
Texture Guided Realtime Painterly Rendering of

Geometric Models

Shiben Bhattacharjee1? Neeharika Adabala2

1 CVIT, International Institute of Information Technology Hyderabad
2 Microsoft Research India

Abstract. We present a real-time painterly rendering technique for ge-
ometric models. The painterly appearance and the impression of geomet-
ric detail is created by effectively rendering several brush strokes. Unlike
existing techniques, we use the textures of the models to come up with
the features and the positions of strokes in 3D object space. The strokes
have fixed locations on the surfaces of the models during animation, this
enables frame to frame coherence. We use vertex and fragment shaders
to render strokes for real-time performance. The strokes are rendered
as sprites in two-dimensions, analogous to the way artists paint on can-
vas. While animating, strokes may get cluttered since they are closely
located on screen. Existing techniques ignore this issue; we address it
by developing a level of detail scheme that maintains a uniform stroke
density in screen space. We achieve painterly rendering in real-time with
a combination of object space positioning and image space rendering of
strokes. We also maintain consistency of rendering between frames . We
illustrate our method with images and performance results.
Keywords: Non-Photo-realistic Rendering, Real-time Painterly Render-
ing, Stroke Based Rendering, Texture Guided Strokes, Levels of Detail
of Strokes.

1 Introduction

Paintings are often used to depict ideas. The aesthetics and expressiveness of
paintings enables effective capture of the intentions of the artist. Animations are
therefore often created in painterly style. In recent times computers are often
used to generate the environments in cartoon based entertainment. (Eg. Titan
A.E., Transformers etc.) Use of computers saves artists from the tedious need
to create various views of the same static environment, but it leads to a visual
disparity between the hand drawn objects and the environment as computer
generated images appear synthetic and lack abstraction. Painterly rendering, a
non-photorealistic rendering technique, can harmonize the composition of hand
drawn elements and the computer modeled environment. Therefore, painterly
rendering has been the focus of several graphics researchers.

More recently games depicting cartoon like appearance based upon cartoon
serials/movies (Eg. Teenage Mutant Ninja Turtles, 2004) have been made. These

? This work was done while being an intern in Microsoft Research India

games could benefit from real-time painterly rendering. When painterly render-
ing is applied in gaming scenarios one has to address two key issues namely,
frame to frame coherence, and level of detail management. In this paper we
present a real-time painterly rendering algorithm that addresses theses issues.
Existing painterly rendering techniques for animations employ geometry alone
for placement of strokes and ignore textures that are a crucial part of models.
They also do not address the issue of cluttered strokes. We present a painterly
rendering technique that uses texture guided stroke placement on models and
handles problems due to cluttering of strokes.

The organization of the rest of the paper is as follows: We briefly describe
related work in the following section. We outline our technique in the section 3
and give details on stroke position computation, classification of strokes and
rendering of strokes. We also describe a technique to address problem of stroke
cluttering. Illustrations of our results and the performance of our system are dis-
cussed in section 4. We conclude with a discussion on the aesthetic considerations
and technical aspects in section 5.

2 Related Work

Abstract representation of still images was introduced by Haeberli [1], he uses
image color gradient and user interactivity for painting. Hertzmann [2] places
curved brush strokes of multiple sizes on images for painterly rendering. The
technique fills color by using big strokes in the middle of a region and uses pro-
gressively smaller strokes as one approaches the edges of the region. Shiraishi
and Yamaguchi [3] improves the performance of above method by approximating
the continuous strokes by placement of rectangular strokes discreetly along the
edges to create painterly appearance. Santella and DeCarlo[4] used eye tracking
data to get points of focus on images and create painterly rendering with focus
information. All these techniques work well on single images but they usually
involve iterative (optimization) techniques that make them cumbersome for real-
time applications (see [5]). Also if they are applied on each frame of an animation
independently, it often leads to flickering of strokes due to incoherence of strokes
between frames.

Painterly rendering for animation was introduced in Meier’s work [6] which
focuses on eliminating shower door effect and achieve frame to frame coherence.
Non existence of programmable graphics hardware, however, made the technique
non-realtime. Also the method was limited to fetch stroke properties from ge-
ometry. Klein et al. [7] used realtime creation of painterly textures for painterly
rendering using image based rendering algorithms for simple geometric models.
Their algorithm lacks frame to frame coherence. Haller and Sperl [8] describes
a realtime painterly process inspired by Meier [6]. Their approach makes the
painterly rendering process work in real-time with the help of programmable
graphics hardware. The method extracts stroke properties from geometry alone,
and it does not address the problem of cluttering of strokes with changes in
viewpoint.

3 Our Approach

A painting is created by placing several brush strokes of various shapes at specific
locations on the canvas. In our approach we use the textures of models to enable
us to select the number, location and shape of strokes to render. The position
of the strokes are defined by the image space coordinates of a pixel in a texture
and property of the stroke is stored as the pixel value at that location. We
call the resulting image as a feature image. The stroke locations are in the
image/texture space; we transform the 2D positions of stroke locations to 3D
object space coordinates for painterly rendering.

The outline of the algorithm is as follows:

Start:

Load various stroke textures;

Load Model Information;

Extract features from Model’s textures;

Transform features from Image to 3D space;

For each frame:

PASS1:

Draw the object;

Save the screen as a texture;

Save the depth information as a texture;

PASS2:

Draw Edge strokes;

Draw Filling strokes;

Draw Feature strokes;

End

In each frame we render the object/scene and save it as a reference image. We
also save the depth information as a depth texture. In the next pass, we render
sprites at the stroke locations using vertex and fragment shaders. These brush-
strokes are categorized based on the details given in section 3.1. The sprites are
texture mapped with brush stroke textures, alpha blended and associated with
color information from the reference image. The depth texture is used to decide
the visibility of sprites/strokes. When a face of the object occupies less area in
the screen space, the strokes in that region become cluttered and overlap. We use
levels of detail to overcome the cluttering. The level of detail scheme, however,
has a popping artifact during transitions. We develop an approach for smooth
level of detail change, the details of which are presented in section 3.3.

3.1 Feature Extraction from Textures

This section describes the technique we use to obtain features from textures.
When painting, one has to decide locations of strokes, number of strokes, shapes
of strokes and orientations of strokes. These properties are gathered from the
textures associated with the model. For each texture, example figure 1(a), we
use a simple Sobel’s edge detector [9] to get the edges and store them in the
gray-scale feature image. Then this edge map is used to get another set of edges

running parallel along the detected edges. These parallel edges store the angle
along which the edge is oriented at each pixel as the pixel value as shown in
figure 1(b). The angles in the range [0, π], are discretized and scaled in the range
[100, 200] as the pixel value in the feature image. We then stipple the lines by
running a mask on the lines and nullifying a number of surrounding pixels. The
size of the mask is a parameter that decides the concentration of strokes while
rendering since each non-null pixel location represents a stroke. A smaller size
implies a greater concentration of stroke locations, which in turn implies a larger
number of strokes. The generated points on the original edges have pixel value
255. Strokes at these locations are called edge strokes. Strokes on the points,
which are on the lines parallel to the edges, are called feature strokes. In the
remaining empty area we distribute points with a pixel value 64, with random
spacing as shown in figure 1(c). These strokes are called filling strokes.

(a) (b) (c)

Fig. 1. (a) Example texture; (b) Detected Edges and parallel edges storing the ori-
entation; (c) Final feature image giving stroke locations; here different pixel values
indicate whether the strokes are edge, feature or filling strokes.

3.2 Stroke Location Transfer from Image to Object Space

As a pre-processing step we transform the positions of pixels in the feature
image to object space depending upon which face the strokes are stuck to. We
use simple geometric transformation equations to solve this issue. We find the
3D points (x, y, z) for any pixel (X, Y) as

aX + bY + k = x

cX + dY + k = y

eX + fY + k = z

For any 3 pixels in the texture (X1, Y1), (X2, Y2), (X3, Y3), if we know 3 object co-
ordinates (x1, y1, z1), (x2, y2, z2), (x3, y3, z3) (Eg. 3 corners of a triangular face),
we can solve the equations for a, b, c, d, e, f . We save stroke positions and their
properties for each face.

3.3 Rendering

Rendering consists of two passes; the first pass renders the object and saves it
on a texture as the reference image. The second pass involves calculation of a
Level of Detail (LOD) factor and a blending factor for each face depending upon
its screen occupancy. Less the occupancy, lower the level of detail associated
with the face during rendering. The order of rendering strokes is based on their
category. Rendering of some strokes is skipped based on the LOD.

Creation of Reference Image We render the textured geometric model, and
copy the output to a texture example figure 2(a). The depth information is
copied to a depth texture.

(a) (b) (c) (d)

Fig. 2. (a) Reference Image; (b) Cluttered strokes of oblique faces; (c) Cluttered strokes
when far; (d) No clutter when with LOD scheme

Calculation of Levels of Detail We see a cluttering of strokes, in figure 2(c),
when the geometric model is distant. We calculate the distance of the camera
from each face. This distance d is used to calculate LOD indicator ld which is
the level of detail due to distance, as N(d−min)/(max−min) where max and
min are the maximum and minimum distance respectively the object travels
from the eye position, and N is the number of LODs available. When the face
is at min distance to camera, ld equals 0 and when the face is at max distance
to camera, ld equals N .

However, faces also cover less screen space when they are nearly parallel to
the viewing direction as shown in figure 2(b). To address this issue, we calculate
another LOD indicator, level of detail due to orientation lo, as lo = (1−|n.v|)N ,
where n is the normal of the face and v is the unit view vector. As per dot
product’s nature, lo = N when n and v are perpendicular to each other i.e. face
is completely out of view, and lo = 0 when n and v are equal i.e. face completely
faces you.

Thus we use ld = 0, lo = 0 as the highest LOD indicators and ld = N, lo = N
as the lowest LOD indicators. We take the weighted mean of the two and use the
value for assigning an LOD factor l and blending factor α to the face as follows:

l = [wolo + wdld], α = 1 − {wolo + wdld}

where wd and wo are user decided weights for farness and orientation respectively.
We skip 2l number of strokes while drawing stokes for a face. For a stroke with
index i in a face, if the expression mod(i, 2(l+1)) returns a non null value, means
that this stroke is skipped when LOD changes for this face. We multiply α
with this stroke’s opacity, so that it gradually becomes transparent as the face
approaches the next LOD transition. When the face shifts to the next LOD,
this stroke is dropped but we do not see any popping artifact since it gradually
becomes totally transparent. Ours strokes do not clutter, example figure 2(d).
The calculations involving assignment of blending factor is done on the GPU
with the help of vertex shaders explained in more detail in the next section.

Rendering of Strokes We render the edge strokes first. For each edge stroke
we pass on the edge stroke location to the vertex shader 4 times with 4 tex-
ture coordinates of a randomly chosen perturber texture. Sample edge stroke
textures are shown in figure 3(a). This randomness is pre-computed to avoid

(a) (b) (c)

Fig. 3. (a) Edge Stroke textures; (b) Filling Stroke textures; (c) Feature Stroke textures

inconsistency between frames. A vertex shader, which we call VS1 for future
reference, calculates the sprite coordinates using the texture coordinates. We
calculate the sprite coordinates after we have applied the model-view transfor-
mation to the stroke location. To maintain constant sprites size, we calculate
the sprite coordinates after we have projected the stroke location. A fragment
shader, which we call FS1 for future reference, picks color information from the
edge stroke texture; uses the red stream as the amount of perturbation in x axis
direction and blue stream as the amount of perturbation in y axis direction, of
the location of pixel of reference image (see figure 4(b)).

px = 2Cr − 1, py = 2Cb − 1

Oc = IcTx+kpx,y+kpy

where p is the disturbance with a scale k in the reference texture’s T coordi-
nates x, y at that fragment location, C is the color of the stroke texture at that
fragment location and Ic is the optional input color for the whole stroke. Oc is
output fragment color of the FS1. Also we use the blending factor and multiply
it with the opacity of the stroke as explained in the previous section. Now using
the filling stroke coordinates and filling stroke textures randomly chosen from
available ones as show in figure 3(b). We render the filling strokes as sprites.
We use the same vertex shader VS1 but a different fragment shader, which

(a) (b) (c) (d)

Fig. 4. Lord Ganesha; Using (a) Reference texture, (b) Rendering of edge strokes
followed by (c) Rendering of filling strokes and then (d) Finally rendering of feature
strokes to get the final output

we call FS2 for future reference, since we want to perturb the color picked up
from the reference texture. FS2 uses the filling stroke texture’s color streams to
change the color of the background reference texture at that fragment location
(see figure 4(c)).

p = 2C − 1

Oc = Ic(Tx,y + kp)

where the notations mean the same as explained earlier. FS2 does the same job
as FS1 regarding the blending factor. Next we use feature stroke coordinates
and feature stroke textures randomly chosen from available ones to render the
feature strokes as sprites. Sample feature strokes are shown in figure 3(c). We
use a different vertex shader, which we call VS2 for future reference. VS2 incor-
porates not only calculation of sprite coordinates but also rotation of the sprite
in the image space according to feature information stored along with the stroke
coordinate. The rotated strokes are rotated by another angle which is due to the
animation of the model. We use FS2 for the later part of the processing of this
stroke. Figure 4(d), is a example of the output when all the strokes are rendered.
The strokes are alpha blended, therefore order of blending is important. This

Depth texture values (T)

Eye

Pixels with Z < T

Pixels getting discarded since

their Z > T
(a) (b) (c)

Fig. 5. (a) A sample depth texture for (b) A reference image; (c) Only pixels of strokes
with depth less than depth texture value pass.

is where depth texture comes in picture. An example depth texture is shown in
figure 5(a). In FS1 and FS2 we test the depth of the pixel to be less than or
equal to the depth value at that location in the depth texture, if the pixel does
not pass the condition, it is discarded as illustrated in figure 5(c). We use a small
offset when testing since our strokes are front facing sprites with constant depth.
All strokes drawn have a maximum opacity less than 1, so that the rendering is
relative to the background color. This is consistent with an artist using water
colors, the painting has a tone of the color of the paper being used.

4 Results

We use a system with the following specifications: Intel Pentium 4 3.4 GHz,
2.00 GB RAM, nVIDIA 6800 Ultra. We implement the algorithm in C++, with
libraries OpenGL, SDL and CGgl along with Nvidia CG for shaders. We render
simple models: cube with 6 faces, building with 15 faces, a South-Indian Style
temple with 55 faces and a tall building with 1000 faces. The results are given

(b)(a) (c) (d)

Fig. 6. Various Painterly Rendered Objects: (a) Building; (b) Cube; (c) Temple; (d)
Tall building

in table 1 and outputs are shown in figure 6. The cube with LOD system gives a
frame rate of 150 to 200 as the model oscillates between the near and far plane
of the camera respectively. The performance of the system is dependent on
the type of strokes that are rendered as the shaders have different calculations
for different category of strokes. The speed of the system is mainly influenced
by the number of strokes. Example as given in table 1, the cube with 6 faces
and 4266 stroke count gives similar frame rates as the Tall Building with 1000
faces and 4400 stroke count. We do most of the calculations on the GPU. Only
the calculations for LOD are done on the CPU as they decide the primitives
that are getting rendered rather than computations that are performed on the
primitives.

Table 1. Frame Rates for Model: Building

Model No. of faces No. of Strokes FPS

Building 15 7455 107
Building 15 3727 185
Building 15 1863 357
Temple 55 7170 89
Temple 55 3585 170
Temple 55 1797 402
Cube 6 8532 60
Cube 6 4266 120
Cube 6 2133 232
Tall Building 1000 51200 16
Tall Building 1000 25600 30
Tall Building 1000 12800 50
Tall Building 1000 17600 51
Tall Building 1000 8800 81
Tall Building 1000 4400 140

5 Conclusions and Future Work

We presented a system which produces a painterly rendering of simple geomet-
ric models. Its a combination of stroke based rendering of still 2D images and
painterly rendering in 3D. The visual appearance depends on the number of
strokes used, the stroke textures, the size of strokes. In some scenes, when less
strokes are used, it gives a nice visual appearance of a light water color draw-
ing. Large strokes bring abstract effect whereas small strokes bring accuracy to
the object. Stroke texture used should have a smooth gradient content, high
frequency stroke textures create discreteness between adjacent strokes and spoil
the hand drawn appearance.

As future work, we will explore making technical improvements to our imple-
mentation at various places. Copying the scene and depth texture after PASS1
as explained in section 3.3 are done by the glCopyTexImage2D() function. We
can improve the implementation by rendering directly to textures with the help
of pbuffers. The visibility testing of strokes is done on a fragment shader, i.e.
on all of it’s pixels. This can be done even more efficiently if we can access the
depth texture at the vertex shader level (we want a stroke to be visible as a
whole or not). Vertex texture fetch is a possibility, however vertex textures are
slow and are limited to vendor and specific data types. We are studying vertex
texture fetch improvements.

References

1. Haeberli, P.: Paint by numbers: abstract image representations. In: SIGGRAPH
’90: Proceedings of the 17th annual conference on Computer graphics and interac-
tive techniques, New York, NY, USA, ACM Press (1990) 207–214

2. Hertzmann, A.: Painterly rendering with curved brush strokes of multiple sizes.
Computer Graphics 32 (1998) 453–460

3. Shiraishi, M., Yamaguchi, Y.: An algorithm for automatic painterly rendering
based on local source image approximation. In: NPAR ’00: Proceedings of the
1st international symposium on Non-photorealistic animation and rendering, New
York, NY, USA, ACM Press (2000) 53–58

4. Santella, A., DeCarlo, D.: Abstracted painterly renderings using eye-tracking
data. In: NPAR ’02: Proceedings of the 2nd international symposium on Non-
photorealistic animation and rendering, New York, NY, USA, ACM Press (2002)
75–ff

5. Hertzmann, A.: Tutorial: A survey of stroke-based rendering. IEEE Comput.
Graph. Appl. 23 (2003) 70–81

6. Meier, B.J.: Painterly rendering for animation. Computer Graphics 30 (1996)
477–484

7. Klein, A.W., Li, W.W., Kazhdan, M.M., Correa, W.T., Finkelstein, A.,
Funkhouser, T.A.: Non-photorealistic virtual environments. In Akeley, K., ed.:
Siggraph 2000, Computer Graphics Proceedings, ACM Press / ACM SIGGRAPH
/ Addison Wesley Longman (2000) 527–534

8. Haller, M., Sperl, D.: Real-time painterly rendering for mr applications. In:
GRAPHITE ’04: Proceedings of the 2nd international conference on Computer
graphics and interactive techniques in Australasia and South East Asia, New York,
NY, USA, ACM Press (2004) 30–38

9. Gonzalez, R.C., Woods, R.: Digital Image processing. (Addison-Wesley)
10. Hertzmann, A., Perlin, K.: Painterly rendering for video and interaction. (2000)
11. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analo-

gies. In Fiume, E., ed.: SIGGRAPH 2001, Computer Graphics Proceedings, ACM
Press / ACM SIGGRAPH (2001) 327–340

12. Hertzmann, A.: Fast paint texture (2002)
13. Strothotte, T., Masuch, M., Isenberg, T.: Visualizing Knowledge about Virtual

Reconstructions of Ancient Architecture. In: Proceedings Computer Graphics In-
ternational, The Computer Graphics Society, IEEE Computer Society (1999) 36–43

14. Freudenberg, B., Masuch, M., Strothotte, T.: (Walk-through illustrations: Frame-
coherent pen-and-ink style in a game engine)

15. Lee, H., Kwon, S., Lee, S.: Real-time pencil rendering. In: NPAR ’06: Proceedings
of the 3rd international symposium on Non-photorealistic animation and rendering,
New York, NY, USA, ACM Press (2006) 37–45

16. DeCarlo, D., Santella, A.: Stylization and abstraction of photographs. In: SIG-
GRAPH ’02: Proceedings of the 29th annual conference on Computer graphics and
interactive techniques, New York, NY, USA, ACM Press (2002) 769–776

17. Santella, A., DeCarlo, D.: Visual interest and npr: an evaluation and manifesto. In:
NPAR ’04: Proceedings of the 3rd international symposium on Non-photorealistic
animation and rendering, New York, NY, USA, ACM Press (2004) 71–150

18. Nienhaus, M., Dollner, J.: Sketchy drawings. In: AFRIGRAPH ’04: Proceedings of
the 3rd international conference on Computer graphics, virtual reality, visualisation
and interaction in Africa, New York, NY, USA, ACM Press (2004) 73–81

