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Abstract

Homography estimation is an important step in many
computer vision algorithms. Most existing algorithms es-
timate the homography from point or line correspondences
which are difficult to reliably obtain in many real-life sit-
uations. In this paper we propose a technique based on
correspondences of contours. Homography estimation is
carried out in Fourier domain. Starting from an affine es-
timate, the proposed algorithm computes the projective ho-
mography in an iterative manner. This technique does not
require explicit point to point correspondences; in fact such
point correspondences are a by-product of the proposed al-
gorithm. Experimental results and applications validate the
use of our technique.

1. Introduction

A homography is a non-singular linear relationship be-
tween points in two images [3]. When the world points are
on a plane, their images captured by two perspective cam-
eras are related by a 3 × 3 projective homography H. It is
well known that

y = Hx, (1)

where x and y are the corresponding points (in homoge-
neous coordinates) in the first and second view respectively.
Points in two images can be related by a unique homogra-
phy under many other situations (eg. when the cameras for
multiple scenes share the optical center).

Numerical computation of homography from image
measurements is an important step in tasks like calibra-
tion [17], metric rectification, 3D reconstruction, mosaic-
ing [12, 15] etc. In some applications, a simple similarity
or affine transformation could suffice but many applications
need a more general transformation. Problems like recog-
nition and registration often deal with complete projective
transformations. Given four corresponding points or lines
in a general configuration, the 3 × 3 homography matrix

(H) can be estimated [3] as each correspondence provides
2 constraints.

Most algorithms in multiple view geometry, which com-
pute algebraic relationships like homographies, need accu-
rate correspondences. Such accurate correspondences are
often difficult to obtain in practical situations. Algorithms
which use lines or similar higher order primitives have been
shown to be better suited for many geometric computa-
tions [3] as compared to points. In this paper, we extend
the notion of higher order primitive further to include an or-
dered collection of points – a contour. Compared to corre-
sponding points, corresponding contours can be easily and
robustly identified. We present a novel Fourier domain tech-
nique to compute the homography between two views that
only needs corresponding contours – no explicit point-to-
point correspondence is needed. In fact, the point-to-point
correspondence is obtained as a by-product of our homog-
raphy computation scheme. Major claims of this paper are
summarized below:

• We argue that an ordered set of pixels (say the contour
of an arbitrary planar object) is sufficient for estimating
the projective homography between two views.

• Our algorithm is defined on a sequence/collection of
points. We employ Fourier domain relationships of
sequences for the computation of homography. This
avoids explicit pixel-to-pixel correspondences.

• Explicit pixel to pixel correspondences can be obtained
as a by-product of our algorithm.

• Our algorithm first computes an affine approximation
to the actual homography. This transformation is then
used to initialize an iterative procedure that computes
the complete projective transformation by estimating
the projective depth.

• The proposed algorithm provides accurate projective
homographies in few iterations.



Source Primitive Technique Transformation Remarks
Many Points,

Patches
Correlation, Trans-
form Domain Analy-
sis

Similarity Popular for image registration.
Well studied in image process-
ing literature.

Books
and earlier
work [3, 14]

Points, Lines Numerically solving
linear equations (DLT)

Projective Direct closed form solution.
Strong dependence on accurate
correspondence.

Luong et al.,
etc. [11, 3]

Points with
additional
clues

Use of weak calibra-
tion

Projective Use additional clues like Fun-
damental Matrix, which again
needs correspondence for esti-
mation.

Kanatani
et al., etc.
[4, 2]

Points, Lines
etc.

RANSAC, ML, Least
Squares Estimates

Projective Large number of possibly noisy
correspondences; More robust
than DLT; Very popular.

Kuthirummal
et al. [10, 6]

Nonparametric
contour

Fourier Transform of
sequences

Affine Computes affine invariants and
polygonal approximations of
contours in Fourier domain.

Kruger et
al., etc. [5, 9]

Texture Fourier Transform of
image patches

Affine Minimal line correspondence;
upto affine homographies.

Kumar
et al.,
etc. [8, 6, 13]

Conics / Poly-
gons

Projective invariants Projective Two conic correspondences;
Minimal (1 pair) correspon-
dence, approximation.

This work Contour Fourier Transform of
sequences

Projective Estimation of affine approxima-
tion and then projective depth it-
eratively for robust computation
of homography.

Table 1. An Overview of Different Techniques for Homography Estimation

2. Homography from Collections

In the real world there exist many objects with sharp
boundaries. These boundaries have been traditionally uti-
lized in the form of lines, points, conics and contours, to es-
timate various multiview relationships. Traditionally higher
order primitives such as lines and curves have been found
to be more robust to track compared to points. Geometric
computations, like estimation of homography or fundamen-
tal matrix, are often done robustly based on these features.

Homographies have been popular in literature for various
image and video analysis tasks. Tasks like image registra-
tion have been conventionally formulated as an estimation
of a similarity transform relating the points in two images.
These methods were primarily based on correlation using
spatial or frequency domain techniques. With the popular-
ity of the mathematical models for imaging, homography
estimation has become an integral part of applications like
metric rectificationmosaicing and georeferencing. The ho-
mography between two views can be computed by finding
sufficient constraints to fix eight degrees of freedom, since
homographies are defined only upto scale. Homography has
been estimated using many geometrical primitives. Table 1

summarizes the wide spectrum of homography estimation
algorithms in a compact form. A detailed review and rela-
tive performance comparisons may be seen in [1].

The emergence of multiple view geometric techniques
as a popular stream of research in computer vision [3]
helped in compiling and presenting the homography esti-
mation schemes as solution of a system of equations using
Direct Linear Transformation (DLT) or other similar tech-
niques. Algorithms such as the 4-point method based on the
early known DLT [14] technique became popular. Normal-
ization procedures were proposed as a preprocessing step
to enhance numerical stability as these methods were sen-
sitive to the exactness of the correspondence, and condi-
tion numbers of the measurement matrices. Robustness was
also introduced by using standard techniques like Maximum
Likelihood Estimates and RANSAC [2, 4]. These statisti-
cal techniques enhanced the robustness of these algorithm
against noise in image correspondences, and hence proved
to be very effective. The correspondence information used
in DLT or RANSAC based homography estimation were
primarily point or line correspondences.

Techniques using other geometrical primitives such as
conics [8, 13] have also been developed. Polygons were



used by Kumar et al. [6] to solve the homography esti-
mation problem. This technique uses projective invariants
like cross ratio to grow a polygon approximating a contour,
present in both input images, starting with one seed point
correspondence as input. This polygonal approximation is
later used to estimate the homography [7].

Contours being omnipresent and general, can be tracked
more easily and hence are well suited for estimating multi-
view relations. A contour based technique would be robust
to sensor errors and other noise as well since it is based
on the properties of a collection of points and not depen-
dent on a single point. Contours as a geometrical primitive
were shown to be effective in developing rank constraints
of a matrix of Fourier coefficients. The Fourier descriptors
represent the shape in different views related by affine ho-
mographies [6, 10]. This technique is built on the Fourier
domain based representation of contours to establish affine
invariants which were shown to be helpful in solving planar
shape recognition.

Texture as a geometrical primitive, has been used in liter-
ature [5, 9] for computation of affine homographies. These
methods make use of the properties of the Fourier transform
of corresponding textures. In [9], line patterns in textures
have been used to estimate an affine approximation of the
homography. This estimate is then used as an initial esti-
mate for a nonlinear optimization procedure to determine
the projective homography.

3. Fourier Domain Approach to Homography
Estimation

Suppose there are N coplanar world points forming a
contour. These points are imaged in two different views to
form image points x[i] and y[i] (1 ≤ i ≤ N ), where each
x[i] and y[i] is a 2×1 vector. Assume that the homography
relating the two images is H. This can be written as

[

y[i]
1

]

= H

[

x[i]
1

]

. (2)

A solution for homography estimation based on Equa-
tion 2 would assume correspondence of y[i] and x[i]. When
point-to-point correspondence information is not available,
as is often the case, it is observed that the two sequence of
points are shifted versions of each other, and related by an
unknown shift λ as follows

[

y[i]
1

]

= H

[

x[i + λ]
1

]

. (3)

The homography estimation problem can now be posed
as follows: Given N coplanar world points forming an or-
dered sequence, captured by two cameras, estimate the un-
known homography H relating them. If λ is known, this

problem reduces to the homography computation from cor-
respondence of N points. A standard point based tech-
niques like RANSAC could be employed for this. However
when only contour correspondences are available, this shift
(λ) is unknown (we describe a method to estimate λ later)
and attempt to solve the problem in a Fourier domain.

If the homography relating images is affine (i.e the last
row of H is [0 0 1]), it follows from Equation 3 that

y[i] =

[

uy[i]
vy[i]

]

= Ax[i + λ] + b, (4)

where A,b are the upper-left 2 × 2 matrix and upper-right
2 × 1 vector of H respectively. Kuthirummal et al. [6, 10]
have developed theory of Fourier transforms of contours in
presence of affine homography. They used it effectively
in solving shape recognition problem, and for estimation
of affine homography. In their work algebraic constraints
across multiple views based on the rank of a matrix of
Fourier domain descriptor coefficients of the planar contour
were derived. Kuthirummal et al. [6, 10] denote the Fourier
domain representation of the sequence y[i] and x[i] as

Y[k] =

[

Uy[k]
Vy [k]

]

,X[k] =

[

Ux[k]
Vx[k]

]

, (5)

where Uy [k], Vy[k], Ux[k] and Vx[k] are respectively the
Fourier transforms of the sequences uy[i], vy[i], ux[i] and
vx[i] respectively. Affine homography estimation involves
computation of A and b from the point sequence correspon-
dences.

3.1. Affine homography estimation

The translation vector b corresponds to the DC compo-
nent (k = 0) in the frequency domain. It can be neglected
initially by shifting the origin to the centroid of the contour.
Later on b can be trivially computed as the difference in the
centroid of the two sequences.

Since H is a linear transformation, it can be shown that
same transformation (H) relates the sequences in both the
spatial as well as frequency domains [10]. Hence it follows
that

Y[k] = AX[k]e
j2πλk

N , (k ≥ 1). (6)

Substituting Equation 5 in 6 gives,
[

Uy[k]
Vy[k]

]

= A

[

Ux[k]
Vx[k]

]

e
j2πλk

N , (7)

and by rearrangement, Equation 7 becomes

Uy[k]

Vy[k]
=

H11Ux[k] + H12Vx[k]

H21Ux[k] + H22Vx[k]
, (8)



where Hij is (i, j)th element of H. This is a simple linear
system of equations with 2N − 2 equations and four un-
knowns (elements of A). It can be solved for A. The affine
part (A) of the homography H is computed like this. How-
ever this estimate is correct only upto an unknown scale fac-
tor. This scale factor can be computed by taking the ratio of
the average distance of points from the centroid in the actual
sequence y[i] and similar value in the sequence calculated
by projecting x[i] with the current estimate of A.

4. Iterative Projective Homography Estima-
tion

In this process of estimating the affine homography, the
strong ordering information present in the points on the con-
tour has been utilized by transforming the sequence to the
Fourier domain. The procedure of estimating affine homog-
raphy from contour correspondence is not directly applica-
ble to projective transformation. This is primarily because
of the fact that the homography relationship described in
Equation 1 is defined only upto scale. We can not extend
the same relationship to Fourier domain. Let the projective
homography is represented as H = [h1 h2 h3]

T , where hi
T

is the ith row of H. We can rewrite the Equation 1 as

y =





h1
T

h2
T

h3
T



x =





h1
T
x/h3

T
x

h2
T x/h3

T x

1



 (9)

For a sequence of observations, it follows from Equations 2
and 9 that

y[i] =





uy[i]
vy[i]

1



 =





h1
T x[i + λ]/h3

T x[i + λ]

h2
T x[i + λ]/h3

T x[i + λ]
1



 , (10)

Letting z[i] = h3
T x[i], Equation 10 can be rewritten as

z[i + λ]y[i] = Ax[i + λ] + b. (11)

This is similar to the affine relationship given in Equation 4.
Here z[i] is similar to the projective depth in [16]. Since
z[i] is unknown the affine homography estimation technique
introduced in Section 3.1 can not be directly extended to
estimate the projective homographies.

Claim 1 If z[i]s are known the terms z[i+λ]y[i] in Equa-
tion 11 can be considered as a new sequence. This new re-
lation can then be solved for A and b (by the affine homog-
raphy estimation algorithm described in the last section).

Claim 2 If affine components of the homography is
known a priori, i.e A and b are known, z[i] can be cal-
culated from Equation 11. It can be seen that Equation 11

gives two equations for each value of i. Either of these two
can be used to solve for z[i].

However in practical situations the prior knowledge of
neither z[i] nor A and b can be assumed. Hence a two-step
iterative solution is proposed to solve the projective homog-
raphy estimation problem. This is in line with the general
theory of function optimization of multiple variables where
a function is optimized with respect to a set of variables in
one step and then with respect to the other variables in an-
other step.

• Step 1: Assuming some values for projective depth
estimate the affine components.

• Step 2: Estimate the projective depth from the current
estimate of affine components.

Claim 3 Re-projection error is the mean squared error
between original sequence y[i] and transformed sequence
Hestx[i + λ], where Hest is the current estimate of ho-
mography. The observation is that the re-projection error
decreases with each iteration. In Step 1, the re-projection
error is minimized with respect to A and b. In Step 2, it is
minimized with respect to an unknown z[i]. Hence the error
decreases with each iteration.

Claim 4 Re-projection error is by definition non-negative.
When true values for A, b and z[i] are achieved, the re-
projection error becomes zero. This follows directly from
Equation 11 by substituting the true values for A, b and
z[i]. In a synthetic situation (where the coordinates are real
numbers) it is possible to achieve a zero error. However this
value would be only close to zero in a practical situation
where discretization and other errors are present.

4.1. Estimation of h3

Affine homography algorithm explained in section 3.1 is
used in Step 1 of the two-step iterative homography estima-
tion scheme. Step 2 of the algorithm is now explained in de-
tail. Note that since z[i] = h3

T x[i], z[i] is easily estimated
once there is an estimate for h3. A procedure to estimate
h3 is explained below. It is assumed that λ is known at this
stage. Later this assumption is relaxed by introducing an
estimation technique for λ.

A general projective matrix H is a full-rank matrix. In
other words, h1, h2 and h3 are linearly independent. To
estimate h3, an expression for h3 is needed. Such an ex-
pression should be expressed in terms of both h1 and h2.
Noting that his are vectors in R3, an appropriate set of
bases of R3 which can express any vector h3 would be
{h1,h2,h1 × h2}. In other words, h3 can be expressed
as a linear combination of the above bases,

h3 = αh1 + βh2 + γ(h1 × h2). (12)



The problem has now reduced to one of estimating appro-
priate values of α, β and γ. Rearranging Equation 10, to
get

aα + bβ + cγ + d = 0, (13)

where,

a = uy[i](h1
T x[i + λ])

b = uy[i](h2
T
x[i + λ])

c = uy[i]((h1 × h2)T x[i + λ])

d = −h1
T x[i + λ].

There are similar equations with terms of vy[i]. Since there
are 2N equations for various values of i in Equation 13 and
three unknowns, α, β and γ can be calculated. Then h3 can
be computed from Equation 12.

4.2. Estimation of shift λ

Equation 7 after rearrangement gives

Uy[k]

H11Ux[k] + H12Vx[k]
= e

j2πλk

N . (14)

Similar equation can be written with Vy[k]. By the transla-
tion property of Fourier Transforms it can be shown that the
inverse Fourier transform of the sequence of terms in Equa-
tion 14 would be an impulse shifted by λ. The location of
this impulse in the spatial domain would indicate the value
of λ. [10] gives another method to estimate λ when the
homography is assumed to be projective.

4.3. Algorithm

The complete algorithm is as follows:
Input: x[i], y[i] with N points each, where 1 < i ≤ N
Output: Homography matrix H

1: Initialize z[i] = 1, ∀i.
2: repeat
3: Solve for h1 and h2 using current values for y[i],

x[i + λ] and z[i];
4: Solve for λ;
5: Estimate h3 using the updated values of h1, h2 and

λ;
6: Update z[i] = h3

T
x[i];

7: until convergence.
The homography estimated by the algorithm presented

above would depend on the initialization values for the pro-
jective depth. It is found that initializing projective depth
z[i] = 1 ∀ i proves to be a suitable initialization. This ef-
fectively amounts to starting with a weak perspective pro-
jection model. The convergence condition should be chosen
carefully. One possibility is to chose the Mean Square Error

(MSE) between the second sequence and the sequence ob-
tained by projecting first sequence with the current estimate
of H, i.e.,

MSE =
1

N

∑

i

(y[i] −Hx[i + λ])2.

It can be shown that the proposed algorithm minimizes
MSE in both steps and hence converges to the correct so-
lution.

5. Results and Discussions

The proposed method was tested extensively in a range
of experiments. Some of the contours used for these exper-
iments are shown in Figure 1. These contours were cho-
sen after careful examination. The criteria used in selecting
these images include – the number of points, a rich vari-
ety of curvature patterns, contours encountered in real-life,
complexity etc.

(a) (b) (c)

(d) (e) (f)

Figure 1. Figure shows various contours
used in the experiments. The contours vary
in their shape, curvature properties, number
of points etc.

In the first experiment we apply a range of ground truth
homographies and measure the correctness of the estimated
solution. The generation of these homographies can be ex-
plained by considering a virtual camera. Assume that a vir-
tual camera is moved around a scene plane (which coincides
with the z = 0 plane). Consider that camera is rotated from
−60◦ to +60◦ each around both x and y axis, with fixed
radius. Consider the image seen by the camera placed at
(θ, φ) angles about x and y axes. There is a homography
between the image seen and an image taken when the cam-
era is placed at (0, 0). This homography became one of the
homographies considered for our experiments. Many such
homographies can be generated by changing the values of



(θ, φ). The advantage with this scheme of generating a ho-
mography is that it covers the most realistic poses at which,
actual images are generally taken.

We consider 10000 such equally sampled homographies
and apply them over each of the contours shown in Fig-
ure 1 and generat a new view of the given contour for each
contour. These two contours are used as input to our algo-
rithm and we estimate the homography. The algorithm was
found to converge to the correct solution in each case within
very few iterations (typically 3 to 5). The re-projection er-
ror (error between the actual second contour and the warped
contour generated by applying the estimated homography
over the initial contour) decreased very sharply as shown in
a typical example in Figure 2. Homographies beyond this
range (i.e ±60◦) show some errors in the estimate and some
examples of such contours are shown in Figure 5. The im-
ages in this range are highly distorted and it is difficult for
even a human to identify the contours.
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Figure 2. A typical plot of re-projection er-
ror over number of iterations. The error de-
creases rapidly with iterations.

In another experiment we consider a variety of images
from various situations in real-life. These images are used
to demonstrate the effectiveness of our algorithm in a vari-
ety of real-life situations. Some of the images are shown in
Figure 3. The figure is arranged as follows. In parts (a) and
(b) we list the input images. Parts (c) and (d) illustrate the
contours extracted from these images. (e) shows the overlay
of contour (a) transformed by estimated homography over
(b). Figure 4 shows tux example in greater detail. The high
overlap between the contours clearly shows the correctness
of our algorithm. This experiment shows that the given al-
gorithm converges to the correct homography for a variety
of situations. This makes the algorithm acceptable for vari-
ous real-life situations.

Parameters such as the number of points, noise (dis-

Figure 4. Overlay of first tux contour wrapped
over second contour by the estimated ho-
mography. The magenta colored dash-dotted
line is the warped contour and blue colored
dotted line is the actual contour. The origi-
nal images and their contours are also shown
above.

cretization, sampling, localization etc.), symmetry in con-
tour, occlusion, projectiveness of homography etc. can af-
fect the performance of the proposed algorithm. We present
the analysis of proposed algorithm with respect to these pa-
rameters.

We measure the performance of our algorithm with
noise. For this we add Gaussian noise with standard de-
viation σ ∈ {2, 3, . . . , 8} pixels along each coordinate to
α ∈ {5, 10, 15, 20} % points. We perform the experiment
on the objects of Figure 1 with the ground truth homogra-
phies generated as before. It was noted that the success-
ful convergence depended on the severity of noise and also
on the complexity of contours. Simpler contours tended to
have good estimates even in presence of severe noise. This
may be attributed to the fact that simpler contours preserved
their inherent structure better than complex contours in the
presence of structure distorting noise. The results are tabu-
lated in Table 2.

Symmetry in contour introduces ambiguity in the ho-
mography estimation. This is so because different homogra-
phies map a view of a symmetric object to the same target
view because of the symmetry. Hence all homography es-
timation algorithms suffer from such symmetrical nature of
the target scene. If a contour is symmetrical the constituent
signal of its x or y components (i.e. all the x or y coordi-



(b)(a) (c) (d) (e)

3)

2)

1)

Figure 3. (a), (b) Input images. (c), (d) Contours extracted from (a) and (b) respectively, (e) Overlay of
contour (d) with (c) warped by the estimated homography. (1) shows a satellite image of a lake, (2)
shows an outdoor advertisement, (3) shows a part of a name board.

Figure 5. Examples of failure cases of the
proposed technique. The left and right im-
age are respectively highly deformed images
of Figure 1 (a) and (b)

nates of the contour sequence taken together) might be pe-
riodic in nature. This results in a poorer performance of our
algorithm due to lack of sufficient frequency components.
However to overcome this lack of frequency components

σ/α 5 % 10 % 15 % 20 %
2 100 100 100 100
3 100 100 100 100
4 100 100 98.7 96.3
5 100 99.1 98.4 94.5
6 96.3 95.5 94.3 93.7

Table 2. Performance of the proposed
scheme in the presence of Gaussian noise.

we can analyze the Fourier representation of the contours
for the presence of few dominant frequencies. If such is the
case then one can find out the time period of the contour’s
repeating pattern. Using this information we can extract the
non repeating part of the contour in the two images and use
them to estimate the homography.

In another experiment we measure the effect of the num-



ber of points in the contour on the successful convergence
of the estimation procedure or of our algorithm. We con-
sider the same contours as before and sub-sampled them at
various intervals till a minimum of 30 points in each con-
tour, to generate a large number of test cases. We generated
10000 homographies as before. After estimating the ho-
mography for each sub-sampling, we found that the method
performed reasonably well for larger number of points, with
gradual degradation in performance as the number of points
decreases. The algorithm is unsuitable for situations where
there are only few points (typically < 30) in the contour.
In most applications, the number of points in the contours
is well within this range for our algorithm to converge suc-
cessfully.

In another experiment, we measure the variation of per-
formance as the projectiveness of the applied homography
is varied. For this we define projectivity p as p = |h3|/|H|.
This measure captures the projective component after nor-
malizing with respect to the affine components. In this ex-
periment we use the same setup as in first experiment while
recording the projectivity for each homography. We ob-
served that while the value of projectivity is within an ac-
ceptable range ( < 0.6 ), the algorithm converges to the cor-
rect solution. However with greater projectivity, the perfor-
mance of our algorithm decreases slightly. We found that in
most practical applications the value of projectivity for ho-
mographies is lower than 0.6. For same projectivity other
affine approximation based approaches give poorer perfor-
mance than our approach.

6. Conclusion and Future Work

We have proposed a homography estimation technique
that uses correspondence of contours. Our technique does
not need explicit point-to-point correspondence. In fact
this point-to-point correspondence is obtained as a by-
product of the homography computation procedure. We
have demonstrated the applicability of our technique to a
variety of real world problems. Future work would include
applying Fourier domain based representation for projec-
tive homography estimation from texture regions and wide
baseline stereo.
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