
Efficient Search in Document Image Collections

Anand Kumar1, C.V. Jawahar1, and R. Manmatha2

1 Center for Visual Information Technology
International Institute of Information Technology

Hyderabad, India - 500032
anandkumar@research.iiit.ac.in, jawahar@iiit.ac.in

2 Department of Computer Science
University of Massachusetts Amherst, MA 01003, USA

manmatha@cs.umass.edu

Abstract. This paper presents an efficient indexing and retrieval scheme
for searching in document image databases. In many non-European lan-
guages, optical character recognizers are not very accurate. Word spotting
- word image matching - may instead be used to retrieve word images in
response to a word image query. The approaches used for word spotting so
far, dynamic time warping and/or nearest neighbor search, tend to be slow.
Here indexing is done using locality sensitive hashing (LSH) - a technique
which computes multiple hashes - using word image features computed at
word level. Efficiency and scalability is achieved by content-sensitive hash-
ing implemented through approximate nearest neighbor computation. We
demonstrate that the technique achieves high precision and recall (in the
90% range), using a large image corpus consisting of seven Kalidasa’s
(a well known Indian poet of antiquity) books in the Telugu language. The
accuracy is comparable to using dynamic time warping and nearest neigh-
bor search while the speed is orders of magnitude better - 20000 word im-
ages can be searched in milliseconds.

1 Introduction

Many document image collections are now being scanned and made available
over the Internet or in digital libraries. Effective access to such information
sources is limited by the lack of efficient retrieval schemes. The use of text search
methods requires efficient and robust optical character recognizers(OCR), which
are presently unavailable for Indian languages [1]. Another possibility is to search
in the image domain using word spotting [2,3,4]. Direct matching of images
is inefficient due to the complexity of matching and thus impractical for large
databases. We solve this problem by directly hashing word image representations.

We present an efficient mechanism for indexing and retrieval in large docu-
ment image collections. First, words are automatically segmented. Then features
are computed at word level and indexed. Word retrieval is done very efficiently
by using an approximate nearest neighbor retrieval technique called locality sen-
sitive hashing (LSH). Word images are hashed into multiple tables with features
computed at word level. Content-sensitive hash functions are used to hash words

Y. Yagi et al. (Eds.): ACCV 2007, Part I, LNCS 4843, pp. 586–595, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Search in Document Image Collections 587

such that the probability of grouping similar words in the same index of the hash
table is high. The sub-linear time content-sensitive hashing scheme makes the
search very fast without degrading the accuracy. Experiments on a collection of
Kalidasa’s - the classical Indian poet of antiquity - books in Telugu demonstrate
that 20,000 word images may be searched in a few milliseconds. The approach
thus makes searching large document image collections practical.

There are essentially three classes of techniques to search document image col-
lections. The first is based on using a recognizer to convert an image to text and
then searching the results using a text search engine. An example is the gHMM
approach of Chan et al. [5], suggested for printed and handwritten Arabic docu-
ments. It uses gHMMs with a bi-gram letter transition model, and KPCA/LDA
for letter discrimination. In this approach segmentation and recognition go hand
in hand. The words are modeled at letter level, where the likelihood of a word
given a segment is used for discriminating words. The Byblos system [6] also
uses a similar approach to recognize documents where a line is first segmented
out and then divided in to image strips. Each line is then recognized using an
HMM and a bi-gram letter transition model. The second used by Rath et al.
[7], involves the automatic annotation of word images with a lexicon and proba-
bilities using a relevance-based language model. Here, words are segmented out
and then each word image is annotated using a statistical model with the entire
lexicon and probabilities. A language model retrieval approach is then used to
search the documents. The technique was successfully used to build a 1000 page
demonstration for George Washington’s handwritten manuscripts. The third ap-
proach proposed by Rath and Manmatha [2,3] involves using what is called word
spotting, where word images are matched with each other and then clustered.
Each cluster is then annotated by a person. Alternatively, Jawahar et al. [4]
showed that in the case of printed books one can synthesize the query image
from a textual query for making the system more usable.

Word spotting has been tried for many different kinds of documents both
handwritten and print. Rath and Manmatha [2] used dynamic time warping
(DTW) to compute image similarities for handwriting. The word similarities are
then used for clustering using K-means or agglomerative clustering techniques.
This approach was adopted in Jawahar et al. [4] for printed Indian language
document images. To simplify the process of querying, a word image is generated
for each query and the cluster corresponding to this word is identified. In such
methods, efficiency is achieved by significant offline computation. Ataer and
Duygulu [8] tried word spotting for handwritten Ottoman documents where
they use successive pruning stages to eliminate irrelevant words. Gatos et al.
[9] used word spotting for old Greek typewritten manuscripts for which OCRs
did not work. One advantage of word spotting over traditional OCR methods is
that they take advantage of the fact that within corpora such as books the word
images are likely to be much more similar, which traditional OCRs do not do. In
addition, techniques that work at the symbol level of word images, like [5], are
very sensitive to segmentation errors. Segmentation of Indian language document
images at symbol level is very difficult due to the complexity of the scripts.

588 A. Kumar, C.V. Jawahar, and R. Manmatha

Many of these techniques (for example DTW) are computationally expensive
and do not scale very well. Inspite of this, Sankar et al. [10] successfully indexed
500 books in Indian languages using this approach by doing virtually all the
computation off-line. Avoiding DTW, Rath et al. [3] demonstrated the use of
direct clustering of word image features on historical handwritten manuscripts.
However, clustering is itself an expensive operation.

Image matching often involves offline nearest neighbor computations and stor-
age for efficient access. These nearest neighbor techniques are expensive in high
dimensions even when computed off-line. Indyk and Motwani [11] proposed an
approximate nearest neighbor search technique called locality sensitive hashing
(LSH) which is much more efficient. LSH has been applied to a number of prob-
lems including some in computer vision. For example, LSH is used to efficiently
index high dimensional pose examples by Shakhnarovich et al. [12]. Matei et al.
[13] use LSH for 3D object indexing. LSH is different from the geometric hashing
approaches used in model based recognition of 3-D objects in occluded scenes
from 2-D gray scale images [14] and also for finding documents from a set of
camera-based document images [15].

Fig. 1. Sample document images from Kalidasa’s books in Telugu

Our work mainly aims at addressing some of the issues involved in effective and
efficient retrieval in document images with effective representations of the word
images. We demonstrate efficient retrieval through content-sensitive hashing on
a collection of Kalidasa’s writings. Sample pages from the Kalidasa collection
are shown in Figure 1.

2 Content Sensitive Hashing

In the proposed retrieval technique, the index is built by hashing word level
features of document images. The features are hashed using content sensitive
hash functions, such that the probability of finding words with similar content
in the same bucket is high. The same content sensitive hash functions are used to

Efficient Search in Document Image Collections 589

Segementation
and

Word detection

Pre−processing

Hashing

Document
Images

Feature
Extraction

Feature
Extraction

Word
Rendering

��
��
��
��

Hashed
Words

Textual
Query

Relevant
Documents

Offline Process

OutputInput

Online Process

Fig. 2. Hashing Method: Word image hashing for efficient search. Showing offline pre-
processing and on-line query processing stages.

query similar words during the search. The major challenges in efficient indexing
and retrieval are the preprocessing and word matching times. We overcome these
challenges with the use of hashing.

A conceptual block diagram of the technique is shown in Figure 2. Books are
scanned and processed to index the document pages. The textual word query is
first converted to an image by rendering, features are extracted from these images
and then search is carried out to retrieve relevant word images. To facilitate
searching, scanned document images are preprocessed and segmented at word
level. A set of features are extracted as representatives of word images to be
indexed. Content-sensitive hash functions are used to hash the features such
that similar word images are grouped in the same index of the hash table.

2.1 Word Image Representation

We employ a combination of scalar, profile, structural and transform domain
feature extraction methods as used in [2,3,4]. Scalar features include the number
of ascenders, descenders and the aspect ratio. The profile and structural features
include: projection profiles, background to ink transitions and upper and lower
word profiles. Fixed length description of the features are obtained by computing
lower order coefficients of a DFT (Discrete Fourier Transform) - discarding noisy
high order coefficients makes the representation more robust. We use 84 Fourier
coefficients of the segmented profiles and ink transition features to represent the
word images.

Finding similar word images is now equivalent to the nearest neighbor search
(NNS) problem: Given a set of n points P = p1, . . . , pn in some metric space
X , we preprocess P so as to efficiently answer queries, which require finding the

590 A. Kumar, C.V. Jawahar, and R. Manmatha

point in P closest to a query point q ∈ X . Traditional data structures for sim-
ilarity search suffer from the curse of dimensionality. Locality sensitive hashing
(LSH) is a state-of-the-art technique introduced by Indyk and Motwani [11] to
alleviate the problem of high dimensional similarity search in large databases.
The main idea in LSH is to hash points into bins based on a probability of
collision. Thus, points that are far in the parameter space will have a high prob-
ability of landing into different bins, while close points will go into the same
bucket. It has been shown that LSH out-performs tree-based structures such as
the Sphere/Rectangle-tree (SR-tree) by at least an order of magnitude.

2.2 Hashing Technique

Let P = {x1, x2, . . . , xn} be the words in the document image collection. A word
is represented by a feature vector x = {f1, . . . , fD}, represented as a point x ∈
R

D in feature space, where fj is computed by extracting features that describe
the content of the word images. The extracted features satisfy the following
assumptions.

1. A distance function d is given which measures the content level similarity of
the words, and a radius R in the feature space is given such that x1, x2 are
considered similar iff d(x1, x2) < R.

2. For a randomly chosen word image, there exists a word image with high
probability and similar feature values in the collection.

3. There are no significant variations in feature vectors of the words with similar
content, or the feature extraction process is unbiased.

The distance function and the similarity threshold are dependent on the par-
ticular task, and often reflect perceptual similarities between the words. The last
assumption implies that there are no significant sources of variation in the word
features for words that are similar in content. The content similarity search
is done by efficient nearest neighbor searching with content-sensitive hashing
algorithm.

The content-sensitive hashing is achieved by hashing words using a number
of hash functions from a family H = {h : S → U} of functions. H is called
content-sensitive if for any q, the function

p(t) = PrH [h(q) = h(x) : ||q − v|| = t] (1)

is strictly decreasing in t. That is, the probability of collision of points q and x is
decreasing with content dissimilarity (distance) between them. We concatenate
several hash functions h ∈ H . In particular define a function family G = {g :
S → Uk} such that, g(x) = (h1(x), . . . , hk(x)). For an integer L, the algorithm
chooses L functions g1, . . . , gL from G, independently and uniformly at random.
During preprocessing, the algorithm stores each input point in buckets gj(x), for
all j = 1, . . . , L. Since the total number of buckets may be large, the algorithm
retains only the non-empty buckets by resorting to hashing.

Efficient Search in Document Image Collections 591

Algorithm 1. Content Sensitive Hashing
Input: Word Images Wj , j = 1, . . . , n
Output: Hash Tables Ti, i = 1, . . . , l
1: for each i = 1, . . . , l do
2: Initialize hash table Ti with hash functions gi

3: end for
4: for each i = 1, . . . , l do
5: for each j = 1, . . . , n do
6: Pre-process word image Wj (noise removal etc).
7: Extract features Fj of word image Wj .
8: Compute hash bucket I = gi(Fj)
9: Store word image Wj on bucket I of hash table Ti

10: end for
11: end for

A D dimensional word feature x is mapped onto a set of integers by each
hash function ha,b(x). Each hash function in the family is indexed by a choice
of random a and b, where a is a D dimensional vector with entries chosen inde-
pendently from a p-stable distribution and b is a real number chosen uniformly
from the range[0, w]. For a fixed a, b the hash function ha,b is given by,

ha,b(x) =
⌊a · x + b

w

⌋
(2)

Generally w = 4. The dot product a ·x projects each vector onto a real line. The
real line is chopped into equi-width segments of appropriate size w and hash
values are assigned to vectors based on which segment they project onto. The
value of k is chosen such that tc + tg is minimal, where tc is the mean query time
and tg is the time to compute the hash functions in L hash tables. The values of
k is determined by estimating the times on a sample data set S ⊆ P . The details
about such parameter settings and the hash functions are presented in [11,16].
Algorithm 1 summarizes the major steps of content-sensitive hashing.

Given a query word image, it is represented with the set of features q. The
first level k hash functions are calculated and concatenated to get bucket id’s
gi(q), i = 1, . . . , L in L hash tables. Then all the features, and the corresponding
words, in the buckets of L tables are retrieved as the query results. Thus the
problem of finding nearest neighbor boils down to searching only the vectors
in the bucket that have the same hash index value as the query. Algorithm 2
summarizes the major steps of querying.

The hash based search in a collection of document images is faster as compared
to other approaches, like exhaustive search with DTW and nearest neighbor tech-
niques. Approaches presented in the literature take a long time in building the
index and retrieval due to preprocessing and complex matching procedures. This
computational time can be reduced with the elimination of costly processes, like
clustering. We achieve this by employing faster content-sensitive hashing tech-
nique. We achieve interactive retrieval with retrieval speed in milliseconds. Time

592 A. Kumar, C.V. Jawahar, and R. Manmatha

Algorithm 2. Word Retrieval
Input: Query Word Image w
Output: Similar word images
1: O ← φ
2: for each i = 1, . . . , l do
3: Pre-process word image w (noise removal etc).
4: Extract features Fw of word image w.
5: Compute hash function I = gi(Fw)
6: O ← O ∪ {points found in index I of Ti}
7: end for
8: Return similar words O by linear search.

inefficient offline processing of the data is not required for creating the index.
The hashing technique avoids complex image matching methods and searches in
sub-linear time.

3 Results and Discussions

We evaluated the proposed hash based retrieval scheme on word image data sets
obtained from a collection of 7 Kalidasa books. The books are printed in Telugu,
an Indian language. The document images were scanned and preprocessed to get
segmented words with little manual effort to remove segmentation errors. Then,
the words were represented by a set of features. Around 20 words were annotated
in each book for experimentation and performance evaluation purpose.

Given a textual query word, an image is rendered (generated). Features are
extracted from the query image and hashed to search and retrieve the relevant
words. The book-wise performance measured using precision, recall and F-score
values are shown in Table 1.

The query image and example search results are shown in Figure 3. The first
two rows show correct results. Sometimes other words may also appear somewhat
visually similar and the last column in the last two rows shows examples of such
words being retrieved.

Table 1. Search Performance: Precision, recall and F-score values for retrieval exper-
iments conducted on each book from Kalidasa collection

Book # Pages # Words Precision Recall F-score
Maalavikaagnimitra 292 22,500 100.00 91.72 95.68
Vikramuurvashiyam 286 23, 600 100.00 95.58 97.74
Abhijnanasakuntalam 312 22,500 96.79 91.27 93.96
Ritusamhara 142 11,000 94.65 93.67 94.16
Kumarasambhava 282 56,100 92.37 90.21 91.27
Raghuvamsha 300 36,000 93.23 92.6 92.91
Meghaduta 238 44,000 96.15 93.53 94.82

Efficient Search in Document Image Collections 593

Some of the Retrieved ImagesQuery Image

Fig. 3. Results: Example (Telugu) words searched for input queries

Some of the Retrieved ImagesQuery Image

Fig. 4. Results: Words with small variations in style and size are retrieved

Examples of queries containing words of different sizes and style types are
shown in Figure 4. Such results are obtained by querying the same word in
multiple books of the collection. Using the same query across two different books
of the collection retrieves words which are content-wise similar.

Indian language words have small form variations. For example, the same word
may have different case endings. Such words are also searched correctly using the
proposed solution. Example results of such queries are shown in Figure 5 (row
2). The retrieved words have the same stem, which is due to the similarity in
image content. There are limits to the font variations that can be handled by the
proposed retrieval technique. Experiments show that we cannot use combinations
of different font words but such combinations are very unlikely to occur in books.

The proposed hashed based search is sub-linear and much faster than exhaus-
tive nearest neighbor search. The plot in Figure 6(a) shows the time efficiency
of our hash based search versus nearest neighbor search. The experiments were
conducted on data sets of increasing size (by 5,000 words) in each iteration.
The maximum number of words used were around 45,000. With the use of the
maximum size data set, the maximum time to search relevant words was of the
order of milliseconds. The experiments were conducted on an AMD Athlon 64
bit processor using 512 MB memory.

The precision and recall values are controlled by the query radius (distance)
value. Experiments were conducted on synthetic images of Telugu language to see

594 A. Kumar, C.V. Jawahar, and R. Manmatha

Some of the Retrieved ImagesQuery Image

Fig. 5. Results: Words with small form variations are retrieved as relevant

1 1.5 2 2.5 3 3.5 4
x 10

4

0.05

0.1

0.15

0.2

Data Size

T
im

e
 (

S
e
c
)

Exhaustive NNS
Hash based search

(a)

0.2 0.25 0.3 0.35

85

90

95

100

Query Radius

%
 P

re
ci

si
o

n
 &

 R
ec

al
l

Precision
Recall

(b)

Fig. 6. Performance comparison: (a) Hashing and exhaustive nearest neighbor search.
(b) Effect of distance: Precision and recall change with the query radius.

the effect of radius on the performance. Around 6,000 synthetic word images of
Telugu language were used for the experiments. Each word was repeated around
4-10 times in the whole collection. Figure 6(b) shows the change in precision and
recall values with the radius. The degradation in performance with the increase in
radius indicates that many irrelevant words are added to group of similar words.
Similar results were obtained with different font datasets for Telugu language.
Therefore query distance has to be determined experimentally.

Table 2 compares this approach to one based on using the DTW score as
a similarity measure. It shows that our method is much faster than the DTW
based exhaustive matching and search procedure while the accuracy is similar.

Table 2. Performance: DTW based exhaustive search is much slower. Accuracy of the
proposed method similar to the DTW matching.

Book Hash Based Search DTW Based NNS
Precision Recall Time(sec) Precision Recall Time(sec)

Abhijnanasakuntalam 96.79 91.27 0.005 95.27 93.71 650
Ritusamhara 94.65 93.67 0.003 93.33 96.63 216

Efficient Search in Document Image Collections 595

4 Conclusion and Future Work

We presented an efficient indexing and retrieval scheme for searching in large
document image databases. Efficiency and scalability along with high precision
and recall values are achieved by content-sensitive hashing. The retrieval speed
is orders of magnitude better - the technique can search 20,000 word images in
milliseconds. We have demonstrated that this technique is practical for searching
printed documents rapidly. Future improvements could include feature selection
using machine learning techniques to include multiple fonts and styles.

References

1. Pal, U., Chaudhuri, B.: Indian script character recognition: A survey. Pattern
Recognition 37, 1887–1899 (2004)

2. Rath, T.M., Manmatha, R.: Word image matching using dynamic time warping.
In: Conference on Computer Vision and Pattern Recognition, vol. (2), pp. 521–527
(2003)

3. Rath, T.M., Manmatha, R.: Word spotting for historical documents. IJDAR 9(2),
139–152 (2007)

4. Balasubramanian, A., Meshesha, M., Jawahar, C.V.: Retrieval from document im-
age collections. In: Bunke, H., Spitz, A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp.
1–12. Springer, Heidelberg (2006)

5. Chan, J., Ziftci, C., Forsyth, D.A.: Searching off-line arabic documents. In: CVPR.
Conference on Computer Vision and Pattern Recognition, vol. (2), pp. 1455–1462
(2006)

6. Lu, Z., Schwartz, R., Natarajan, P., Bazzi, I., Makhoul, J.: Advances in the bbn
byblos ocr system. In: ICDAR, pp. 337–340 (1999)

7. Rath, T.M., Manmatha, R., Lavrenko, V.: A search engine for historical manuscript
images. In: SIGIR, pp. 369–376 (2004)

8. Ataer, E., Duygulu, P.: Retrieval of ottoman documents. In: Multimedia Informa-
tion Retrieval (MIR) workshop, pp. 155–162 (2006)

9. Konidaris, T., Gatos, B., Ntzios, K., Pratikakis, I., Theodoridis, S., Perantonis,
S.J.: Keyword-guided word spotting in historical printed documents using synthetic
data and user feedback. IJDAR 9(2), 167–177 (2007)

10. Sankar,K.P., Jawahar,C.V.:Probabilistic reverse annotation for large scale image re-
trieval. In: Conference on Computer Vision and Pattern Recognition, pp. 1–6 (2007)

11. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: SOTC, pp. 604–613 (1998)

12. Shakhnarovich, G., Viola, P., Darrell, T.: Fast pose estimation with parameter-
sensitive hashing. In: ICCV, pp. 750–757 (2003)

13. Matei, B., Shan, Y., Sawhney, H., Tan, Y., Kumar, R., Huber, D., Hebert, M.:
Rapid object indexing using locality sensitive hashing and joint 3D-signature space
estimation. IEEE Trans. PAMI 28(7), 1111–1126 (2006)

14. Lamdan, Y., Wolfson, H.: Geometric hashing: A general and efficient model-based
recognition scheme. In: ICCV, pp. 238–249 (1988)

15. Nakai, T., Kise, K., Iwamura, M.: Use of affine invariants in locally likely arrange-
ment hashing for camera-based document image retrieval. In: Bunke, H., Spitz,
A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp. 541–552. Springer, Heidelberg (2006)

16. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: Proceedings of the 25th VLDB conference, pp. 518–529 (1999)

	Introduction
	Content Sensitive Hashing
	Word Image Representation
	Hashing Technique

	Results and Discussions
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

