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ABSTRACT
The health of the retina deteriorates with age in some peo-
ple due to the appearance of drusens. Drusens are accumu-
lation of lipid and other waste material from different layers
of the retina. These are markers of age-related macular de-
generation (ARMD) as their increasing number generally
indicates risk for ARMD, a leading cause of blindness in
people above the age of 50. Morphological information
of drusens is also crucial in determining the risk factor for
ARMD. Colour retinal images are used presently to visu-
ally identify the presence of drusens. Automated detection
and analysis can provide vital information about the quan-
tity and quality of the drusens. In this paper, we report
on two methods that we have developed to reliably detect
and count drusens. The methods exploit the morphologi-
cal characteristics of the drusens such as texture and their
3D profiles. We compare the results of using these two
methods and make recommendations for automated drusen
analysis.
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1 Introduction

Drusens are deposits of cellular waste that accumulate be-
neath the retina. They are the primary cause of age-related
macular degeneration (ARMD), the leading cause of late-
age blindness. The common method to screen for drusen is
through retinal imaging. This paper focuses on methods to
automatically detect and segment drusen in a retinal image
without human supervision or interaction. These methods
can be used to develop tools for screening, which help re-
duce costs by minimising the need for detailed scrutiny of
large quantity of images by eyecare professionals. These
methods could also be applied for treatment evaluation, by
providing a quantified measurement of drusen presence that
is objective and repeatable.

An accurate count of drusens in a colour retinal im-
age, provides ample information about the extent of dis-
ease. Obtaining this information requires robust detection
of drusen regions. The task of automatic detection poses
various challenges. Drusens appear as yellowish, cloudy
blobs in a retinal image. They exhibit no specific size or
shape. The modification of size in individual drusens and
their confluence seem to be an essential risk factor in de-

veloping macular degeneration. Drusens are classified as
either hard or soft. Hard drusens tend to be smaller, more
sharply defined and are generally less harmful than soft
drusens. Soft drusens may be accompanied by other symp-
toms such as new vessel formation or fluid build-up in mac-
ula [1] [3]. The fuzzy boundaries of soft drusens pose a
challenge in accurately locating the actual drusen region.
A further challenge in segmenting drusens is the presence
in the retina of other similar structures, such as optic disk,
exudates and cotton wool spots. Some faint drusens can
also appear similar to normal features of the retina, such as
the background pattern caused by the choroidal vessels [3].
Furthermore, non-uniform illumination and variable con-
trast within the image (due to acquisition process of the im-
age) make detection and segmentation task difficult. Thus
the use of traditional segmentation methods are inadequate
due to the nature of images as well as to the various aspects
of drusen. These are some of the important factors which
are needed to be addressed in order to perform an accurate
detection and count of the drusens.

Figure 1. Sample colour retinal image.

There are very few attempts specifically on automated
drusen detection or segmentation in retinal imagery. Sebh
et al. [4] use a modified morphological operator to detect
the brightest points (peaks) within individual drusens. Ra-
pantzikos and Zervakis et al. [2] adopt an adaptive local
histogram based method to identify an appropriate local
threshold for segmenting each drusen. These methods how-
ever require a manual segmentation of the region of inter-
est which is the region around the macula and between the
2 major veins (arcades). The manual segmentation elimi-



nates the possibilities of false detection due to other inter-
fering structures (for example, optic disk) and non-uniform
illumination. The automatic segmentation of the region
of interest itself is a challenging task. Thus, both the ap-
proaches do not provide complete solutions to the auto-
matic detection task. Brandon et al. [3] report a technique
to detect and segment drusen in full retinal images without
human supervision or interaction. They use a multi-level
approach, beginning with classification at pixel level and
proceeding to the retinal, area, and then the image level.
This is however computationally expensive and the results
are dependent on a good set of training data.

The available approaches for the drusen detection task
exploit very limited number of features of drusens. There
are possibilities to use other drusen features in order to im-
prove the detection. We have looked at drusen detection
from two new perspectives. In the first one, we charac-
terise a drusen by its texture which is distinct from that of
the background. In the second one, we exploit the topo-
graphical profile of the drusens. The topographic perspec-
tive is derived from viewing the image as a surface wherein
drusens appear as hilly regions. This perspective permits
the drusen location to be in terms of a point on a hill or a
plateau.

In this paper, we present the above new characteri-
sations of drusens and assess their performance. The pre-
sentation in this paper is organised as follows. In the next
section, we present the texture based approach and a multi-
channel filtering technique for segmentation. In section 3,
we present a topographic model for drusens and present a
curvature based detection method, followed by some con-
cluding remarks.

2 Texture-based drusen detection

Texture segmentation and texture feature extraction are ar-
eas that have been well studied in the past. Statistical to
structural or model based techniques have been used for
texture based segmentation [5]. As seen from Figure 1, a
drusen has a different texture pattern and colour in com-
parison with the background. A texture-based approach is
hence an attractive alternative to the task of drusen seg-
mentation. Furthermore, the texture of the drusen can be
characterised in terms of the local energy. Local energy is
defined as the sum of squared responses of orthogonal pairs
of filters [6]. Gabor functions and more recently log-Gabor
functions have been popular choices for such filters. In the
next subsection, a local energy model using multi-channel
log-Gabor filters is presented.

2.1 A local energy computation using multi-
channel filtering

Local energy computation with Gabor filters is preferred
since the filters can be easily tuned to different orientations
and scale. For a given filter, its bandwidth decides the scale

of the features that can be detected. The maximum band-
width obtainable from a Gabor filter is only about 1 octave
which is a disadvantage as it limits the feature size that can
be captured. A log-Gabor filter on the other hand, allows
large bandwidths, from 1 to 3 octaves, which makes the
features more effective, reliable and informative.

Due to the singularity in the log-Gabor function at the
origin, one cannot construct an analytic expression for the
log-Gabor function in the spatial domain. Hence, the filter
is designed in the frequency domain. On a linear scale, the
transfer function of a log-Gabor filter is expressed as

Φ(ro,θo) = exp

{
− (log ( r

ro
))2

2(log (σr

ro
))2

}
exp

{
− (θ − θo)2

2σ2
θ

}
(1)

where ro is the central radial frequency, θo is the orienta-
tion, σθ and σr represent the angular and radial bandwidths
of the filter, respectively.
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where Oro,even
θo

(x, y), Oro,odd
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(x, y) are the responses
of the even and odd symmetric log-Gabor filters, respec-
tively. Let Z(ro, θo) be the filtered output. The responses
of even and odd symmetric log-Gabor filters can be found
as:

Oro,even
θo

= Re(Z(ro, θo)); Oro,odd
θo

= Im(Z(ro, θo))
(3)

2.2 Experiment results

The green channel of the input image was used for all
our experiments since the drusens were best represented
in this channel. A filter bank with Log-Gabor filters at
three different scales ro and six different orientations θ0:
0 ◦, 30 ◦, 60 ◦, 90 ◦ and 150 ◦ was used. The filter param-
eters were selected to span the frequency domain. Large
radial bandwidth in the frequency domain implies small
bandwidth in the spatial domain which helps in obtaining
better localization of the segmented regions.

The filter parameters have been chosen to capture the
high frequency components (edges) in the image such as in
drusens. Since the high frequency content is also present in
veins, for best results, they need to be suppressed. A simple
technique was used to achieve this suppression. By noting
that the veins appear as dark pixels in the green channel of
the retinal image, all the dark pixels are replaced with the
local mean of their neighborhood.

The algorithm was tested on different datasets. Fig-
ure 2 shows a sample image (only green channel) and the
corresponding result. The results show that the energy is
maximum at the locations of drusens. Thus, it is possi-
ble to easily segment the drusens using local energy. The
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Figure 2. Results of multi-channel filtering. (a) Input im-
age (Green channel), (b) Corresponding local energy out-
put. Drusens appear as bright regions.

optic disk also is marked by high local energy and hence
should be suppressed prior to the drusen detection. Our in-
terest is to get an accurate count of the drusens and that will
require further post processing of this result. A possible
solution is to extract a closed boundaries for the drusens
from the energy map and count each closed boundary as
one drusen. However, the energy map indicates that ob-
taining a closed boundary will not be a simple task. To
summarise, there appear to be two shortcomings with local
energy based drusen detection: selection of tuning param-
eters that will work well across a wide range of images and
obtaining a reliable drusen count. We look towards a model
based approach to overcome these shortcomings.

3 Model-based drusen detection

Togographic models have been successfully used for fea-
ture detection in many applications [9] [10]. Visualising

the 2D image function as a surface in 3D space leads to a
different perspective of drusens as they have hilly profiles.
In order to detect such a profile, a useful property, is the
curvature of the image surface. Curvature has been suc-
cessfully used to detect ridges, valleys, thin nets and crest
lines from images. In general, curvature can be used to de-
tect features where the image surface bends sharply. Such
features are characterised by points of maximal curvature
on the image surface.

The curvature at a point on the image surface is a mea-
sure of the bend in the surface along a particular direction.
Because of this direction-specific nature of curvature, one
can define the curvature of the image surface along a par-
ticular direction, in terms the curvature of the 1D profile
of the image intensity values along that direction. Here, we
present a measure of surface curvature of 2D digital images
using an approach presented in [8] and review the definition
for curvature of a 1D function.

Figure 3. Sample retinal image and enlarged views of 3D
profiles of some drusens.

Let y = f(x) be a 1D function. Let the tangent at a
point P : x on this function make an angle θ with the x-
axis as shown in Figure 4. If dl is the differential arc length
at the point P , then the extrinsic curvature of the function
f(x) at this point is defined as:

k(x) =
dθ

dl
=

dθ√
dx2 + dy2

=
dθ
dx√

1 + ( dy
dx)2

(4)

Since, θ is the angle made by the tangent with the x-
axis, it can be computed as:
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Substituting the above expression in equation 4, we get:
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which is the true curvature measure. As the point P moves
on the curve y = f(x), the tangent angle θ changes. This
change over a given arc length dl is the true curvature mea-
sure k(x). On a closer examination of equation 4, we can
see that the numerator term Υ(x) represents the rate of
change the tangent angle with respect to the projection of
the arc length over the x axis. Comparing the equations 6
and 7, we see that the two expressions differ only by the
power of the denominator. Significantly, Υ(x) will peak
sharply at the locations of medial points of ridge profiles
(as does k(x)), where the first derivative of the profile func-
tion vanishes and the second derivative is a negative max-
imum. Thus, Υ(x) is an alternative to the true curvature
measure k(x) since it also provides information about the
rate of change of the tangent angle as a point moves along
a curve [8]. In the case of 2D images, Υ(x) corresponds
to a derivative of the angle made by a surface tangent line
with the image plane, in some direction. Accordingly, we
distinguish it from the true curvature measure, by calling it
as the Surface Tangent Derivative (STD). We will use the
STD as an estimate of the curvature of image surfaces.

Since drusens have a hilly profile, the STD can be
used to detect them by detecting hill-like features in the
images which are characterised by high values of STD in
all directions. Here, we have used a hill detection algorithm
presented in [8]. At every point in a given image, STD is
computed in N different directions and maximum value of
chosen among all N directions. A point is declared as a hill
point if the value at that point is above a threshold value and
maximum among its neighbours.

3.1 Experiment details

In our experiments STD computation was done in four dif-
ferent directions: −45 ◦, 0 ◦, 45 ◦, 90 ◦. We have used STD
based hill detection to extract hill points in the image. The
detected hill points can be due to a drusen at that location
or due to noise. To remove the hill points occurring due
to noise we retain those points whose value lies above a
threshold. A low threshold value helps to pick even the
faintest drusen but at the cost of some false negatives, while
high threshold value will miss some of the faint drusens.

Hence, the threshold value has to be carefully selected. In
drusen detection, since the softer (faint) ones are more im-
portant, it is best to choose a low threshold. The false neg-
atives can be suppressed later by using information about
local context. The value of threshold was decided empiri-
cally and was kept fixed for all the images.

Figure 4. Results of multiscale hill point detection.

As drusens occur in various sizes and shapes, in order
to detect all drusens it is best to perform a multiscale com-
putation of STD. In our experiments, STD was computed
at five different scales 3, 7, 11, 21 and 31 and the results
were summed (logical OR). The result of hill detection on
a sample image is shown in Figure 4. It can be seen that
the hill points marked in green, coincide with drusen loca-
tions consistently well. Later, results were confirmed by
the retina expert. It is quite possible that a large drusen will
be characterised by more than one hill point using this ap-
proach which can adversely affect the count. This can be
addressed by performing a local context-based culling of
the hill points as a post processing step.

4 Discussion and conclusions

Drusens are markers of age-related macular degeneration
(ARMD) as their increasing number generally indicates
risk for ARMD. In this paper, we have investigated two
new characterisations of drusens and developed methods
to detect them from colour images. The existing drusen
detection approaches can be broadly categorised into two
classes of approaches. The first class of approaches directly
extract the drusens from the image. Examples of such an
approach are the texture- based detection presented in this
paper and [2][3]. Whereas, approaches that belong to the
second class first identify a seed point within the drusen re-
gion using either intensity maximas [4] or curvature maxi-
mas (presented here). The suitability of any drusen detec-
tion approach should be evaluated based on the actual aim
of the work: to get an accurate count of drusens and to seg-



ment them for grading (identifying soft/hard drusens based
on the area/size).

A drusen count in a given retinal image provides am-
ple information about the potential risk for ARMD. The
first class of approaches are not reliable in picking up small
and faint drusens. Thus, they are not the best choice for the
task in hand which is, getting a accurate count of drusens
in the image. The second class of approaches are very re-
liable in picking up drusens of all sizes and types (bright
or faint) in an image. Thus, the second class of approaches
are recommended for obtaining an accurate count.

The task of grading drusens involves segmentation of
entire drusen regions. The first class of approaches directly
segment drusen regions and hence may appear to be best
suited for grading. However, no assessment of the accu-
racy of the segmentation has been reported in the literature.
Furthermore, a drawback of the methods in first class is the
requirement of many pre-processing steps such as contrast
stretching, etc., prior to the segmentation stage. These can
potentially affect the reliability of the segmentation. By
contrast, the hill-based drusen detection method we have
presented does not require any preprocessing (except optic
disk suppression) and hence will not affect the reliability
of the results. Grading of drusens can be achieved using
the second class of approaches as well by employing a ro-
bust region growing or region boundary finding (such as
Snakes) techniques. In summary, since the second class of
approaches have scope for providing an accurate count of
drusens as well information for grading them they seem to
be the most promising for automatic drusen detection.
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