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Abstract

This paper derives a set of constraints relating the
homographies in a video sequence. They are derived by
assuming the camera motion models. We describe show
how they can be used effectively for improving homography-
estimation for mosaicing.

1 Introduction

Mosaicing is the process of generating a single, large,
integrated image by combining the visual clues from multiple
images [4, 8]. Often, this results in larger field of view. In
recent years, mosaicing has become an integral part of many
video applications. Video mosaics find applications in video
compression, virtual environments, panoramic photography,
etc. Video capture technology is now available at low prices
with poor field of view. Video mosaicing is emerging as a
convenient way to capture images without limitations on field
of view.

Mosaicing primarily involves image registration and image
blending. Accurate registration of constituent images is the
key in obtaining geometrically correct mosaics. Primitive
image registration algorithms assume the images to be related
by a similarity transformation ( i.e., translation, rotation and
scaling). They estimate the transformation parameters by
spatial correlation or transform domain techniques [1, 10, 11].
Subsequently, a six-parameter affine transformation model
became popular. Now researchers employ a full projective
transformation (homography) with 8 free parameters for
image alignment. A comprehensive survey of registration
techniques can be found in [1, 10, 11]. In most mosaicing
schemes, matching is done by numerical computation of the
transformation relating the two images. The images are then
blended to obtain the mosaic. Conventional video mosaicing
algorithms extend the image mosaicing procedure to video by
registering and stitching successive frames [4, 8].

Recently, there is a growing interest in developing algorithms
for robust global alignment [6, 7, 8, 9]. Global registration (or
alignment) refers to the alignment of video frames taking into
account the overlapping frames, and not just the consecutive

ones. Typically, it is done in two steps. First, homographies
are computed for all pairs of images with sufficient overlap. In
the second step, a graph based representation is built from this.
The problem is then cast as the identification of an optimal path
in the graph. In [7], bundle adjustment is employed further
to optimize the graph-based solution. However, optimality
in the true sense is not obtained in this framework as it is
not demanded for the pair-wise homographies in the global
context.

In this paper, we derive a set of constraints on homographies
relating frames in a video, under constrained motion models.
These homographies are shown to be related and this
relationship is shown to be an important clue in building
mosaics, even if the computation of homography is unreliable
for a specific pair.

2 Video Mosaicing

Let H12 be the homography relating two different frames 1
and 2, belonging to a planar object. From the fundamentals
of multiple view geometry [3], it is well known that

X2 = H12X1

whereX1 andX2 are the corresponding points in frames 1 and
2, and expressed in homogeneous coordinates as [x, y, 1]T .

If there areN frames with indices 0, 1, . . . , i, i+1, . . . , N −1,
then the mosaic could be built

• by mapping all the frames to a reference frame (say 0)
with the help of a set of reference homographies Hi,0.
Reference frame could be the first, last or any of the
intermediate ones.

• by computing all incremental (frame-to-next-frame)
homographies Hi,i+1 and imposing a single view point
constraint in an appropriate manner.

The quality of mosaics heavily depends on the accuracy
in the registration (more specifically, the accuracy of the
estimation of the transformation) of images. This often
depends on: (i) Accuracy with which one can estimate
the features (say interest points) from the images. (ii)
Performance of the correspondence computation scheme. (iii)
Accuracy of the numerical procedure for robust computation



of the homography from the (noisy) correspondences.
Though, homography can be computed from eight point
correspondences, a larger set is preferred for robustness.
Kanatani and Ohta [5] employs a renormalization technique
for improving the homography computation. To take care of
the outliers in the correspondence computation, RANSAC [2]
has been proven to be a good choice.

It is worth noting that in most situations, only consecutive
frames are registered for mosaicing. If one of the frame
is of poor quality, the entire mosaic can become highly
inaccurate. This inaccuracy can also get propagated for all
frames succeeding this frame.

In this paper, we argue that, there exists relationships
connecting homographies under certain camera motion
models. This can help in robustly estimating the ensemble of
homographies. Before deriving these relationships, we derive
an expression for the homography relating two arbitrary views
of a planar object.

3 Homography Relating Two Arbitrary Views of a Planar
Object

We know from [3] that if K[I |0] and K[R|T ] are the first and
second camera matrices and π = (nT , d)T represents the world
plane (such that, for points Pi on the plane, nTP + d = 0), the
homography induced by the plane is given by:

H = K
(
R−

TnT

d

)
K−1 (1)

However, for the video mosaicing applications, where the
two frames are captured from arbitrary poses, we need a
generalized relationship. LetK[R0|T0] andK[R|T ] be the first
and second camera matrices and π = (nT , d)T represent the
plane.

Now, to able to use Equation 1, we need to apply a rigid
transformation on the world coordinate system such that the
first camera pose changes from [R0|T0] to [I |0].

After the coordinate transformation, if [Rn|Tn] is the pose of
the second camera, Rn is given by RR−1

0
and Tn is given by

T − RR−1

0 T0. This comes from the fundamentals of rigid
transformation as shown below.

If P is a point in the original world coordinate system and Pc is
the same point in the coordinate system of the second camera
[R|T ],

Pc = RP + T (2)

After coordinate transformation, P is transformed to R0P +T0

and [R|T ] gets modified as [Rn|Tn], the new pose of the second
camera. Therefore,

Pc = Rn(R0P + T0) + Tn (3)

Simplifing,

Pc = RnR0P
︸ ︷︷ ︸

R

+RnT0 + Tn
︸ ︷︷ ︸

T

(4)

From equation 2 and 4 after simplification, we getRn = RR−1

0

and Tn = T −RR−1

0 T0.

Similarly, the plane parameters also change after the coordinate
transformation. Let (nT

n , dn)T be the new parameters. Using
them, we have

nT
n (R0P + T0) + d1 = 0

or
(nT

nR0
︸ ︷︷ ︸

nT

)P + nT
nT0 + d1

︸ ︷︷ ︸

d

= 0

Equating 3 with the original plane equation nTP +d = 0, after
simplification, we get nT

n = nTR−1

0 and dn = d− nTR−1

0 T0.

Substituting Rn,Tn,nT
n and dn in Equation 1, we arrive at

H = K

[

RR−1

0 − (T −RR−1

0 T0)
nTR−1

0

d− nTR−1

0 T0

]

K−1 (5)

It may be seen that when the first camera is at [I |0], the above
equation reduces to Equation 1.

If the camera motion is only translational and both rotation
matrices R and R0 are I (identity), from Equation 5,

H = I −K

[

(T − T0)
nT

d− nTT0

]

K−1 (6)

4 Homographies under Uniform Velocity Motion

Before considering the general linear motion, we derive
constraints on the incremental homographies Hi,i+1 and the
inverse reference homographiesH0,i, for a purely translational
motion. We show that there exist 11 parameter and 9
parameter relationships for the homographies in the case of
linear translational motion.



4.1 Incremental Homographies

Theorem 1 In presence of uniform translational motion, all
the incremental homographies Hi,i+1 are related by a 11
parameter model.

Hi,i+1 = I +
C

c1 + i.c2
(7)

where, C is a 3× 3 matrix and c1 and c2 are scalars.

Proof 1 For a purely translational motion, the camera
moving with velocity V (and acceleration A) is equivalent
to its translational pose T moving with velocity −V (and
acceleration −A).
If Ti is the translational pose of the camera for frame Ii,
assuming that the time elapsed between the capturing of
successive frames is constant (t), we have

Ti = T0 − i.t.V (8)

and
Ti+1 − Ti = −t.V

Substituting the above two equations in Equation 6,

Hi,i+1 = I −K

[

(−t.V )
nT

d− nT (T0 − i.t.V )

]

K−1

= I +
t.KV nTK−1

d− nTT0 + i(t.nTV )

Substituting C = t.KV nTK−1, c1 = d − nTT0 and c2 =
t.nTV in the above equation, directly results in Equation 7.

Corollary 1 If the camera motion is parallel to the world
plane, all the incremental homographies are the same.

Proof comes from the fact that, in presence of linear motion
parallel to the world plane, nTV = 0 leading to c2 becoming
zero in Equation 7 and the incremental homographies
becoming identical.

4.2 Inverse Reference Homographies

Theorem 2 In presence of uniform translational motion, all
the inverse reference homographies H0,i are related by a 9
parameter model.

H0,i = I + iKc

where, Kc is a 3 × 3 matrix.

Proof 2 Substituting Equation 8 in Equation 6,

H0,i = I −K

[

− i.t.V
nT

d∗

]

K−1 (9)

where, d∗ = d− nTT0.

After simplification,

H0,i = I + i

[

t.KV
nT

d∗
K−1

︸ ︷︷ ︸

Kc

]

Corollary 2 If the camera moves horizontally, imaging objects
lying on a horizontal plane, the first order difference between
the normalized inverse reference homographies is constant. By
normalization, we mean that H(3,3) is set to 1.

Proof 3 After normalization of the homographies (i.e.,after
H(3,3) is set to unity),

H0,i =
I + iKc

1 + iKc(3, 3)
(10)

As the camera moves horizontally, the z component of V is
zero. Therefore, V is of the form [x x 0]T . Moreover, the
world plane is horizontal so vector n is of the form [0 0 x]T .
We also know that the calibration matrix K is affine and so is
its inverse.

Now, from Equation 2, Kc is a multiplication of three matrices
- K, V nT and K−1 and two scalars. From that, it directly
follows that Kc(3, 3) is zero. Substituting that in 10, after
simplification,

∆Hi = Kc = constant

where, the first order difference ∆Hi = H0,i+1 −H0,i.

Note that when the camera moves parallel to an arbitrary plane
and images objects on that plane, this corollary holds only
when the camera’s Z axis (which is usually the viewing axis) is
perpendicular to the plane.



4.3 General Linear Motion

In the previous subsections, we derived constraints on
incremental and inverse reference homographies for
translational motion. In the case of general linear motion,
we need to consider rotational velocity as well. We express
the rotation in terms of the three Euler angles φ, θ and ψ

represented in the vector form as L. The rotational velocity
is denoted by Vr. L0 denotes the initial configuration of
Euler angels. Rewriting Equation 5 for the inverse reference
homography of frame Ii,

H0,i = K

[

RiR
−1

0 − (Ti −RiR
−1

0 T0)
nTR−1

0

d− nTR−1

0 T0

]

K−1

where,

K = fK(α, β, ϑ, u0, v0) - 5 parameters
Ri = fR(L, Vr, i) - 6 parameters
R0 = fr(L)
Ti = fT (T0, V, i) - 6 parameters
π = (nT , d)T - 4 parameters

︸ ︷︷ ︸

21 parameters

Thus, all inverse reference homographies are related by a
21 parameter model. In the same way, there exists a 21
parameter model for incremental homographies as well. The
important point to note is that for general linear motion, the
relationships or the constraints are non-linear whereas, for a
purely translational case, the constraints derived are linear in
the model parameters. Since the purely translational case is
a special case of the general linear motion, there also exists
a non-linear relationship between homographies for that case.
However, linear relationships are always preferred as they can
be exploited more robustly for video mosaicing.

It can be easily deduced from the results given in this section
that under general linear motion, the homography between any
pair of frames Ii and Ij can be computed from a 21 parameter
model.

5 Homographies under Uniform Acceleration Motion

Here again, we derive constraints on the incremental
homographies and the inverse reference homographies, for
a purely translational motion and then discuss the general
acceleration motion.

5.1 Incremental Homographies

Theorem 3 In presence of uniform acceleration motion, all
the incremental homographies Hi,i+1 are related by a 21

parameter model.

Hi,i+1 = I −

[

E1 + i.E2

b1 + i.b2 + i2.b3

]

(11)

where, E1,E2 are 3 × 3 matrices and b1,b2 and b3 are scalars.

Proof 4 If V is the velocity of the camera and A is the
acceleration of the camera,

Ti = T0 − V.(i.t) −
1

2
.A(i.t)2 (12)

and
Ti+1 − Ti = −(t.V +

t2

2
.A)

︸ ︷︷ ︸

D1

+i. (−t2.A)
︸ ︷︷ ︸

D2

After simplification, we also have

d− nTTi = d− nTT0
︸ ︷︷ ︸

b1

+i. (t.nTV )
︸ ︷︷ ︸

b2

+i2 (
t2

2
.nTA)

︸ ︷︷ ︸

b3

Substituting Ti+1 − Ti and d− nTTi in Equation 6,

Hi,i+1 = I −

[

K(D1 + i.D2)n
TK−1

b1 + i.b2 + i2.b3

]

= I −

[

(KD1n
TK−1) + i.(KD2n

TK−1)

b1 + i.b2 + i2.b3

]

SettingE1 = KD1n
TK−1 andE2 = KD2n

TK−1, we arrive
at Equation 11.

Corollary 3 If the camera moves horizontally, imaging objects
lying on a horizontal plane, the first order difference between
the normalized incremental homographies is constant.

Proof 5 In presence of acceleration motion parallel to the
world plane, nTV = 0 and nTA = 0. Using them, the
normalized incremental homographies are given by:

Hi,i+1 =
I −E1 − i.E2

1 −E1(3, 3) − i.E2(3, 3)
(13)

As the camera moves horizontally and the world plane is
horizontal, E1(3, 3) is zero. Similarly, E2(3, 3) can also be
shown to be zero. Substituting them in 13, after simplification,

∆Hi = E2 = constant
where, the first order difference ∆Hi = Hi+1,i+2 −Hi,i+1.



5.2 Inverse Reference Homographies

Theorem 4 In presence of uniform acceleration motion, all
the inverse reference homographies Hi,i+1 are related by a 18
parameter model.

H0,i = I + i.M1 + i2.M2

where, M1,M2 are 3 × 3 matrices.

Proof 6 Substituting Equation 12 in Equation 6,

H0,i = I −K

[

(i.(−t.V ) + i2.(−
t2

2
.A)).

nT

d

]

K−1

where,
d∗ = d− nTT0

Simplifying,

H0,i = I + i

[

t.KV nTK−1

d∗

]

︸ ︷︷ ︸

M1

+i2

[

t2.KAnTK−1

2.d∗

]

︸ ︷︷ ︸

M2

Corollary 4 If the camera moves horizontally, imaging
objects lying on a horizontal plane, the second order difference
between the normalized inverse reference homographies is
constant.

Proof 7 After normalization,

H0,i =
I + i.M1 + i2.M2

1 + i.M1(3, 3) + i2.M2(3, 3)

As the camera motion is horizontal and the world plane is also
horizontal, M1(3, 3) and M2(3, 3) are zero. Using that, the
first order differences

∆Hi = (M1 +M2) + i(2M2)

and the second order differences

∆Hi+1 − ∆Hi = 2M2 = constant.

5.3 General Acceleration Motion

Under general uniform acceleration motion comprising
rotation and translation, all inverse reference homographies
are related by a 27 parameter model. Similarly, there is a 27
parameter model relating incremental homographies as well.

The proof is identical to the general linear motion case except
that 3 additional parameters come in for rotational acceleration
and 3 for translational acceleration. This constraint, like the
one for the general linear motion, is non-linear. However, it
can be made linear by introducing more parameters which are
functions of one or more these 27 parameters. This is helpful
when we want to use a linear technique to compute the model
parameters in closed form.

6 Estimating Homographies using Motion Constraints

In this section, we discuss how the relationships between
homographies, derived in the previous section, can be used
to estimate homographies. The conventional techniques
use the point correspondence between successive frames to
individually compute the incremental homographies. However,
we argue that these homographies are not independent of each
other and the relationship between them can be exploited to
achieve robustness.

Recollecting from the previous sections, all the incremental
homographies can be expressed in terms of a fixed parameter
model. In other words, given these parameters, the series
of incremental homographies can be trivially computed from
them. Thus, the problem of robust estimation of the ensemble
of homographies boils down to accurate computation of the
model parameters. For that, we describe a simple method
which uses correspondences from all consecutive pairs of
frames pooled in. From equation 7, for uniform translational
motion,

X
j
i+1

=

[

I +
C

c1 + i.c2

]

X
j
i

where, i ∈ 0, 1, . . . , N − 2 denotes frame number and j ∈
0, 1, . . . ,m− 1 is the feature point index.

It can be seen from the above equation that each corresponding
pair of points gives two linearly independent equations in the
9 parameters of C and c1, c2. In summary, we have m(N −
1) correspondences, giving us 2m(N − 1) equations. Thus,
what we have is an over-determined linear system of equations
in the model parameters which can be solved using Singular
Value Decomposition (SVD). The same ideas can be extended
for general uniform motion and acceleration motion. Direct
estimation of inverse reference homographies follows the same
structure.



6.1 Results and Discussions

We have verified the constraints derived in this paper by
thorough experimentation with camera motions of different
velocities and accelerations. We have also implemented and
tested the linear approach mentioned in section 6 to estimate
homographies using these constraints. We also estimate
homographies using the conventional technique to facilitate
comparisons. We use RANSAC to eliminate outlier pairs of
corresponding points and then, use SVD to compute the 8
homography parameters from the inlier set of correspondence.
We add uniform noise to the image points to test the sensitivity
of our approach. To compare the homographies computed
using our approach and the conventional approach, we
compute the average re-projection error for the noise-free
points.

E =
∑

i,j

‖(Xj
i − Π(H0,iX

j
0))‖2

In Figure 1, we show the plot of the average re-projection error
against the level of noise, for the conventional approach and
our approach. It is easy to see that for our approach, the
error increases at a much slower rate with the level of noise,
compared to the conventional approach.
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Figure 1: Average Re-projection Error Vs Level of Noise,
Solid: Conventional Approach, Circled: Our Approach

For our approach to homography-estimation, even if one of the
frames is of very bad quality, the average re-projection error is
not affected as much as it does for the conventioal approach, as
shown in Table 1.

Conventional Our
Approach Approach

Average
Re-projection 5.7898 1.7625
Error

Table 1: Average Re-projection Error when one frame is of
poor quality

7 Conclusions

We have derived a set of constraints on incremental and inverse
reference homographies when the camera motion follows
certain models. We also demonstrate how these constraints
can be exploited for homography-estimation. Experiments
have been conducted to verify our claims and to illustrate how
homographies can be estimated more accurately using our
approach.
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