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ABSTRACT

A 2D function, representing a digital image, is a surface in 3D space.
Curvature of such a surface can be exploited to detect ridge and val-
ley like features from images. In this paper, we present an analysis of
such curvature based ridge and valley detection techniques and come
up with a description for the different classes of ridge and valley pro-
files which can be detected by them. Such an analysis helps in under-
standing the scope and limitations of the curvature based techniques.
As curvature is a measure of ‘bend’ in the cross-section profile along
a particular direction of the image intensities, the analysis is presented
using 1D functions which represent cross-section profiles of ridges
and valleys. The classes of profiles which can be detected by a cur-
vature based technique are described in terms of the properties of the
second-derivative of the 1D profile function.

1. INTRODUCTION

Intensity ridges and valleys form medial structures of objects in 2D
digital images [1] such as blood-vessels in medical images and road-
networks in satellite images.The notion of a ridge or a valley, in a 2D
digital image, is formed by visualising the image function as a surface
in 3D space. Geometric properties of such a surface can be exploited
to detect image features.One such property, the curvature of the ‘im-
age surface’, has been used to detect intensity ridges and valleys from
2D digital images [1] [5] [4] [3]. Surface curvature is a measure of the
bend in the image surface along a particular direction.Medial lines of
ridges and valleys are characterised by high magnitudes of curvature
along the direction perpendicular to the orientation of the ridge.

An image feature can occur in various forms.For example, ridges and
valleys can occur with different cross-sectional profiles. The scope
of a feature detection technique can be determined by the different
formsof a particular feature that are detected by it.By the same token,
its limitations can be determined by the forms of the feature which
are not detected by it. It is of importance to know the scope of a fea-
ture detection technique in order to determine its appropriatenessfor a
given application.Evaluationsof different ridge detection techniques,
with respect to a list of desirable properties, and their suitability for a
specific application are presented in [3] and [4]. However, in both [3]
and [4], the scope and limitations of ridge detection techniques are
illustrated using few specific examples. To our knowledge, there is
no work in literature which tries to exhaustively establish the scope
of curvature based ridge and valley detection techniques using a the-
oretical analysis. In this paper, we present an analysis of the general

framework of curvature based ridge/valley detection to establish the
scope and limitations of the techniques built on this framework. The
scope of the framework is presented in terms of the different classes
of ridge/valley profiles which can be detected by it.

In the next section (Section 2) we present a brief overview of the
general framework of curvature based ridge and valley detection. In
Section 3, we present a detailed analysis of this framework, using
1D cross-section profiles of ridges and valleys, and summarise the
various classes of ridge and valley profiles which can be detected.
In Section 4, we conclude by briefly mentioning the limitations of
the framework.

RIDGE AND VALLEY DETECTION FROM
CURVATURE OF THE IMAGE SURFACE

2.

The general framework for curvature based ridge and valley detection
is based on the differential geometry of image surfaces [5] [1]. For
every point on a surface, there exist two curvature measures, namely,
the maximum and minimum principal curvatures along two orthogo-
nal principal directions. These measure the maximum and minimum
bend in the surface.A pixel is defined as a ridge or a valley pixel if the
magnitude of the maximum principal curvature (MPC) at that pixel
is a local maximum in some direction and has a value greater than a
chosen threshold. Depending on the reference coordinate system, a
high negative curvature indicates a strong ridge strength while a high
positive curvature indicatesa strongvalley strength,or vice versa.The
direction along which the MPC is a maximum is the direction perpen-
dicular to the orientation of the ridge (or valley) at that pixel. An ef-
ficient computational algorithm for such a curvature based detection
framework can be found in [5]. Here, the ridge and valley pixels are
located at the zero crossings of the directional derivative of the mag-
nitude of theMPCalong the correspondingprinciple directions.Zero-
crossings of the directional derivative would also correspond to min-
ima of the magnitude of MPC.However, such minima are rejected by
a thresholding operation.

3. ANALYSIS

As mentioned in the previous section, the framework for curvature
based detection of ridges and valleys is based on differential geome-
try of 3D surfaces (Section 2). However, curvature of an image func-
tion is a measure of the ‘bend’ in the cross-section profile along a
particular direction of the image intensity values. Hence, analysis of
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curvature based feature detection technique can be done using just 1D
functions which represent the (cross-section) profiles of the features
of interest. In this section, we present an analysis of the curvature
based ridge/valley detection framework (Section 2) using 1D profiles
of ridges and valleys.

A ridge/valley detection technique detects medial lines of such struc-
tures. Such medial lines are loci of ‘medial points’ of the cross-sec-
tion profiles of ridges/valleys. Therefore, in order to use 1D profile
functions to perform an analysis of curvature based ridge/valley de-
tection, the original 2D framework has to be reformulated to detect
medial points of 1D profile functions.Before presenting such a refor-
mulation, we shall define a few terms for ease of presentation later in
this paper and state a Lemma.

Definition 1 (Point of Magnitude Maximum): Let f : ℜ → ℜ be
a 1D function. If a point x = a is a point of local maximum of the
function y = |f (x) |, then it is a point of magnitude maximum of
the function y = f (x). For brevity, we shall refer to such a point of
magnitude maximum of a function as a PMMAX of the function.

Definition 2 (Point of Magnitude Minimum): Let f : ℜ → ℜ be
a 1D function. If a point x = a is a point of local minimum of the
function y = |f (x) |, then it is a point of magnitude minimum of
the function y = f (x). For brevity, we shall refer to such a point of
magnitude minimum of a function as a PMMIN of the function.

Lemma 1: Let f : ℜ → ℜ be a 1D function for which derivatives
upto the second order exist. If

(a)
⎡
⎢
⎣

dy
dx

⎤
⎥
⎦x=a

= 0 and, (b)
⎡
⎢
⎣
y

2d y
2dx

⎤
⎥
⎦x=a

< 0

then, x = a is a PMMAX of the function y = f (x).
Proof: See APPENDIX A

The curvature of a 1D function y = f (x) is given as [2]:

κ(x) =

2d y
2dx

3
2⎧

⎨
⎩

1 +
2(dy

dx ) ⎫
⎬
⎭

(3.1)

We shall now state the criterion for curvature based medial point
detection using Definition 1.

Definition 3 (Curvature based criterion for medial points of 1D
profile functions): Let f : ℜ → ℜ be a 1D function for which
derivatives upto the second order exist. A point x = a is a medial
point of the profile function y = f (x) if it is a PMMAX of κ(x).
[ NOTE:Later in this paper, we will require that κ(x) be twice differ-
entiable. This in turn would require that y = f (x) has derivatives upto
the fourth order. ]

The PMMAXof the curvature iswhere the derivative of the curvature
vanishes. The derivative of the curvature is found, by differentiating
the expression in equation 3.1:

dκ
dx

=

3d y
3dx

⎧
⎨
⎩

1 +
2(dy

dx) ⎫
⎬
⎭

− 3
dy
dx

2( 2d y
2dx )

5
2⎧

⎨
⎩

1 +
2(dy

dx) ⎫
⎬
⎭

(3.2)

Considering equation 3.2, it is clear that the first derivative of the
curvature can vanish under four different conditions. These are:

C1 : :
dy
dx

= 0,
2d y

2dx
≠ 0,

3d y
3dx

= 0

C2 : :
dy
dx

= 0,
2d y

2dx
= 0,

3d y
3dx

= 0

C3 : :
dy
dx

≠ 0,
2d y

2dx
= 0,

3d y
3dx

= 0

C4 : :
dy
dx

≠ 0,
2d y

2dx
≠ 0,

3d y
3dx

≠ 0 but the numerator as a

whole, of the expression on the right hand side
of equation 3.2, goes to zero.

The second derivative of the profile function is zero in C2 and C3.
Hence, by equation 3.1, the curvature of the profile function also goes
to zero at such points.Therefore,a point satisfyingC2 or C3cannot be
a PMMAX of the curvature function.A medial point is either the top
of a ridge profile, or the bottom of a valley profile. In other words, the
medial points are points of extremal image intensities. Hence, a PM-
MAX which satisfies C4 cannot be a medial point of a ridge/valley
profile. Such PMMAX occur as ‘knee/elbow’points of edge profiles,
as shown in Figure 1. In practice, it is either rejected by setting a
threshold or in few rare cases, is wrongly classified as a ridge/valley
pixel. Therefore, medial points which satisfy the criterion in Defini-
tion 3 should satisfy only C1.However, a point satisfying C1need not
satisfy the criterion in Definition 3. The following theorem gives us a
condition under which a point satisfying C1 is also a PMMAX of the
curvature function.

Figure 1. Cross-section of a ridge and the various points of extremal curvature.

Theorem 1: Let f : ℜ → ℜ be a 1D function for which deriva-
tives upto the fourth order exist. If for some point x = a, we have
⎡
⎢
⎣

dy
dx

⎤
⎥
⎦x=a

= 0 ,
⎡
⎢
⎣

2d y
2dx

⎤
⎥
⎦x=a

≠ 0 ,
⎡
⎢
⎣

3d y
3dx

⎤
⎥
⎦x=a

= 0 , and
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⎡
⎢
⎣

2d y
2dx

⎧
⎨
⎩

4d y
4dx

− 3
3( 2d y

2dx ) ⎫
⎬
⎭

⎤
⎥
⎦x=a

< 0 (3.3)

then, x = a is a PMMAX of the curvature of function y = f (x).
Proof: Follows trivially by applying Lemma 1 to the curvature
expression in equation 3.1

If at some point on the profile, the fourth-derivative is non-zero; the
curvature function has a PMMAX;and C1is satisfied; then, the profile
function has to satisfy an inequality. This is stated in the following
theorem.

Theorem 2: Let f : ℜ → ℜ be a 1D function for which derivatives
upto fourth order exist. If some point x = a is a PMMAX of the

curvature of the function y = f (x) while satisfying
⎡
⎢
⎣

dy
dx

⎤
⎥
⎦x=a

= 0 ,

⎡
⎢
⎣

2d y
2dx

⎤
⎥
⎦x=a

≠ 0 ,
⎡
⎢
⎣

3d y
3dx

⎤
⎥
⎦x=a

= 0 and
⎡
⎢
⎣

4d y
4dx

⎤
⎥
⎦x=a

≠ 0 , then

⎡
⎢
⎣

2d y
2dx

⎧
⎨
⎩

4d y
4dx

− 3
3( 2d y

2dx ) ⎫
⎬
⎭

⎤
⎥
⎦x=a

< 0 (3.4)

Proof: See APPENDIX A

C1requires the third-derivative to be zerowhile the second-derivative
is non-zero.Let x = a be a point where C1occurs.Then,we will have
the following possible properties for the second-derivative function
at that point.

A. x = a is a PMMAX of the second-derivative function:

Since the denominator of the curvature expression (equation
3.1) is always positive, the point x = a is a PMMIN of the de-
nominator of the curvature expression. Furthermore, given that
the point x = a is a PMMAX of the second-derivative implies
that it is also a PMMAX of the numerator of the curvature ex-
pression.Therefore,we can conclude that x = a is a PMMAX of
the curvature expression as a whole.

B. x = a is a point of inflection of the second-derivative function
which is non-zero at this point:

In this case, we must have
⎡
⎢
⎣

4d y
4dx

⎤
⎥
⎦x=a

= 0 . Hence, we have

⎡
⎢
⎣

2d y
2dx

⎧
⎨
⎩

4d y
4dx

− 3
3( 2d y

2dx ) ⎫
⎬
⎭

⎤
⎥
⎦x=a

=
⎡
⎢
⎣

⎧
⎨
⎩

− 3
4( 2d y

2dx ) ⎫
⎬
⎭

⎤
⎥
⎦x=a

< 0

Therefore, by Theorem 1, the point x = a is also a PMMAX of
the curvature function. An example of a profile function with
such a PMMAX is f (x) = 5x + 210x , x ∈ [ − 1, 1] and its sec-
ond derivative is f ′′(x) = 20 3x . x = 0 is a point of inflection of
the second-derivative, which is also a PMMAX of its curvature

function.

C. The second-derivative is a non-zero constant function:

In this case again, the fourth derivative must vanish, i.e.,
⎡
⎢
⎣

4d y
4dx

⎤
⎥
⎦x=a

= 0. Hence, as in case B above, the point x = a is a

PMMAX of the curvature function. Examples of such profiles
are quadratic polynomials which have a unique point of mini-
mum or maximum.

D. x = a is a PMMIN of the second-derivative function which is
non-zero here; the fourth derivative vanishes at this point:

Using Theorem 1 again, as with cases B and C above, it can be
concluded that x = a is a PMMAX of the curvature function.

E. x = a is a PMMIN of the second-derivative function and
the fourth and the second derivatives are non-zero at this
point:

Using Theorems 1 and 2, x = a is a PMMAX of the curvature
function only if the derivatives of the profile function satisfy the
inequality 3.4.

The five different cases discussed above correspond to five classes of
profiles for which a point satisfying C1 is also a PMMAX of the cur-
vature function.Hence,we conclude that there are five different class-
es of ridge and valley profiles which can be detected by techniques
using the curvature based criterion in Definition 3. These classes are
summarised below for easy reference, in terms of the characteristics
of the function at the medial point.

Class 1 Functions for which there exists a PMMAX of the second-
derivative at a point where the first derivative vanishes.

Class 2 Functions for which there exists a point of inflection of
the second-derivative at a point where the first-derivative
vanishes and the second-derivative has a non-zero value.

Class 3 Functions for which the second-derivative is a non-zero
constant function and there exists a point where the first
derivative vanishes.

Class 4 Functions for which there exists a PMMIN of the second-
derivative at a point where the first and fourth derivatives
vanish, and the second-derivative has a non-zero value.

Class 5 Functions for which there exists a PMMIN of the second-
derivative at a point where the fourth-derivative is non-
zero, and condition C1 and the inequality 3.4 are satisfied
at that point.

4. CONCLUSION

An analysis to determine the scope of curvature based ridge and val-
ley detection techniques was presented in Section 3. It is important to
know the scope of a feature detection technique in order to determine
its suitability for a specific application.Since curvature is a direction-
al measure, it is more convenient to use 1D (cross-sectional) profiles
of the features of interest to perform an analysis of curvature based
feature detection techniques. Such an approach was used in Section

II ­ 739



3, and it was shown that curvature based tecchniques can detect five
different classes of ridge and valley profiles. This approach based on
1D profile functions, can also be extended to perform a scale-space
analysis of curvature based ridge/valley detection techniques.

Curvature based ridge/valley detection techniques reject two kinds
of points: non-extrema and PMMINs of the curvature function.Non-
extremum value, at some point of the curvature function, implies
existence of points with higher curvature (magnitude) in the neigh-
bourhood of such a point. Hence, rejection of such points does not
lead to omission of ridge/valleys pixels. On the other hand, rejection
of PMMINs of the curvature function will lead to omission of few
ridge/valley pixels. Examples are valleys with profile functions of
type y = 2nx , |x | ≤ 1, where n is a positive integer greater than 1. The
medial point of such valley profiles is at x = 0, where the second-
derivative of the profile function vanishes making the curvature zero
(see equation 3.1). Such a medial point is a PMMIN of the profile
function and is rejected by curvature based techniques.

APPENDIX A. PROOFS

Proof of Lemma 1

f ′(a) = 0, f (a) f ′′(a) < 0

⇒ f (a) < 0, f ′(a) = 0, f ′′(a) > 0
or

f (a) > 0, f ′(a) = 0, f ′′(a) < 0

⇒ f (a) < 0, f (a) < f (b), b ∈ (a − δ, a + δ) − ⎧
⎨
⎩
a⎫

⎬
⎭ for some

δ > 0 . (Since f ′(a) = 0, f ′′(a) > 0 implies that x = a is a point
of minimum of f (x))

or

f (a) > 0, f (a) > f (b), b ∈ (a − δ, a + δ) − ⎧
⎨
⎩
a⎫

⎬
⎭ for some

δ > 0 . (Since f ′(a) = 0, f ′′(a) < 0 implies that x = a is a point
of maximum, of f (x))

⇒ |f (a) | > |f (b) |, b ∈ (a − δ, a + δ) − ⎧
⎨
⎩
a⎫

⎬
⎭ for some δ > 0.

⇒ x = a is a point of maximum of the function y = |f (x) |.
Hence, Lemma 1 is proved.

Proof of Theorem 2

The curvature function κ(x), around the number a, can be evaluated
using the Taylor’s series as:

κ(x) = κ(a) + (x − a)κ′(a) +
2(x − a)

2!
κ′′(a) + . . . (A.1)

Under the conditions of the theorem, κ′(a) is zero as
dy
dx

= 0 and

3d y
3dx

= 0. Let a function R(x) be defined as:

R(x) =
2(x − a)

2!
κ′′(a) +

3(x − a)
3!

κ′′′(a) + . . . (A.2)

Under the conditions of the theorem, equation A.1 can be written in

terms of R(x) as:

κ(x) = κ(a) + R(x) (A.3)

Let κ(a) > 0. If x = a is a PMMAX of the function κ(x), then it
must follow from equation A.3 that R(x) < 0 in the neighbourhood
of a. Similarly, if κ(a) < 0, it must follow that R(x) > 0 in the
neighbourhood of a. These two cases can be captured in one single
inequality as:

R(x) .κ(a) < 0 (A.4)

in some neighbourhood of a. For a given ridge/valley profile, the
derivatives ⎧

⎨
⎩

κ′′(a) , κ′′′(a) , . . .⎫⎬
⎭

are all constants. Moreover, the
coefficient of κ′′(a) in the expression for R(x) (see equation A.2) is
always positive. Hence, there will exist a δ such that:

R(x) .κ′′(a) > 0 , x ∈ (a − δ, a + δ) − ⎧
⎨
⎩
a⎫

⎬
⎭ (A.5)

In other words, the above inequality says that by selecting an x close
to a,we can make the sign of R(x) same as that of κ′′(a).This is due to
the diminishing values (inmagnitude)of the coefficientsof the higher
order terms, relative to the coefficient of κ′′(a), as x gets closer to a.
Using this equality in sign (of κ′′(a) and R(x)) in the neighbourhood
of a, we can transform the inequality A.4 into:

κ′′(a) .κ(a) < 0 (A.6)

Under the conditions of the theorem, the above inequality can be
expressed in terms of the derivatives of the function y = f (x) as:

⎡
⎢
⎣

2d y
2dx

⎧
⎨
⎩

4d y
4dx

− 3
3( 2d y

2dx ) ⎫
⎬
⎭

⎤
⎥
⎦x=a

< 0 (A.7)

Hence, Theorem 2 is proved.
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