
Data Generation Toolkit for Image Based Rendering Algorithms
V Vamsi Krishna, P J Narayanan

Center for Visual Information Technology
International Institute of Information Technology, Hyderabad, India

{vkrishna@research., pjn@}iiit.ac.in

Keywords:Synthetic Data, IBR, Data Generation Tool

Abstract

Computer Vision algorithms require accurate and high quality
data for experimentation, tuning, and testing. Each research
group used to have their own test data initially. Some of the test
data came to be shared, making comparison of performance of
different algorithms possible. In this paper, we present DGTk a
tool for generating data sets primarily for Computer Vision and
Image Based Rendering algorithms. Researchers can compose
a scene of their choice using standard models, place lights and
cameras in it and compute a variety of representations about
the scene. The data supported include images, depth maps,
calibration matrices, correspondences etc. The tool provides
an intuitive interface for setting up 3D scenes by importing
some standard 3D model files. It provides an easy to use
interface for setting up and imaging rich static and dynamic
scenes and enables the sharing of data among researchers.
DGTk goes beyond being a graphics authoring system and is an
independent, lightweight, and extensible tool that is computer
vision aware.

1 Introduction

Computer Vision (CV) and Image based rendering (IBR)
algorithms are used to analyze the events and structure
from videos and images given some additional information
like calibration of the camera. IBR algorithms use various
intermediate structures computed from the images and other
imaging parameters such as depth map, correspondences, etc
for testing and tuning. Evaluation and tuning of CV or IBR
algorithms require high quality images with accurate ground-
truth information. Synthetic data is useful as, qualitative and
quantitative analysis of the performance of these algorithms
is possible using them. The performance of the algorithms
on synthetic data is a good indicator of it’s performance on
real world images. The most important advantage of using
synthetic data is that it would help in cross checking the
information reconstructed by an algorithm.

Traditionally data sets (synthetic or real) were created by
individual researchers for testing their algorithms. The
data sets so generated have become standard test beds for
benchmarking the performance of other algorithms e.g, CMU
Datasets [8]. Every algorithm makes it’s own assumptions

Figure 1: Screen shot of the tool

about the available information. A data set created for testing
one particular algorithm may not be valid for testing the
performance of a newly developed algorithm. Diversity in
the data set becomes a critical issue. For creating diversity,
one has to find or build another dataset, which again is a
tedious process. This is because the tools developed for data
generation are generally very limited and non-scalable. A
generalized tool to generate synthetic data would be very
useful for various researchers working in these areas.

In this paper, we present DGTk a toolkit to generate data for
computer vision and image-based rendering applications. The
goals of the toolkit are to enable individual researchers generate
high quality, synthetic data to test and tune their algorithms
and to help them share the data with others in the community.
The DGTk is designed to be a standalone toolkit using which
one can create a scene consisting of cameras, lights, geometric
objects, etc. For versatility, the tool allows the import of object
models in standard formats like blender, ac3d, 3D Studio, etc.
Several objects, lights, and cameras can be placed in the scene.
Each of the above can move. Their positions can be specified
at key frames and interpolated for the intermediate time steps.
The scene description can be saved and shared with others.
Several representations at many resolutions can be generated
for each camera in the scene including images, depth maps,
object maps, calibration matrices, pairwise correspondence,
etc. The image generation is done using OpenGL API for the
sake of speed. Very high-quality imaging is supported through
ray tracing. Our tool outputs files for the open-source ray
tracing tool POVRay for this purpose. The tool is also designed



to be extensible. Users can write their own code to handle
another model format or to generate novel representations.

The primary contribution of this work is in the creation of a
tool useful for individual researchers to generate high quality,
ground truth data and share it with others. Our tool is
computer vision aware; it is not just another graphics authoring
tool. It therefore generates depth maps, calibration matrices,
correspondences, etc., which are very valuable to computer
vision researchers. Conventional graphics authoring tools
focus on setting up the 3D world and generating views of it.
The data generation can be added as additional functionality to
a tool like 3D Studio Max or Blender. We chose to create a new
tool of our own since the requirements are different. We need to
represent additional type of information about the environment
which can require non-intuitive extensions to their existing file
formats. A simple, open-source tool that can import standard
models but has an internal structure that suits computer vision
applications is preferable. That is the design philosophy behind
the DGTk. The tool along with a few interesting data sets is
available for downloading from our site.

Section 2 overviews the prior avenues for high quality data with
ground truth. Section 4 presents the design and implementation
of DGTk including discussion on its design philosophy and
how the goals are met. Section 5 gives a few administrative
facts about the tool and its data format and a few concluding
remarks. In Section 6 gives the conclusions and future work.

2 Related work

Various data sets have been created to evaluate Computer
Vision algorithms recently. For example, Scharstein and
Szeliski [3] have designed a collection of data sets for easy
evaluation of stereo algorithms. In another related work
Szelski [4] describes a method for acquiring high-complexity
stereo image pairs with pixel accurate correspondence
information using structured light. Steven M. Seitz at al [7]
present a method for acquiring and calibrating multiview
image datasets with high-accuracy ground truth. Fellenz [1]
have developed a low cost vision head for enhancing the
dense depth maps. CMU over the years has developed a large
number of data sets which have become the standard test data
sets e.g, CMU PIE database [8], etc.

Though such enormous amount of test data is available, the
data is fixed and there is no way to change the data based on
the requirement of the user. A generic tool, if developed for
this purpose, would allow the researchers to make new data
themselves with ease. Since new type of data may be required
by the researchers, for example LDI (Layer Depth Images),
point based etc, such a tool should be extend able to include
such new file formats.

The 3D authoring tools (both commercial and free) such as

3DSMax, Maya, blender etc are capable of rendering high
resolution images using ray tracing, But they do not generate
depth maps, Calibration data, Corresponding points, Layer
depth images etc readily, which are typically required for
testing CV and IBR algorithms.

Our tool provides the flexibility and richness of virtual
environment authoring tools in scene description. It is also
tuned specifically for CV/IBR and can generate very high
resolution images and other representations like camera
calibration matrix, depth maps, LDIs etc. It also has the
capability to produce image sequences of dynamic scenes
along with all assorted information. The tool does not provide
functionality for adding vertices or triangles to an existing
model. Though such provision could be made available, that
is not the focus/purpose of the tool. However there is a large
set of freely download able models currently available on the
Internet which can be used directly in our tool.

3 Data Generation Tool: Requirements

The requirements for a data generation tool are along three
aspects:

Versatility: The tool should allow creation of complicated
scenes that mimic the real world scenes. These scenes could
involve motion of various objects or camera in the scene etc.
Since some of the algorithms rely on videos for acquiring
information about a scene, the tool should be able to generate
videos or each frame of the videos which help in testing such
algorithms. The tool should be capable of generating different
kinds of data and representations used by researchers such as
images, depth maps, correspondences, etc.

High Quality: The quality of the images and ground truth
is very critical for testing it. The high quality data would help
us determine the robustness of a particular algorithm (i.e, how
much error in the data would be acceptable to it) by generating
the low quality versions of the same scene.

Flexibility: Since we are trying to address the more general
problem of creating data sets for a wider range of CV and IBR
algorithms, the tool should be focused on two major aspects.
Firstly, it should have interactive way of setting up the required
scene (either static or dynamic) for the data set. Secondly, the
GUI of the tool should be easy enough for the user to generate
what is required. The user should have the facility to easily add
code to generate other kinds of representation.



Figure 2: Camera setup for high resolution rendering

4 DGTk: Design and Implementation

Our tool provides the user with the flexibility to import
different kinds of 3D model files (ac3d, 3ds, md2 or povray
files). This enables the users to create complicated scenes that
mimic those in the real world. These scenes could involve
motion of various objects or camera in the scene. Since some
of the algorithms rely on videos as input, we have provided
a facility for the user to render sequence of images with
animations (camera or objects). DGTk allows the users to add
any number of cameras each with different parameters. If the
user wants to add a special configuration of cameras, it can
be done by just adding the parameters of the cameras to the
scene file (described later). The following sections describe
the implementation details of our tool.

4.1 Arbitrarily High resolution

High resolution images are important because they can be
used to test the difficult cases of the algorithms. Such high
resolution images can generated by our tool based on user
specified constraints. As the resolution of the data decreases,
the accuracy of the algorithm would go down. So data sets
with such varying resolution would help the user to determine
the robustness of the algorithm.

Resolution can be thought of in multiple ways:

• Width and height of the image generated.

• The worst case distance in world units in X, Y directions
represented by one pixel distance in the image.

For rendering arbitrarily large-sized images Graphics systems
allow generating them tile-by-tile with view frustum set
asymmetrically (Figure 2). Our system uses a small tile size
(640×480) when tiling is necessary because it is the minimum
supported resolution on any kinda of hardware. The number

Figure 3: Depth map and Texture map of a scene

of tiles to be rendered depends on the image size and tile
size. Assuming that a symmetric frustum is defined using the
parameters Left, Right, Top, Bottom, near and far, we can set
the asymmetric view frustum for each of the tiles.

4.2 High Quality

When rendering the scene from each camera location, the in-
built renderer uses OpenGL features like texture maps, lights,
materials etc, to generate high quality (realistic) images. The
default renderer may not meet the requirements of the user (due
to lack of shadows etc), Hence we provide a facility for the user
to export the scene to a Povray [2] scene. This enables the user
to use the povray ray-tracer to render the scene.

4.3 Camera Calibration

Calibration information of a camera is very vital for many of
the CV algorithms which try to estimate the 3D structure of
an object from it’s images. Our tool can generate the camera
calibration information for each camera. The OpenGL matrix
is retrieved and transformed into the form K[R|t], Where K

is a 3 × 3 matrix which refers to the internal parameters of
the camera. R and t ([R|t] a 3 × 4 matrix) give the external
parameters of the camera.

The internal parameters (K3×3) of the camera matrix can
be obtained from the homogeneous projective matrix and the
viewport matrix used in OpenGL. The external parameters
([R|t]3×4) of the camera can be obtained by removing the last
row of the homogeneous viewing matrix used in OpenGL. The
3×4 matrix obtained by multiplying K and [R|t] is the camera
matrix in the world co-ordinate system.

4.4 Depth Maps

A depth map represents the depth values corresponding to each
pixel in a scene (Figure 3). Depth maps of the scene from each
camera can be generated by the tool. This would essentially
give the shape of the object in the 3D space. Many algorithms



Figure 4: Object map and Texture map of a scene

trying to retrieve 3D information from a scene essentially try
to estimate this depth map and there by construct the 3D
model. We estimate the 3D world co-ordinates of each pixel in
the image by back projecting them into the world co-ordinate
system using the camera calibration data. The depth buffer is
read back and transformed by the inverse projection matrix to
obtain the depth at every pixel. We save the depth maps in
a binary format along with the camera calibration data (both at
double precision). The first we write the projection matrix, then
the model view matrix, followed by two integers specifying
width and height of the depth map. This is followed by the
depth of each pixel of the image in the world co-ordinate
system. The depth maps can be used by algorithms that require
them such as depth-image rendering etc. They can also be used
as high quality ground truth by structure recovery algorithms.

4.5 Object Maps

Many segmentation, matting and silhouette extraction
algorithms try to seperate an object from others. We provide
ground truth for this in the form of an object map. The
object map is an image where each pixel is labeled with a
unique id corresponding to the object that projects to it. Our
tool generates the Object Maps as images in R, G, B format
(Figure 4) where the object id is stored as a unique R, G, B
values.

4.6 Correspondences

Some CV and IBR algorithms require correspondence
information between two input images, i.e, which pixel
does a particular pixel in first image correspond to in the
second image. Our tool can generate dense correspondences
(i.e, for each and every pixel in the first image, we find the
corresponding pixel in the second image.) between pairs of
images, and sparse correspondences (corresponding points
for the selected pixel locations in the first image). The
correspondences are stored as floating point disparity to have
sub pixel precision.

Figure 5: A and B are stored in the same depth pixel

4.7 Layered Depth Images (LDI)

LDIs were first introduced in J.Shade et al [5] and is a special
data structure for IBR. This is a more general alternative to
sprites and sprites with depth. Unlike the general Depth Maps
which just store the depth value of the first hit object in the view
direction, an LDI stores multiple depth and color values(depth
pixel) per pixel in the view. We used a simple line triangle
intersection method to find the LDIs of a scene. We trace
the path of each ray from the camera center to the end of the
frustum, and keep storing all the depth and color values that
the ray comes across before reaching the end of the frustum
(Figure 5). The points of intersection and depth information
are calculated at double precision. The LDI’s are stored in a
binary format. First two integers width and height. This is
followed by width× height number of Layered Depth pixels.
Since each Layered depth pixel consists of the R, G, B, A and
Z and spatial index, The number of depth pixels (an unsigned
int) at each layered depth pixel followed by the depth pixels are
written.

4.8 Dynamic Scenes

The tool has the ability to generate dynamic scenes using the
information specified by the user in the form of key frames.
The user can with ease setup the scene for every key frame and
generate the animated sequence of interpolated images. The
interpolation of the key frames is done based on the difference
between two consecutive key frames. So if the user wants some
animation to be faster he/she just has to make sure that the
difference between two key frames is low.

The position vector of the objects in the scene is interpolated
using simple linear interpolation between the initial and final
positions. Where as we use spherical linear interpolation of
quaternions for the smooth interpolation of rotations [6].



Figure 6: Depth map and texture map of a dynamic scene

Figure 7: GUI for image resolution control

4.9 Ease of use

Since our target audience are researchers in the fields of CV
and IBR, we adopted the graphical user interface used by most
of the 3D authoring tools (Figure 1). The user can just click
and drag the objects to move, rotate or scale them in the 3D
space. The tool currently has support for loading AC3D, 3DS,
Md2, and a limited polygonal models of Povray scene format.
We have support for exporting the 3D scene to povray files
(.pov) which can be rendered using a ray tracer like povray.
The resolution of the image to be generated from each camera’s
point of view in the scene can be adjusted using simple scroll
bars. The tool automatically shows the resolution that would
be achieved using that particular image width for that camera
(Figure 7) .

The user can add lights and cameras, move them like any other

3D objects. Provision for preview of the scene from a particular
camera’s point of view is given, to help the user know exactly
how the scene would look in the final images. Our tool has
support for generating dynamic scenes. We used simple Key
Frame animation to help in creating dynamic scenes. The user
just has to move the objects around and specify that those are
the positions of the objects in the key frames. This key frame
information is used by the tool to interpolate the intermediate
frames. The time line is shown on the tool. The user just has to
click to select and make some frame as a key frame.

4.10 Extensibility

The user can extend the tool to support new 3d file types as
well as new output formats. For doing this the user just has
to implement a class which inherits from glObject class and
has to over ride the render method of that class and write the
rendering function for the new file format. Similarly if the user
wants to generate a different output format, the user can access
all the 3D objects in the scene and can make OpenGL calls to
retrieve required information about the scene.

5 File Format

We have designed an ASCII file format for storing the scene
that the users setup using our tool. The information about the
objects such as their positions, name of the file are stored.

The first line in the file describes the number of objects present
in the scene. The lines following this number are the details
about each object. We have tags describing what kind of object
follows. glObject Light refers to light objects, glObject AC to



represent an AC3D file or a povray scene file, glObject Camera
for specifying the camera details, glObject 3DS for 3ds objects
and glObject Md2 for md2 objects. Many objects, cameras,
light sources can be present in a single scene file. This is
followed by an integer again which tells how many key frames
are there in the scene. Then details of each key frame follow.
First the frame number of key frame, followed by each object’s
center and rotation details.

6 Conclusions and Future Work

In this paper, we presented a versatile toolkit to produce high
quality data for Computer Vision applications. It can produce
various types of data used in Computer Vision. The tool helps
individual researchers to generate data and share it with others.
A wide range of resolutions, representations, and information
are supported by the tool. The tool is currently being enhanced
to generate data with given noise properties, to generate point-
based representations of solid objects, etc. We are also working
on a standard plug-in architecture to enable smooth extension
of the tool’s functionality.

References

[1] Winfried A. Fellenz, Karsten Schluns, Andreas Koschan,
and Matthias Teschner. An active vision system for
obtaining high resolution depth information. In CAIP
’97: Proceedings of the 7th International Conference on
Computer Analysis of Images and Patterns, pages 726–
733, London, UK, 1997. Springer-Verlag.

[2] http://povray.org. Povray.

[3] Daniel Scharstein and Richard Szeliski. A taxonomy
and evaluation of dense two-frame stereo correspondence
algorithms. International Journal of Computer Vision,
47(1-3):7–42, 2002.

[4] Daniel Scharstein and Richard Szeliski. High-accuracy
stereo depth maps using structured light. In Computer
Vision and Pattern Recognition (CVPR), pages 195–202,
2003.

[5] Steven M. Seitz, Brian Curless, James Diebel, Daniel
Scharstein, and Rick Szeliski. A comparison and
evaluation of multi-view stereo reconstruction algorithms.
Computer Vision and Pattern Recognition (CVPR), 2006.

[6] Jonathan Shade, Steven Gortler, Li wei He, and Richard
Szeliski. Layered depth images. In SIGGRAPH ’98:
Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 231–242, New
York, NY, USA, 1998. ACM Press.

[7] Ken Shoemake. Animating rotation with quaternion
curves. In SIGGRAPH ’85: Proceedings of the 12th

annual conference on Computer graphics and interactive
techniques, pages 245–254, New York, NY, USA, 1985.
ACM Press.

[8] Carnegie Mellon University (CMU) Computer vision
Test Images. http://www.cs.cmu.edu/∼ cil/v-images.html.


