Scalable, Tiled Display Wall for Graphics using a Coordinated Cluster of PCs

Nirnimesh

nirnimesh@students.iiit.ac.in

P J Narayanan
pjn@iiit.ac.in

Center for Visua Information Technology
International Institute of Information Technology
Hyderabad, India

Abstract

Tiled displays can provide high resolution and large dis-
play area. Cluster-based tiled displays are cost-effective
and scalable. Chromium is a popular software API used
to build such displays, Chromium based tiled displays tend
to be network-limited affecting the scalability in the num-
ber of nodes and the ability to handle really large envi-
ronment models. We present a tiled Display Wall setup
based on a client-server architecture. Our system uses off-
the-shelf graphics hardware and standard ether net network.
High-level scene structure and hierarchy of a scene graph
is used by a central server to minimize network load. Msi-
ble parts of the scene graph are transmitted and cached by
the clients to take advantage of temporal coherence. The
server exploits the high degree of overlap in the compu-
tation space for each rendering node to avoid concurrent
redundant computations. We use a broadcast oriented pro-
tocol to the clients making the system scalable. Geometry
push philosophy from the server helps keep the clients in
sync with one another and facilitates the pipelining of the
constituent stages. Distributed rendering allows the display
wall to render scenes which are otherwise too bulky for any
of the individual rendering nodes. No node, including the
server, needs to render the entire environment, making our
system suitable for interactive rendering of massive models.
W& show performance measures for the different underlying
aspects of our display wall consisting of up to 4 x4 tiles.
Sudies show that the server and network loads grow sub-
linearly with the number of tiles. This makes our scheme
suitable for the construction of very large-resolution dis-

plays.

1. Introduction

The display resolution for personal computers has grown
very modestly over the past two decades whereas comput-
ing resources have been following Moore’s law. There is a

trade off between resolution and display size on computer
displays. Display resolution affects the visible detail and
size affects the visual context. Baudisch et al. embedded
high-resolution portions in the screen while displaying low
resolutions for the rest [9] in an effort to achieve focus plus
context. Want et al. proposed a focus+context framework
to magnify the features of interest [27]. These methods
assume that the viewer concentrates at a small region on
the screen whereas people tend to move about and change
viewpoints in a large display environment [13]. Large dis-
plays with high resolution are required to convey a feeling
of being immersed in an environment in Virtual Reality ap-
plications. A tiled, Display Wall is a large display system
for scientific and medical visualization applications and for
public displays. General purpose systems with off-the-shelf
graphics accelerators can be used in a cluster to provide a
cost-effective and scalable alternative for setting up large
tiled display walls.

In this paper, we present the design of a cluster-based
display wall that is built using commodity PCs and LAN.
The fundamental difference with solutions like Chromium
[18] is that the geometry is cached at the client nodes and
coordinated by the server to exploit temporal and spatial
coherence. Our system is able to provide high-quality tiled
display facility to any environment represented using the
Open Scene Graph API. A special feature of our system is
that even the server does not render the whole model. Net-
work load is minimized by client-side caching and multi-
casting of objects. This makes our system scalable to a large
number of tiles unlike existing solutions that get constrained
by network bandwidth. \We present the design of our system
in Section 3 and experimental results from it in Section 4.
Conclusions and future work are presented in Section 5.

2. Related Work

We present a critical review of the literature related to
the construction of large displays divided into those using
specialized hardware and those using PC clusters.



Specialized Hardware Setups: Large graphics display
systems have been built using specialized hardware by com-
panies like Silicon Graphics. High-end computer systems
like the Onyx2, with multiple graphics pipelines and chan-
nels with each driving a projector, are often used for creat-
ing large displays for applications [5]. Such solutions are
expensive and non-scalable.

Cluster-based Displays. Cluster-based solutions for cre-
ating large displays have gained a lot of interest re-
cently [15, 18]. Such displays are constructed using a num-
ber of commodity PCs interconnected on a LAN or a low-
latency network like Myrinet, as in [5, 18, 6]. Cluster-based
displays are economical, scalable in performance and reso-
lution and easy to maintain; the cluster can also be used for
computational purposes. Li et al. reported techniques, soft-
ware tools and applications that make high-resolution tiled
displays scalable and easy to use, for the Princeton Scalable
Display Wall project [19].

Two approaches are popular in cluster-based display se-
tups: master-slave and client-server [15]. The dataset is
mirrored across all the nodes in a master-slave setup and
multiple instances of a program are run, one on each node
and the execution is synchronized. Each node renders the
entire scene but displays only a certain portion. The master-
slave model is sub-classified as System-level program syn-
chronized (SSE) or Application-level program synchronized
(APE). SSE attempts to synchronize transparently without
requiring modification or even relinking of the source code.
In Hypervisor [12], Bressoud et al. proposed a method that
treats an actual software system as running on a virtual ma-
chine, which is close to the actual microprocessor architec-
ture, resulting in severe slow down. With APE, the respon-
sibility of synchronizing lies with the application. This ap-
proach has low network bandwidth requirements. However,
since each node runs an instance of the application, there
is a gain in display resolution only and no gain in perfor-
mance. VR Juggler, a framework for virtual reality appli-
cations, falls under this category [10]. Net Juggler [8] is
an open source library that turns a commodity component
cluster running the VR Juggler [10] into a single VR Jug-
gler image cluster. The master-slave approach assumes that
each node in the cluster would be able to render the entire
environment in its entirety. This runs counter to the moti-
vation of load-balancing that is critical to cluster-based dis-
plays. It is also difficult to handle dynamic environments
since the data is replicated. It is difficult to access real time
data stream from a single external network source even if
the data source is centralized.

The client-server models store the dataset at one central
server. The data distribution can follow the sort-first strat-
egy or the sort-last strategy [21, 20]. The required network
bandwidth can be high when sending primitives to the ap-

propriate rendering node. Samanta et al. investigated meth-
ods to improve load balancing by changing the tiling dy-
namically [22]. The server can also use a Distributed Data
Management framework as in [17]. The server distributes
appropriate data to each client node and performs the syn-
chronization among the render nodes. One way to distribute
the data transparently is to intercept function calls at the
Graphics API level [18] or at the display manager level [1].
The latter can provide tiled display including all windowing
features including menus, toolbars and decorations. The
former provides the large display facility to any applica-
tion using the API and is used by Chromium, which pow-
ers display walls such as the Hyperwall [23], Viswall [6],
LionEyes Display Wall [3] and many others. Chromium
can clusterize any application built over OpenGL transpar-
ently. It fails however to capture coherence of data across
frames as each frame is treated independently. The network
requirements are thus very high even when the scene is un-
changed. It is also not able to take advantage of the high-
level objects structure encoded in scene graphs due to its
low-level focus.

Data can also be distributed at the 3D object level and
not the primitive level. This allows the system to exploit
the hierarchical structure, if any, in the dataset and take
more informed decisions. This is the approach followed
by Syzygy [24] and OpenSG [26] for display wall render-
ing. The Syzygy software library [24] consists of tools
for programming VR applications on PC clusters. Syzygy
includes two application frameworks: a distributed scene
graph framework for rendering a single application’s graph-
ics database on multiple rendering clients and a master-
slave framework for applications with multiple synchro-
nized instances.

The rendering nodes in the cluster need to be synchro-
nized to avoid display tearing effects during rendering. All
nodes need to fulfill three requirements for locking: Gen-
lock, Swap-lock and Data-lock. Genlock provides co-
herency to the display signals across all the nodes. Pure
hardware solutions like Lightning2 [25] and Matrox’s ASM
[4] or software/hardware solutions like SoftGenLock [7]
or WinSGL [28] are used for this purpose. Swap-Lock
compensates for the differential rendering times in differ-
ent nodes. Data-Lock refers to application-level coherency
in the scene to be rendered.

Our approach of geometry management for display walls
is closest to Syzygy’s distributed scene graph approach. Our
approach is more specific for scalable display walls and
not necessarily for general VR environments. We exploit
the coherence in computations required for each rendering
node, rather than treating them individually. Consequently,
we do not assume that each rendering node is powerful
enough to manage the entire environment. We cache ob-
jects at the render nodes and evict objects out of the cache



to avoid overflows. This results in better utilization of the
network and memory resources for improved scalability.

Geometry Server: Our Display Wall effort is an exten-
sion of an earlier work on a the geometry server, which is
a high-performance, centralized storehouse for massive ge-
ometric data [16]. The server has a scene graph based rep-
resentation of the virtual environment with multiple levels
of detail. It can simultaneously serve a number of hetero-
geneous clients adaptively, ranging from a graphics work-
station on the LAN to a PDA connected over a wireless
network. Each client gets a visibility-limited portion of
the model that is compatible with its rendering capabili-
ties, computational resources and network characteristics,
with an objective of providing consistent, interactive frame
rates. The clients cache parts of the scene graph it encoun-
ters during its walk-through and employs a cache manage-
ment policy that is based on potential visibility of cached
objects. From the client’s point of view, the remotely served
geometry is yet another node in its scene graph and can be
modified like a local model. Dynamic objects are handled
consistently using a server-push for information and lazy-
download for the geometry data. The system can optimally
serve models loadable onto an Open Scene Graph [14] sys-
tem on a wide range of clients [16] and finds ready applica-
tions in battlefield simulation, terrain visualization, etc. Our
display wall system optimizes the philosophy of the geom-
etry server for a large cluster-based display system. The ge-
ometry server just maintains independent contexts for each
rendering node. In a display wall, the viewpoints of the
rendering nodes are tied together, which allows concurrent
computations to be applied as a whole rather than individu-
ally. Local caching of the geometry by the clients provides
a way to exploit temporal coherency of the environment.

3. Geometry-Managed Display Wall

Our Display Wall system follows a client-server archi-
tecture. The server has the whole virtual environment as a
scene graph in its memory. It also handles the viewpoint
control. Out-of-core rendering techniques can be used at
the server if the environment model demands it. Each tile
is controlled by a client node that is connected to the server
over a standard 10/100/1000 Mbps LAN. The server is a
medium to high end machine but the clients are standard
low to medium end machines.

Server Tasks: The server determines objects in the scene
that are visible to the sub-frustum of each rendering node
at each time instant. Conservative visibility using frustum
culling of bounding boxes is preferred over real visibility as
occluded objects may become visible in subsequent frames,

Server process

Determine Visibility for
each rendering node

'

Transmit Visibility Info pe it

vi
s Rendering Node/
Client process

Receive Visibility Info

Tx ¢
A

Multicast Geometry for | || Receive fresh
freshly Visible Objects geometry, and cache

'

Wai Wait for all clients Render Scene
i .. .
to finish rendering W, ¢
‘ “,| Notify Ready-to-Swap
Order all clientsto | to Server
swap buffers +
N

Wait for Swap Orders

v

Swap Buffers

Figure 1. Server-Client control flow

deriving benefit from client-side caching. The server knows
which objects are already with the client and determines the
new objects to be sent to each client node per frame. The
server first sends the results of culling to each node and the
list of new objects. Then it sends the new objects to the
clients using a multicast mode. Multicasting optimizes the
use of network bandwidth — which is a critical resource in
such clusters — as several objects might be needed by mul-
tiple clients at the same time. The server also ensures syn-
chronized rendering for simultaneous update of each dis-
play. Figure 1 shows these steps in a flow diagram.

Client Tasks: Clients receive lists of objects from server
for each frame. Each server listens on a multicast port and
picks all objects it needs for the next frame. Client places
the objects in a local cache to exploit temporal coherence
of objects to reduce network bandwidth. It then renders all
visible objects and informs the server about its readiness to
swap the buffers. The buffer is swapped on getting a go
ahead from the server.

A distinguishing feature of our system is that the server
does not have to render the whole model. It computes the
per tile visibility based on the object’s bounding boxes us-
ing a novel algorithm described below. Client-side caching
reduces network bandwidth by exploiting temporal coher-
ence. Additionally, multicasting the actual objects mini-

Rx



mizes the network load and increases the scalability in terms
of the number of tiles. The system also achieves better
frame rates on bulky models by effective use of parallel
rendering. The rendering pipeline of our Display Wall can
be broken into three stages: Visibility determination, data
transmission and rendering and sync. These are the critical
operations that directly determine the overall performance.

3.1. Visibility Determination

It is necessary to determine the visibility of each object
with respect to each frustum so as to minimize the network
load and also to reduce the geometry sent down the render-
ing node’s GPU pipeline. First, the visibility of different
objects in the scene with respect to the overall view frus-
tum is determined to eliminate objects that are totally non-
visible. Subsequently, we use a hierarchical frustum culling
approach to determine visibility of each object with respect
to the frusta of each rendering node or tile. This second
step uses an approach similar to quad-tree decomposition
using frustum planes. The combined view frustum for the
display wall consists of an M x N arrangement of identi-
cal frusta consisting of (M+1) horizontal planes and (N+1)
vertical planes. Each plane partitions the frustum into two
half-spaces. If an object is found to be entirely on one side
of a plane, it cannot be on the other side. Hence, the visibil-
ity tests for all frusta on the other side can be safely elim-
inated. If an object intersects the plane, the process needs
to repeated for both the half-spaces. Algorithm 1 gives the
pseudo-code of the hierarchical frustum culling algorithm.

With Nx N tiles where N = 2X, the horizontal planes are
ho, hy ... hy and the vertical planes are v, vy ... Vn. The
hierarchical culling can be performed using the following
steps.

1. Eliminate objects outside the outer frustum.
2. For each object O, mark it to be visible in all frusta.
3. Call cullFrust(0, N, 0, N, O, true)

After this procedure, an object O needs to be transmitted
only to the rendering nodes corresponding to the frusta that
are still marked as visible.

This two-stage visibility algorithm is fast and efficient.
We can cull a Power plant scene of 1185 objects to a 4 x4
configuration at 827 times per second using the above al-
gorithm. We also experimented with hardware occlusion
queries [2] on the server’s GPU. The same scene could be
culled only 670 times per second using this approach, pri-
marily due to the CPU wait and GPU stalls introduced by
the occlusion queries. Occlusion query can free the CPU
for other tasks and therefore might actually be preferred in
situations where the data-generation process is CPU-limited
or where the CPU wait time can be further utilized to nar-
row down the search space [11]. We show results without

Algorithm 1 cullFrust(i, j, m, n, O, flag)
1: if Frustum cannot be subdivided then

2:  return
3 end if
4: if flag then
5. Intersect O with vy where k= (i+ j)/2
6: if Oon left of v then
7: Eliminate all frustums to right of vk
8: if any frustum remaining then
9 call cullFrust(i, k, m, n, O, false)
10: end if
11:  elseif Oon right then
12: Eliminate all frustums to left of vy
13: if any frustum remaining then
14: call cullFrust(k, j, m, n, O, false)
15: end if
16: €else
17: call cullFrust(i, k, m, n, O, false)
18: call cullFrust(k, j, m, n, O, false)
190 endif
20: else

21:  Intersect O with hy where k= (m+n)/2
22: if Oon top of hg then

23: Eliminate all frustums below hy
24; if any frustum remaining then

25: call cullFrust(i, j, m, k, O, true)
26: end if

27 elseif O on bottom then

28: Eliminate all frustums above hy
29: if any frustum remaining then

30: call cullFrust(i, j, k, n, O, true)
3L end if

32 dse

33; call cullFrust(i, j, m k, O, true)
34: call cullFrust(i, j, k, n, O, true)
35 endif

36: end if

hardware occlusion queries (Table 2), since the amount of
useful work that can be interleaved during CPU-wait is sub-
jective to an application,.

The hierarchy of frusta used in Algorithm 1 exploits the
high degree of overlap in the computation space of visibility
determination for all the rendering nodes. Algorithm 1 can
further be optimized to take advantage of object hierarchy,
if present. It can also extend to potentially infinite environ-
ments where objects are generated on discovery. Also note
that the algorithm needs to perform object-intersection-test
with only one plane (line: 5 or 21) for each invocation of
cullFrust(), in contrast with naive view-frustum collision al-
gorithms where all the 6 planes need to be considered.



3.2. Transmission

This stage involves the transmission of objects to the ren-
dering nodes. The network transmission is almost always
the limiting factor in all cluster-based rendering systems.
The performance of this stage is determined by the network
bandwidth and latency. The server optionally compresses
the geometry before transmitting. This data is packed into
datagrams and assigned a sequence identifier before being
multicasted. The clients collect objects that are destined for
them and acknowledge the server. The clients also cache
the objects received. This involves evicting objects out of
the cache if it tends to overflow. We use LRU eviction to
free space for new objects. The server keeps track of the
objects in the cache of the clients in order to avoid retrans-
mission. The datagrams for which the server doesn’t re-
ceive an acknowledgment from the client are re-sent after
a pause. This pause time is scaled incrementally. Multi-
casting ensures that the network requirements do not scale
linearly with the number of nodes in the cluster. In fact, the
network requirements remain practically constant for varia-
tions in the number of nodes as will be demonstrated by the
experiments reported in the next section.

3.3. Rendering and Sync

The clients start rendering the scene when all objects for
the next frame are received. The time taken for this step is
proportional to the geometry size within the view frustum.
This varies from client to client and hence the swapping of
the render buffers is synchronized by the server. Network
latency is crucial for the server to be able perform this syn-
chronization. Our experiments show that a standard ether-
net network is sufficient for synchronization at interactive
frame-rates.

The clients also cache the objects received from the
server. The cache enables our system to exploit inter-frame
coherence in data. Each client has a fixed cache and uses
an LRU algorithm to remove objects from it when cache
gets full. Note that the rendering nodes will able to render
environments of sizes well beyond their capability due to
the cache replacement strategy. This has been possible as
a result of maintaining higher-level object information with
the help of scenegraphs at the server. This is an improve-
ment over systems that store the entire scene on each client.
The push philosophy adopted by the server frees the clients
of much load and hence even low-end clients can be used.
The server manages most aspects of the system, leaving the
clients free for data reception and rendering.

The three stages mentioned above can also be pipelined.
For instance, while the server is waiting for ordering the
swap because some clients haven’t finished rendering, it
can carry out the visibility determination or transmission

for subsequent frames. The client, on the other hand, can re-
ceive data for subsequent frames, while rendering one. This
essentially means that the framerate for rendering that wall
would be determined by the slowest stage of the sequen-
tially ordered 3 stage pipeline rather than the sum of the
times of individual stages. Figure 2 illustrates this pipelin-
ing between the various stages for the server and one render-
ing node. Interleaving of the stages for consecutive frames
allows the visibility determination of frame i 41 to start just
after the visibility determination for the it" frame has com-
pleted, without waiting for it to be transmitted and rendered.
The clients signal back to the server when they are ready
to render. Meanwhile, they start rendering the next frame.
The server orders a swap of buffers for all rendering nodes
when it receives I’m Ready from all of them. All the render-
ing nodes synchronize their display at this point. This same
process is carried out for all the frames (the figure shows
this only for frame i). Pipelining may increase the latency
but the gain in framerate more than compensates for it.
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Figure 2. Inter-frame pipelining of the 3
stages of Display Wall rendering. Vis de-
notes the Visibility Determination Stage, Tx
the geometry transmission stage, Rx the ge-
ometry reception stage and R the rendering
stage. The effective FPS of the system gets
increased due to this interleaving.

4. Experimental Results

We tested our system for scalability with respect to sev-
eral metrics for up to 4 x4 nodes. The sub-linear growth
of the network and computation requirements indicates that



Table 1. Time taken to start a 4x4 display wall.
This involves sending of the initial data to the
clients.

Tile Time taken (in seconds)
Configuration | with TCP  with Multicast
2x2 26.44 26.00
2x3 32.02 27.29
2x4 40.54 27.60
3x3 44.03 27.71
3x4 56.38 27.72
4x4 72.10 27.74

the system can be used to set-up gigantic display walls from
a cluster of low-end systems. Our test setup consists of 15
low-end systems with AMD Athlon64 3000+ systems with
512MB memory and an on-board ATI Radeon Xpress 200
graphics. The GPU uses 64MB of the system memory as the
video memory. These machines act as rendering nodes in
the cluster. The server is an AMD Athlon 64 3200+ system
with 3GB RAM and an Nvidia 6600GT graphics accelera-
tor. The server machine also hosts one rendering node. The
performance gain achieved by using better rendering nodes
would also translate naturally to our system as well. The 16
systems are connected using a separate 100Mbps ethernet
switch. Some experiments were performed with higher or
lower speed networks, as mentioned. We present results of
tests for scalability with various tile-configurations (2 x 2,
2x3, 2x4, 3x3, 3x4, 4x4). We currently use a tiled
arrangement of monitors with no special attention paid to
their alignment for the display. Using monitors causes vi-
sual distraction due to the gaps between the adjacent tiles:
straight lines don’t appear straight anymore due to the par-
allax. We corrected this by adjusting the view frustum for
each tile. The view frustum of each tile is clipped a little
along the edges. Figure 11 shows the Powerplant model on
our 4 x4 display wall with the parallax error compensated.

The server has to read and initialize large amounts of
data and send some of it to the clients to start the wall. Ta-
ble 1 compares the startup time when using TCP vs. UDP
multicast for the Powerplant model. The startup time is
virtually independent of the tile-configuration when using
multicast over UDP but increases linearly with TCP based
network transmission.

Table 2 shows the time taken to perform the Visibility
Determination using Algorithm 1 on UNC’s Powerplant
model with 483M of geometry in 1185 objects.

In Figure 3, we show the variation of the frame rate in
fps for different tile-configurations during a walkthrough.
The scene consists of 5.5 million vertices in 100 objects
scattered around with an average object size of 2.03M. We

Table 2. Time taken for Visibility Determina-
tion using Hierarchical View Frustum Culling
(Algorithm 1) on UNC’s Powerplant model
with 1185 objects.

Config | Time taken (ms)
2x2 2.99
2x3 2.83
2x4 2.90
3x3 2.77
3x4 3.44
4x4 3.81

steer the walkthrough in such a way that fresh objects be-
come visible to all the tiles at once, bringing high network
loads at the same time. Note that there’s almost no vari-
ation in fps with different tile-configurations of the wall.
The sharp trenches are seen when fresh objects become vis-
ible to all the tiles at once, where the display freezes for an
instant. The fps reduces to about 12 due to the visibility of
more objects until some are culled out. The fps then reaches
near 20. The pattern of the walkthrough is repetitive and so
is the fps variation, demonstrating the efficiency of cache
management.
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Figure 3. Showing system scalability with re-
spect to the number of nodes. Note that the
performance of the system remains almost
unchanged for different tile-configurations

Caching at the clients eliminates the dependence of the
performance on network bandwidth. Figure 4 shows the
nature of the network utilization for the above walkthrough.
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Figure 4. Network usage vs. time for a 600-
frames walkthrough. The walkthrough is
such that objects appear in multiple tiles at
once. Multicast mitigates this effect. Due
to caching of objects by the client, the net-
work is used only when fresh objects are to
fetched.

The initial low network utilization corresponds to the server
starting up. This is followed by a high-utilization phase
when the server is sending all the startup data to the clients.
Figure 5 shows the CPU utilization of the server and a
client. The initial high utilization for the server is due to the
preprocessing. For the rest of the walkthrough, however,
the CPU remains only moderately loaded and is available
for other computations.

In Figure 6, we show the above walkthrough but with the
network bandwidth capped to 10Mbps. The performance
is not degraded at all with the reduced bandwidth due to
geometry caching and the use of multicasting. The freeze
times of the display due to the transmission of new objects
are longer due to the lower network bandwidth.

In another series of experiments, we perform a 4300-
frames long walkthrough in a scene containing 205 objects
totalling to 416MB where each object has an average size
of 2MB. Figure 7 shows the walkthrough for various tile-
configurations of the wall. The clients need to fetch a lot
of data in the initial phases of the traversal as they dis-
cover new objects causing the huge variation in FPS shown
in the figure during the initial stages (till 80s). The walk-
through almost retraces its path for the next 70 seconds, in
which case the graph shows a sustained frame-rate for all
tile-configurations. The walkthrough starts discovering new
objects (for about 30 seconds) near the 150 seconds mark.
After this point, a lot of the scene has been cached. FPS per-
sists at 23 FPS. Also note that the plots corresponding to the
various tile-configurations are closely similar. This shows
the low dependence of the system on the tile-configuration,
hence improved scalability.

Figure 8 shows the performance of the 4x4 configuration
with 3 different cache sizes. The correct cache size depends
on the density of objects in an environment and varies from
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Figure 5. CPU Usage by the Geometry Server
and a Rendering Node during a 600 Frame
walkthrough.

scene to scene. In this experiment, a 100MB cache size is
too large and remains underutilized while a 30MB cache
is too small and causes frequent re-fetches resulting in the
large disturbance of framerate. The 60MB cache size seems
optimal.

It should be noted that the above experiments were car-
ried out on worst-case scenes where a lot of objects are in-
troduced at the same time. In real-life situations, the view-
point changes slowly and the inter-frame coherence of ge-
ometry at every client is high. The geometry management
strategy will give consistent and high performance in such
situations as was our experience with normal scenes and in-
teractive walkthroughs.

Further, to demonstrate the load distribution capabilities
of our display wall rendering cluster, we chose an environ-
ment with a lot of small-in-size but heavy-on-rendering ob-
jects. In Figure 9, the 4 x4 configuration outperformed both
3x3and 2x2. The rendering load is heavy with fewer num-
ber of nodes in the cluster but better distributed with more
nodes as in 4x4. With less number of nodes in the cluster,
the rendering load is heavy, but with more nodes, the load
is better distributed, as in 4 x 4.

Even though we have shown the above results on ren-
dering nodes with low-end graphics, our system scales well
to perform load distribution and high-performance render-
ing on systems with good graphics as well. Figure 10 shows
the performance of our system on a cluster of 4 systems with
the same configuration as our server. They have an Nvidia
6600GT graphics accelerator each. We perform the above
walkthrough on the Powerplant model from UNC, with 13
million triangles spread over 1185 objects. A 2x2 cluster
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Figure 6. Showing system scalability with
respect to the number of nodes with net-
work bandwidth capped at 10 Mbps. Due
to caching, the network requirement doesn’t
degrade the performance except at times of
data-fetch.

renders it at 23 fps. The trench observed at near 160s is due
to huge data fetches as new parts of the scene is being dis-
covered, at which time the network is still the bottleneck.
The FPS stabilizes back to 23 FPS thereafter. There is a
natural startup-time lag due to the network factor. The pow-
erplant model runs at 1.5 FPS on our 4 x4 cluster where
the poor rendering capability of our rendering nodes is the
limiting factor.

Comparison with Chromium: Chromium is very
network-intensive and sends the OpenGL primitives for
each frame independently. Use of display lists with
Chromium has issues. The full Powerplant model runs
at about 0.5 FPS on the server machine (with Nvidia
6600GT and 3GB of RAM). Sending it to the display
wall using Chromium further slows down the rendering.
The application node experiences bursts of high CPU
activity, followed by high network transmission, for every
frame. The performance with Chromium worsens as the
number of tiles in the cluster increases. With our geometry
management techniques, we achieve a frame rate of 23 on
a 2x 2 cluster (each with Nvidia 6600 GT). The powerplant
performs at 1.5 FPS on our 4 x4 display wall, which
is due to the poor rendering capability of the rendering
nodes used. The load distribution over 16 rendering nodes
however makes this configuration perform even better than
a single system with Nvidia 6600 GT, as reported above.
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Figure 7. A 4300-frames walkthrough in a jun-
gle of 416M scene spread over 205 objects.

5. Conclusions and Future Wor k

In this paper, we presented a geometry-managed, tiled-
display system that uses commodity computers. The system
uses a client-server architecture that works with even mod-
est clients. The local caching of the geometry and the mul-
ticast mode of transmission of geometry keeps the network
requirements moderate and provide excellent scalability of
the architecture in contrast with prior work. We also demon-
strated the scalability and parallel rendering capabilities of
our system on the Powerplant model from UNC.

We are currently working on combining the the display
wall with an out-of-core rendering system to render ex-
tremely large resolutions. Viewpoints can be predicted at
the server in such systems and data can be sent to the clients
speculatively.

Swap-lock and gen-lock of the display is an important
area that needs further research. Since the use of commod-
ity graphics cards is a design goal of our system, hardware
gen-lock is not an option. We are working on a camera
based scheme to bring the displays into perfect synchro-
nization. This is similar to the camera-based approaches for
color-balancing and geometry correction followed by multi-
projector display systems.
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Figure 9. The rendering capability of our dis-
play wall increases with increase in the num-
ber of nodes in the cluster. More number of
nodes distribute the load in the visible frus-
tum.
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Figure 10. The performance of our 2x2 sys-
tem with Nvidia 6600 GT on each rendering
node. The network is still the bottleneck at
times of huge data fetch.



