image error does not.

Our method successfully keeps the image features visibile
(see Fig 4(c)) during the servoing process. In the same figure
one can see that the image features converge perfectly to the
desired position depecting a global minima. The method also
behaves perfectly with respect to the Cartesian local minima
where the IBVS controller is still working and aviods the
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Fig. 5. The image error and velocity command. Gans method in the first
row and our integration method in the second row.

local minima. This is clear from the pose error in Fig 4(d).
The image error and velocity command in Figs 5(c) and 5(d)
converge both to zero that depicts a global minima.

B. Discontinuity and Convergence Time

To evaluate the time of convergance and the smoothness
of the velocity control signal, we use a general positioning
task with both rotational and translational error. We compare it
with both Chesi’s and Gans’ methods. Gans” method (Figs 6(a)
and 6(b)) shows a discontinuity in the control signal due to
the switching between IBVS and PBVS. In Chesi’s mehtod
(Figs 6(c) and 6(d)), there are a frequent switching. This means
a discontinuity in the control signal. In contrast to these two
methods, our method (Figs 6(e) and 6(f)) provides a continuos
and smooth control signal i. e. the velocity screw command.

The switching design of Gans’ and Chesi’s mehtods, in
order to keep the visibility of the image features, came out
with a delay in the convergence. This is clear from the image
error graphs in Fig 6(a), 6(c), and 6(e). From the figures one
can note that our integration method converges within 3-4 Sec,
while Gans’ method converges within 6-7 Sec and Chesi et al.
mehtod needs 9-10 Sec to converge for the same task.

A comparison of the the camera trajectory is shown in
Figure 7. Our method and Gans’ method show similar camera
trajectory while Chesi’s mehtod shows the worst path that
similar to the one given using IBVS methods.

VII. CONCLUSION AND FUTURE WORK

The method presented in this paper describes a unique
solution that satisfies a set of widly varying requirments in vi-
sual servoing literature. These requirments are such as feature
visibility, local minima, and straight camera trajectory. The
method gives similar performance to previous methods like
Gans’ one with respect to image features visibility. However,
it gives faster convergance and contineuos velocity control
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integration method shows faster convergence and smooth velocity control in

(e) and (f).

signal in contrast to the discontiuity present in other switching
methods like Gans’ and Chesi’s ones.

This method is a part of larger activity that aims to design
a unified frame work to estimate the 3D information online.
Then, use these information to improve the performance of
visual servoing using this integration method.
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