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Abstract

Depth Images are viable representations that can be
computed from the real world using cameras and/or
other scanning devices. The depth map provides 2- 1

2
D

structure of the scene. A set of Depth Images can pro-
vide hole-free rendering of the scene. Multiple views
need to blended to provide smooth hole-free rendering,
however. Such a representation of the scene is bulky
and needs good algorithms for real-time rendering and
efficient representation. In this paper, we present a dis-
cussion on the Depth Image representation and provide
a GPU-based algorithm that can render large models
represented using DIs in real time. We then present
a proxy-based compression scheme for Depth Images
and provide results for the same. Results are shown
on synthetic scenes under different conditions and on
some scenes generated from images. Lastly, we initiate
discussion on varying quality levels in IBR and show
a way to create representations using DIs with differ-
ent trade-offs between model size and rendering quality.
This enables the use of this representation for a variety
of rendering situations.

1. Introduction

Image Based Rendering (IBR) has the potential to
produce new views of a real scene with the realism im-
possible to achieve by other means. It aims to capture
an environment using a number of cameras that re-
cover the geometric and photometric structure from the
scenes. The scene can be rendered from any viewpoint
thereafter using the internal representations used. The
representations used fall into two broad categories:
those without any geometric model and those with ge-
ometric model of some kind. Early IBR efforts pro-
duced new views of scenes given two or more images of
it [5, 19]. Point-to-point correspondences contained all
the structural information about the scene used by such

methods. Many later techniques also used only the im-
ages for novel view generation [15, 11, 8, 20]. They
require a large number of input views – often running
into thousands – for modeling a scene satisfactorily.
This makes them practically unusable other than for
static scenes. The representation was also bulky and
needs sophisticated compression schemes. The avail-
ability of even approximate geometry can reduce the
requirements on the number of views drastically. The
use of approximate geometry for view generation was a
significant contribution of Lumigraph rendering [8] and
in view-dependent texture mapping [6]. Unstructured
Lumigraph [4] extend this idea to rendering using an
unstructured collection of views and approximate mod-
els.

The Depth Image (DI) representation is suitable for
IBR as it can be computed from real world using cam-
eras and can be used for new view generation. A Depth
Image consists of a pair of aligned maps: the image or
texture map I that gives the colour of all visible points
and a depth map D that gives the distance to each visi-
ble point. The image and depth are computed with re-
spect to a real camera in practice though this does not
have to be the case. The calibration matrix C of the
camera is also included in the representation giving the
triplet (D, I,C). This is a popular representation for
image-based modelling as cameras are cheap and meth-
ods like shape-from-X are mature enough to capture
dense depth information. It has been used in different
contexts [14, 16, 23, 13, 24]. The Virtualized Reality
system captured dynamic scenes and modeled them for
subsequent rendering using a studio with a few dozens
of cameras [16]. Many similar systems have been built
in recent years for modeling, immersion, videoconfer-
encing, etc. [22, 3]. Recently, a layered representation
with full geometry recovery for modeling and render-
ing dynamic scenes has been reported by Zitnick et
al. [23]. Special scanners such as those made by Cy-
berWare have also been used to capture such represen-
tations of objects and cultural assets like in the Digital



Michelangelo project [2, 1].
Depth Images have been used for IBR in the past.

McMillan used it for warping [14] and Mark used an
on-the-fly Depth Image for fast rendering of subse-
quent frames [13]. Virtualized Reality project com-
puted them using multibaseline stereo and used them
to render new views using warping and hole-filling [16].
Zitnick et al [23] use them in a similar way with
an additional blending step to smooth discontinuities.
Waschbusch et al [24] extended this representation to
sparslely placed cameras and presented probabilistic
rendering with view-independent point-based represen-
tation of the depth information.

The general framework of rendering Depth Images
with blending was presented in [17]. In this paper, we
provide a GPU based algorithm for real-time render-
ing of a representation consisting of multiple Depth Im-
ages. We also present a study on the locality properties
of Depth Image based rendering. We then present the
basic compression techniques for a collection of Depth
Images including results of a proxy-based compression
[18]. Results on representative synthetic data sets are
presented to demonstrate the utility of the representa-
tion and the effectiveness of the algorithms presented
here. Lastly we present a preliminary discussion on
quality levels in IBR, similar to the level of detail used
in graphics. The Depth Image representation can pro-
vide smooth trade-offs between the size of representa-
tion and rendering quality.

2. Depth Image Rendering

The process of rendering Depth Images is summa-
rized below. Depth Images can be rendered using splat-
ting or implied triangulation. Splatting treats each
depth/colour combination as a 3D point with a cer-
tain size in the world or the image. Implied triangu-
lation imposes a triangle-grid structure on the raster-
ordered depth/colour pairs and draws them using stan-
dard graphics hardware. The triangles on the depth
discontinuities have a large difference in depth along
some of their edges and are not drawn. Depth dis-
continuities can result in holes in the rendered views.
These can be filled by rendering using another Depth
Image that sees that part of the scene. When mul-
tiple DIs are rendered, they should be blended when
representing the same scene region. Thus, a represen-
tation consisting of multiple Depth Images can provide
a complete representation that can use standard graph-
ics algorithms for view generation.

The algorithm to render and blend the set of DIs is
given below [17]. The optical axis of the new view is
given by n and that of DIi is given by ni.

for each Depth Image DIi do

1. If (n · ni ≤ 0) skip i.

2. Generate the new view using Di and Ii.

3. Read back image to I′
i
and the depth buffer to Z′

i
.

end for

for each pixel p in the new view do

4. Compare the Z′

i
(p) values ∀i.

5. Keep the views within a threshold ∆z of the near-
est z value.

6. Compute the angle θi at the 3D point of p between
the ray from DI i and the novel view. Compute
the weight wi(p) = f(θi) as a function of the angle.

7. Assign
∑

i
wiI

′

i
(p) as the colour of the novel view

pixel p.
End for

It should be noted that a different combination of
DIs could be blended for each pixel of the new view,
based on the visibility and angle of each DI at that
point [17]. The algorithm involves reading the depth
and image buffers back and performing the blend-
ing on the CPU. These are expensive operations and
hence real-time rendering was not achieved. The al-
gorithm was able to render a frame every 2-3 seconds
on an AMD64 machine with 1GB RAM and an nVidia
6600GT graphics card with 128MB of video RAM. The
synthetic scene used for the performance figures, sim-
ilar to those given in Figure 3, was represented using
20 Depth Images with ten each located on a circle at
two different heights and pointed inwards towards the
scene.
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C1 D C2

Figure 1. Rendered images from D using
Depth Images C1 and C2 are blended based
on the angles t1 and t2

The weighting function f ensures that the effect of a
particular DI falls smoothly with novel view position.
This avoids abrupt changes in colour values that can
result if multiple DIs have different gains and offsets for



their images. Weighting functions like cosk θ or e−kθ

work for values of k of 2 or 3.

3. GPU Rendering of Depth Images

The read back of the framebuffer is the time con-
suming operation in the above algorithm. The modern
GPUs have a lot of computation power and memory
in them. If the read back is avoided and the blending
is done in the GPU, the frame rate can possibly reach
interactive rates.

We devised a 2-pass algorithm to render multiple
DIs with per-pixel blending. The first pass determines
for each pixel which views need to be blended. The
second pass actually blends them. The property of
each pixel blending a different set of DIs is maintained
by the new algorithm. The overview of the algorithm
is given in Figure 2.

Pass 1:

1. Enable z-buffering, disable lights, shading.

2. Clear depths.

3. for each Depth Image DIi do

(a) If (n · ni ≤ 0) skip i.
(b) Render Di. Offset each point by ∆z away

from the novel view camera
end for

Pass 2:

4. Enable lighting, shading, z-test. Disable z modifi-
cation.

5. Clear colour buffers RGBA.

6. for each Depth Image DIi do

(a) If (n · ni ≤ 0) skip i.
(b) Render Di and Ii to new view normally.
(c) At each framebuffer pixel p, compute the an-

gle θi between DIi and novel view and the
weight w = f(θi).

(d) Set colour c(p) at p to (A(p)c(p) +
wI ′

i
(p))/(A(p) + w) where I ′

i
(p) is the colour

from rendering the DI i.
(e) A(p) = A(p) + w
(f) Leave the image in the buffer for next DI.

end for

The first pass leaves zm, the closest z value, in the Z-
buffer for each pixel. The value is offset by ∆z so that
all pixels with depth less than zm +∆z will succeed the
depth test and will be blended. The offsetting in eye
space is done using a suitable vertex shader program.
Lighting, shading and updating of the colour buffers is
disabled to speedup the computations.

The second pass performs the blending. This is per-
formed using a pixel shader that runs on the GPU.
For each pixel, the shader has access to the novel view
and DI parameters and the results of previous render-
ing using a Frame Buffer Object (FBO). Depending
on which DIs had values near the minimum z for each
pixel, a different combination of DIs can be blended
at each pixel. The colour values and alpha values are
kept correct always so there is no post-processing step
that depends on the number of DIs blended. The al-
gorithm also ensures there will be no exceeding of the
maximum range of colour values that is a possibility if
the summing is done in the loop followed by a division
at the end.

Figure 3. Top row: Depth Image pair for a syn-
thetic view. Bottom row: New views gener-
ated using them.

The GPU algorithm used Vertex Buffer Objects and
vertex arrays to store the DIs as triangulated models.
The above algorithm was able to achieve a frame rate
of 40 fps for the scene involving 10 DIs. The Depth Im-
ages have a resolution of 512×512, which is quite high.
The frame-rate increased to 90 fps when the resolution
is changed to 256 × 256 by dropping alternate rows
and columns of the depth map. The video memory on
the GPU was saturating and affecting the performance.
The frame rate on a 20 DI scene was 10 and 35 for the
higher and lower resolutions respectively. Typically,
4-5 DIs were blended for each new viewpoint.

3.1. Limited Set Rendering

Blending of all available and relevant DIs to gen-
erate a new view produces good results but could be
wasteful in computational effort. It could also produce
bad results if the DIs are inconsistent or noisy, as is
often the case with those captured from a real scene.
An alternative is to use a limited set of DIs within a
specified distance of the new view for rendering. The
Virtualized Reality system used 3 DIs to enclose the
novel viewpoint from all directions [16]. Zitnick et
al used only 2 DIs for view generation. Limiting the
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Figure 2. Block diagram of the GPU-based rendering algorithm

number of DIs used for rendering each view is essential
for the scalability of the representation as a rendering
linear in the number of views will seriously restrict the
use of Depth Images.

The algorithm was modified to select only DIs that
are within 40 degrees of the novel view. This results
in 2-3 DIs being rendered for each view typically. The
framerate increased to 50 fps at full resolution and to
100 fps at half the resolution for the 10 DI data set.
The frame rates for the 20 DI data set were 20 and 55
for the two resolutions. We also tested the algorithm on
the dancer data from Microsoft research. This dataset
consists of 8 cameras arranged nearly linearly. Only 2
DIs can therefore be used for each new view generation.
Our rendering algorithm was able to give a frame rate
of 50 fps on it, whereas the algorithm used by them
reported a frame rate of 15 fps [23].

3.2. Locality

A Depth Image is a local, 2 1

2
D model of the scene.

The view generated using it will be very good when the
novel viewpoint is close to the view parameters of the
Depth Image. If the novel view camera coincides with
that of the DIi, the rendered image will be perfect –

Figure 4. Top rows Input Depth Images. Bot-
tom row: new views for the female model.



and identical to Ii – even if the depth map is totally
random, when rendered using splatting. The dynamic
selection of DIs for a novel view based on proximity
can result in very high quality images throughout the
space. The blending also ensures that the influence of
a DI diminishes as we move away from it.
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Figure 5. Locality: The PSNR is good when
near a Depth Image but can fall when mov-
ing away. Results using 2 Depth Images with
varying angle of the novel view for different
noise levels

.

Figure 6. Locality: novel views from one
Depth Image to another Depth Image

.

We explore the locality property quantitatively. For
this, we use two DIs separated by about 70 degrees in
Figure 6. New views were generated by moving the
viewpoint from the first to the second in steps of 2
degrees. Since the data is synthetic, we compared the
view generated using the DIs with a view generated
using the original model itself and the PSNR values
were calculated from the differences. The experiment
is repeated with different levels of noise added to the
DIs and the graph is shown in Figure 5. It can be seen
that the quality of rendered view is high near the given
DIs even with high noise.

Figure 7. Random novel views of a particu-
lar view point with JPEG quality factors being
10, 50 and 90 respectively.

4. Compact Representations of Depth

Images

The collection of Depth Images of a scene contains
considerable redundant information. The images are
of the same scene and the depth maps are of the same
geometric objects. There is great scope for compaction
possible.

JPEG Compression PSNR
Quality Ratio (dB)

10 6.38 16.65
20 4.63 17.46
30 3.81 18.12
40 3.33 13.76
50 2.98 18.56
60 2.69 18.68
70 2.36 13.89
80 1.98 19.27
90 1.51 20.68
100 0.81 31.95

Table 1. Performance of JPEG on compress-
ing depth-maps of the female model.

Both D and I components of the representation are
like images. Image compression algorithms such as
JPEG can be used to compress them. These algorithms
are psycho-visually motivated and hence may not be
the best for Depth Images, especially for the depth-
maps which carry the geometric information. Earlier
work by Krishnamoorthy et al confirm the bad match of
JPEG as a compression scheme for depth images [10].
The results of our experiments of using JPEG for depth
map compression are given in Table 1. Compression
Ratios are computed as the ratio of total size of Zipped



8 bit depth maps and the total size of JPEG com-
pressed depth maps. The results are not very good at
all as shown in Figure 7. Lossless image compression
schemes can be used to compress images and depth-
maps, naturally, but yield only moderate compression
ratios.

The above methods deal with each image and depth
map as independent entities. Commonality across the
DIs is not exploited by them. The topic of compress-
ing multiple images of a scene – called lightfield usu-
ally – has attracted a lot of attention. Early light field
compression techniques used vector quantization [11],
disparity compensation techniques [21, 7] and wavelet
transform based techniques [9, 7] to compress the im-
ages alone without using any geometry. Enhancement
in prediction of accuracy is shown in [12] by using in-
ferred geometry such as depth-maps and 3D models.
These lightfield compression techniques can be used ef-
fectively to compress the image part of the collection
of DIs.

Compression of multiple depth-maps of a scene has
not been worked on a lot. Depth-maps differ from
images qualitatively and new methods are needed to
compress them. We introduced proxy-based compres-
sion for depth-maps [18]. The proxy geometry repre-
sents common, approximate information in the form of
a parametric or geometric model. Each depth map is
encoded with respect to a proxy geometry as a residue.
The residues are highly correlated and compress well
using techniques like JPEG or LZW.

When a proxy-based compression scheme applied to
the female model, we achieved 4.81 compression ratio
with PSNR being 29.54 dB using 1030 triangles proxy
with 8 bit residue maps. Here compression ratio is
computed as size of original ZIPed 16bit depth-maps to
the size of ZIPed bit planes of residue maps and ZIPed
triangle mesh of proxy. Progressive improvement of a
random novel view is shown in the table 2 with the
addition of bit planes from most significant bit to least
significant bit.

5. Quality Levels in IBR

Levels of detail (LoD) are employed in graphics for
models to control the rendering time through the num-
ber of primitives or size of the model and texture. Dis-
crete LoDs are generated using mesh decimation and
texture sub-sampling. Progressive compression tech-
niques allow for smoother levels of detail. IBR tech-
niques have traditionally focussed on obtaining the
highest rendering quality and haven’t been studied for
their trade-off between rendered image quality and the
size or rendering time.

# Bits CR PSNR
(dB)

0 36.18 22.95
1 33.04 22.96
2 30.37 23.06
3 27.20 23.18
4 20.71 23.90
5 13.59 24.92
6 8.85 26.30
7 6.27 27.95
8 4.81 29.54
9 3.90 30.96
10 3.29 32.61
11 2.84 33.76
12 2.50 33.68
13 2.23 33.82
14 2.01 35.07
15 1.84 35.76
16 1.69 38.45
17 1.56 40.63
18 1.45 40.64

Table 2. Compression ratio and PSNR for pro-
gressive addition of bits from most signifi-
cant bit to least significant bit of residues to
the base depth map computed from the 1030
triangles proxy for the female model.

Depth Image representation admits smooth varia-
tion in the quality levels for IBR. Having several op-
tions of quality is important if the image-based model is
used by different users, spanning PDAs, low-end graph-
ics, and high-end graphics. There are several sources
for a quality vs model size trade-off for the DI-based
IBR representations.

1. The number of Depth Images can be varied to get
different overall quality of rendering. A scene can
be covered using a small number of DIs. Eight or
ten DIs placed in orthogonal directions can provide
adequate coverage. The quality of rendered output
could suffer as some of the holes may not be filled
optimally.

2. The resolution of the Depth Images can be varied
by sub-sampling the depth map and/or the tex-
ture image. The view generation can be performed
with low resolution DIs with a drop in quality. The
2D-grid organization of the DIs allow for smooth
variation of the resolution using sub-sampling.

3. The proxy-based compression affords another



source of model reduction as shown in the pro-
gressive compression in the previous section. The
polygonal proxy in combination with a number of
images of the scene may be sufficient in some situ-
ations. This essentially reduces to view dependent
texture mapping scheme [6] which used geometry
with textures. Higher quality images can be gen-
erated by introducing the residues that give depth
values. A spectrum of simplified models can be
generated progressively by controlling the quanti-
zation of the residues.

In practice, only a small subset of proximate DIs are
rendered for each novel view. The number DIs and the
quality of the rendered image are not correlated in a
straightforward way, as a result. Different quality levels
for IBR can thus be generated by varying the DI reso-
lutions, size of the proxy, and the detail of the residues
using this scheme. Figures 8 and 9 shows the plots of
CRs of triangle proxies with 134 and 948 triangles re-
spectively and figure 10 shows the plot of PSNR when
134 triangle proxy is used. Table 3 shows the total
size of a few possibilities and Figure 11 shows some re-
sults of rendering them using bunny model. Here com-
pression ratio is computed with respect to the original
ZIPed 8bit depth-maps.

Changing the resolution changes the number of
primitives to be rendered for each view. If the model is
being sent out for rendering, the size also reduces with
the resolution. Reduction in resolution is thus essen-
tial to generate novel views on low-end systems, PDAs,
etc. Changing the proxy model and/or the residue val-
ues change the model size as can be seen in Table 2.
The number of primitives rendered remain the same,
but the PSNR improves with the model size. Thus,
changing the proxy and residue settings is better when
the model needs to be sent over a low-speed network
for rendering using a high-end system.

6. Discussion and Conclusions

In this paper, we presented the Depth Images as ef-
fective and practical representations for IBR. We gave
real-time rendering algorithms for the representation
and also presented results from a proxy-based com-
pression scheme for depth-maps. Depth Images are
promising representations as they can be captured in
a non-obtrusive way from the world. The area of com-
pression of Depth Images is still quite an open area
and need new ideas. Of particular interest is the com-
pression of depth and image values together in a single
codec to take advantage of the intra-image and inter-
image correlations.
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Figure 8. Shows the 3D plot of compression
ratio when residue level and sampling factor
for 134 ∆s and all Depth Images are used for
rendering
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Figure 9. Shows the 3D plot of compression
ratio when residue level and sampling factor
for 948 ∆s and all Depth Images are used for
rendering

The issue of varying the quality levels smoothly will
be important for an IBR representation to be practi-
cally usable. Our studies show that the DI-based repre-
sentation afford a wide-variety of varying quality levels
and image sizes.
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