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Abstract consumption and how an intermodal train analysis can help

in achieving fuel efficiency.

We describe the design and implementation of a vision Each load of an IM trainis placed on a long iron platform
based Intermodal Train Monitoring System(ITMS) for ex- with wheels called as gail car as shown in Fig. 1(a) and
tracting various features like length of gaps in an inter- a series of such rail cars of different lengths are attached
modal(IM) train which can later be used for higher level together to form a train. Loads of different sizes and types,
inferences. An intermodal train is a freight train congisti as shown in Fig. 1(b-f), can be placed on each of the ralil
of two basic types of loads - containers and trailers. Our cars. We define the arrangement of these loads across the
system first captures the video of an IM train, and applies
image processing and machine learning techniques devel- | |
oped in this work to identify the various types of loads as | |
containers and trailers. The whole process relies on a se- 5 00) 00) 00

quence of following tasks - robust background subtraction (@) (b) (©)

in each frame of the video, estimation of train velocity; cre

ation of mosaic of the whole train from the video and classi- T | |:v_|
fication of train loads into containers and trailers. Fingll
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Figure 1. (a) Railcar (b-f) Different kinds of
loads (b) Double Stack with upper and lower
stack of same length (c)&(d) Double Stack
with upper and lower stack of different length
(e) Single Stack (f) Trailer.

the length of gaps between the loads of the IM train is esti-
mated and is used to analyze the aerodynamic efficiency of
the loading pattern of the train, which is a critical aspect
of freight trains. This paper focusses on the machine vision
aspect of the whole system.

1. Introduction
length of an IM train as thépading patternfor that train.

Intermodal(IM) freight trains have become the most Fig. 2 shows our notion of good and bad loading patterns.
widespread and fastest growing portion of the North Amer- Thus, poor loading assignments between loads and railcars
ican Freight Railroads. Their traffic has grown from 6.2 lead to large gaps in IM trains. In [4] it was found that
million in 1990 to 11 million in 2004, an increase of 77 per- such inefficient loading patterns contribute to considierab
cent [1]. These trains are generally more than 1 mile long increase in aerodynamic penalties. A good loading pattern
and their operating speeds can be as high as 79 miles pewould reduce the air resistance by as much as 27 percent
hour(mph). While traveling at such high speeds, IM trains and the fuel consumptions by a gallon per mile per train [5].
suffer large aerodynamic resistance owing to the big gapsTherefore, a vision based system is developed to measure
between IM loads, thus resulting in high energy cost. This the loading efficiency and provide feedbacks to terminals,
is a timely issue because of the fuel crisis in the past 5-10i.e., train yards where the IM trains are loaded.
years which has led to indirect effects of increase in trans- A loading pattern analysis would involve measuring the
portation cost. Therefore, it is necessary to make IM trains gaps between consecutive loads of the train and then use
more fuel efficient. In the following paragraphs we briefly this information to determine the aerodynamic efficiency of
introduce terms relating to IM trains, reasons for more fuel the loading assignment as in [5]. One way of doing this
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Flgure 2. (a) good loading pattern - length of Camemi SlAUN Rail Track
railcars match the length of the loads (b) bad Height of the camera from the ground
loading pattern - smaller loads are kept on [€) (b)
longer railcars leading to more aerodynamic Figure 3. Setup (a) Top view (b) Side view

resistance.
flowchart describing the complete system is shown in Fig. 4.

could be manually checking the length of the gaps of the The algorithm first takes the video obtained at the test site
train, which is a tedious process, especially if the length @S input. It then extracts individual frames from the video.
of the train extends to a mile. Our work intends to auto- Theimages are not corrected for distortion as this coultl cos
mate this whole process with less or no manual intervention,Us more time in execution of the system. The background
The main purpose of this research is to develop a camerd$ then subtracted from each frame by using edge based and
basedautomatic train monitoring systemvhich will cap- learning techniques (section 2.1). By correlating two con-
ture a video of a moving train and apply image processing Secutive background subtracted frames the velocity of the
and machine learning techniques to process this video. Thigrain is calculated in terms gfixel shift per fram¢section

task is made challenging by the fact that our system must be2-2)- This velocity is used to create the mosaic of the IM
real time and handle various imaging conditions e.g., gjoud {rain (section 2.3). After mosaic creation, the boundasfes
skies and dim light conditions. The prototype system we the loads are detected (section 2.3) and the loads are-classi
developed captures the video of a train, does backgroundied (section 2.4) into containers and trailers. The mosaic i
subtraction on individual frames, generates the mosaic ofused to calculate the gap lengths between the loads (section
the train and then calculates the gaps of the IM train. The2-5)-

gap lengths are then used to calculate the aerodynamic effi-

Ciency of the train. 1. Video of an Intermodal 8. Gaps between the |
. . train i ired. loadsis calculated.
The system developed in [2] uses laser based techmqui rainisacur oacsiseard
to analyze the wheels of trains. To our knowledge, there h_a 2 Erames of the Video 7 Loadsare dassfied | |
not been any other such system developed before, whic areextracted. into different categories [

depending on their types.

monitors the loads of a freight train, extracts useful fea- PN ———
H . . . Background is subtract
tures of the train and then does high level processing task from each frame. 6. Boundaries of the loads |—
e.g., calculate aerodynamic efficiency of the train, finding on IM train are detected. [
empty rail cars. In Section 2 we describe the camera setu | 4. Train velocity isestimated :
and modules of the whole system namely background sub from two consecutive 5- Mosaic of the complete

. ] . _ ) i background subtracted intermodal train in —
traction, mosaic generation and gap estimation. Section 3 frames. generated.
shows results on detection accuracy of our system and ro-
bustness of gap estimation and mosaic generation. Figure 4. Flowchart of the Machine Vision Al-
gorithm
2. System Overview 2.1. Background Removal
The whole system consists of two parts. The loads of an IM train can be broadly classified into

Camera Setup : A test location with high frequency of IM  containersandtrailers. The containers are rectangular box
trains was chosen for capturing videos of the train. The shaped structures as shown in Fig 1(b-e). The trailersrdiffe
speed of these trains at this location was mostly around 70-from containers in that they have wheels near their bottom
75 mph. A calibrated CCTV camera capable of capturing as shown in Fig 1(f). The containers are stacked on rail cars
frames at resolution of 640x480 at 30 frames per secondin the following two configurationsSingle Stackvhich has
was placed facing the track. The camera would get activatedonly one container anBouble Stackvhich has two con-
and start capturing video as soon as the IM train comes intotainers stacked over each other and placed on the rail car.
view. The camera setup at the test site had the parameter®nce the video of IM train is obtained, the next step is to
as shown in Fig. 3Software: The software we developed separate the foreground from the background. The back-
is called as Intermodal Train Monitoring System(ITMS). A ground is defined as any part of the image which does not



belong to the IM train e.g. sky, ground behind the train. See
Fig. 5 for sample background and foreground frames from
the videos we captured. A simple template based back-__
ground subtraction algorithm does not work properly for
our case, since the background changes dynamically e.g
clouds change position over the duration of train movement.

Thus, for robustness of background subtraction, we adopted .(a) . (0) .
the following three stage algorithm. Figure 6. (a) Original Frame containing a.Ioad
(b) Edges of the load detected (c) Dilated

¢ Entire background above the top of the loads (region  Edge image.

marked Red in Fig. 5(d)) is removed usiedge detec-
tion methods. container. This is depicted in Fig. 7. The region above this

pixel location in the image frame is considered to be back-

e Gaps between consecutive loads (region marked Greemyround. Now, we remove background from the gaps lying
in Fig. 5(d)) is removed usingdge detectiobased

methods.

Sum of intensities having

Sum the intensities[0, 1] along x firet [ocal yiiaxita

direction
Top edge ¢
== detected

e The gap boundaries are not straight for gaps havingv
double stacks with unequal lengths. To handle the
background in the small region near the edge of the
smaller stack (region marked Blue in Fig. 5(d)), we
use anadaptivebackground subtraction method from

[6] .

Each of these methods is explained below. The loads have

Edge Image s dsua
X . - Plot of the sum of intensities

Edge based BG subtracion Figure 7. Detection of top edge of the load.

between the vertical boundaries of consecutive loads.eSinc

the containers and trailers are long, only some portion of
their length gets imaged in consecutive frames. In fact any
load can be imaged in four possible configurations as shown
in Fig. 8. Three of these configurations (a-c) contain gaps

_ (@) (b) © (d) or part of the gaps. To detect these gaps, we start from the
Figure 5. (a) and (b) Background template

images with clouds,sky and fields (c) Fore-
ground containing load (d) Regions where
different subtraction algorithms are applied. N
box shaped structure, which gets projected as a rectangul

edge and two S|de edges. The enclosed region correspon - 2Srormond  brapmoncmon

to the load i.e. foreground, and the outside region is back- (@) (b) (©) (d)

ground. A gradient based edge detector is applied to each Figure 8. (a) Left part of the gap is visible (b)

frame to obtain a binary image with edges of the loads get- Complete gap is visible (c) Right part of the

ting the highest intensity value of 255. Due to overexposure  gap is visible (d)No gap visible.

some of the detected edges may not be continuous, thus wéeftmost column of the image frame and look at the location

dilate the edge image using a 5x5 mask. Fig 6 shows theof the highest edge pixels along y direction. These location

edge detection and dilation results. have higher y coordinate values for loads and lower values
In this dilated edge image, we need to identify the top for gaps. We decide on a threshdd, and whenever the

edge of the load. As the background usually contains struc-difference in measurement in consecutive columns exceeds

tures like sky, clouds and bushes, which have low frequencyT'h we signal the presence of left side of the gap. Similarly

components, the edge detection process detects very fewve repeat the process to find the right side of the gap. The

edges from the background. Since the loads are almost rectthresholdT’h can be calculated as follows. The height of

angular in shape their top edge is assumed to be a straighthe rail car and the containers is fixed and can be obtained

line. Thus the first pixel location where the sum of inten- from freight train manual [3]. Assuming perspective prejec

sities along x-direction peaks is taken to be the top of the tion, the height of rail cah... in image pixels is computed



using the parameters of the camera setup as shown in Figpixel location where there is a best match between consec-
3. Similarly we can calculate the height of a single stack( utive frames. Since 2D correlation is not very fast and our
smallest in height among all loads ) in image pixels:as application should be real time, we approximate it with a
Their difference i.e.hss — h, is our threshold’h. Fig. 9 1D correlation. This is done by summing up the intensities
depicts the gap detection algorithm. The above algorithmin two consecutive images column wise and then correlating

these summed up 1D arrays. The summing operation takes
Large drop  Detected Edges of the gap care of the slight motions in vertical direction. The arnay i
dex of maximum correlation denotes the optimal pixel shifts
between consecutive frames and is thus the velocity of the
train in pixel shift per frame Thus the estimated optimal
velocity vept (11, I2) can be written as

Vopt (I1, I2) = argz}naxz (Z Li(z,y) - Z Ir(z + v, y))

Figure 9. Detection of gaps in between loads. where,I; and/; are two neighboring image frames.

is sufficient for detecting gaps, which do not have a double

stack container with unequal length stacks on either of its 2-3- Mosaic Generation and Detection of
sides(Fig. 5(c)). In such cases, the above technique based Boundaries of the Load

on edge detection only helps in removing a part of the gaps ~ Mosaic generation is important because it results in one
between longer stacks as shown in green color in Fig. 5(d).big panorama of the train in which the loads are visible as
In order to remove background near the shorter of the two a single complete block. The detection and classification of
stacks (blue region in Fig. 5(d)), we apply an adaptive back- loads becomes easier on the whole mosaic, since it depends
ground subtraction method described in [6]. In this method on the global properties of the complete load like length of
the temporal pixel intensities obtained across framesat on the load, which is not visible in a single frame. To gener-
particular location are modeled as a mixture of gaussians. | ate the mosaic, we extract a patch of pixels of certain width
our work, we input all the intensities in background frames from the center of the frames and then paste these patches
captured before the arrival of IM train ( see Fig. 5(a,b) ) and on one large image. The width of each patch is equal to the
the intensities from the background regions detected usingvelocity estimate (as calculated in Section 2.2) of thentiri
edge based method to learn the parameters of the gaussiarige frame, from which the patch was taken. The reason be-
corresponding to the background. Since we do not have anying that the velocity estimate describes the amount by which
prior knowledge about the presence of such kind of gaps,the pixels have been shifted. Thus by selecting patches of
we apply this adaptive algorithm near the boundaries of all length equal to the velocity we make sure that there is least
the gaps detected using our previous edge based methodverlapping region between consecutive patches when we
We thus use edge based and adaptive learning techniquegreate the mosaic. Since distortion is least in the center of
for robust background removal as seen in Fig. 10. the image, we choose the patch located at the center of the
image. Fig. 11 shows our results on mosaic generation for
one IM train.
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Figure 10. (a) and (c) Example frames from a . e p——
video (b) and (d) Corresponding background
subtracted frames.
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Figure 11. Mosaic of an intermodal train con-
2.2. Velocity Estimation sisting of background subtracted loads.

In order to generate a mosaic, the next step is to detect
the velocity of the IM train. We assume that the motion of  Now, the foreground pixels in the mosaic are given a
the train is horizontal and there is negligible vertical mo- mask value of 1 and the background pixels of 0 to create
tion. A correlation based technique is applied to get the aforeground maskmage. To detect the boundaries of the



load in the mosaic, we count the number of foreground pix- era is such that this gap is detected as a thin strip ( 2 or 3
elsin acolumn. Thus, for a mosaic of dimensions 640x1000 pixels wide) of black line of intensitye 0. To detect the
we get a 1D array of size 1x1000 containing the number presence of this gap, we take a window of some size around
of foreground pixels taken column wise. Since, the gaps the center of the double stack configuration as shown in Fig.
have some foreground in the form of parts of the iron con- 13. The intensity values in this window are projected hori-
nectors between consecutive rail cars which are very lesszontally along the x-direction by summing them up to give
compared to that in the loads, we can apply k-means algo-rise to a 1D array. The location of the minimum intensity
rithm with k=2 (foreground in loads and foreground in the value in this 1D array corresponds to the location of the
gaps) over this 1D array. Based on the two clusters we de-midline which is defined as the boundary line between the
cide on a threshold value for obtaining the boundaries of theupper and the lower stack. See Fig. 13 for detection pro-
loads. For double stacks with same length containers; trail cess for midline. To detect if the lower and upper stacks
ers and single stacks these boundaries correspond totorreare of same size or different size, we choose two windows
gap edges. But for a double stack with unequal length con-near the left boundary of the double stack, one of these is
tainers, this method detects only the outer most boundaryabove the middle line and the other is below the middle line.
The innermost boundary corresponding to shorter stack isWe look for the presence of the edge of the smaller stack in
calculated as a byproduct of the classification of the load these windows, by projecting the foreground mask profile(

into double stack as in section 2.4. described in the second paragraph of section 2.3) along y di-
rection( see Fig. 13) in that region and finding the location
2.4. Classification of Loads of steep change in projected profile which will correspond

he ed  the load q 4 th to the edge of the load. We repeat this process for the right
Once the edges of the loads are detected, the next SteBoundary of the double stack. Thus we detect double stack

is to _classif_y the loads into one of the foIIowing three cat- containers along with the widths of the upper and the lower
egories - Single Stack, Double Stack and Trailer. The ac- gtacks

curacy of this classification is important because based on a
load being classified as a double stack, we look for the edge
of the smaller stack in an unequal sized double stack config-
uration. The algorithm for load classification is described
the following subsections.

Single Stack Detection The single stacks differ from the
other types of loads in that their height is small, roughly
around 3-4 ft. From the load specifications on the height [§
of a single stack [3] and using camera position and the
height of the rail car, we can calculate the maximum possi-

Bottom of the trailer

ble heighth, of a single stack in pixel values in an image. ~ Figure 12. Detection of trailers. The small re-
As explained in Section 2.1, we also have the height of the ~ 9ion near the bottom of the trailer that has
top of a loadh;. Thusifh; < hg,, we classify that load as pixels with low intensity is utilized for their

a single stack. Since double stacks and trailers could be of detection.
same size, we cannot use similar techniques for identifying,
them.

Trailers The trailers are characterized by container shaped _ YL
body but having wheels and an axle at the bottom. Due to - = — Sl |
the existence of a gap at the bottom of a trailer, the camera ' il
is able to view the base of the trailer. The base is character-
ized by low intensity values in the range of 0-10, as there is R R S
no direct natural light falling on it. To detect the traileew X Minima of Intensity Plot

look for a region of pixels near the base of the trailer, which ) )

falls in this low intensity range. If we are able to find such Figure 13. Detection of Double Stack.
a region of pixels, we classify that load as a trailer. See Fig

12.

Double Stack Detection All the loads, which are notsingle  2.5. Gap Detection

stack or trailer, are assumed to be double stacks. The double Once the stacks have been classified and their bound-
stacks are characterized by two stacks of equal or unequaéries detected, we can then calculate the gaps between the
lengths kept on top of one another such that there is alwaydoads. The gaps are divided into two categories - Upper
a thin gap between the two stacks. The position of the cam-Level gaps and Lower Level gaps. The upper level gaps



correspond to gaps between two neighboring upper stacks
P gap g g upp Table 1. Panorama Generation Error

o_f a double stack configuration. AII the other gaps are clas- Snol Date | Trainindex!| Error
sified as lower level gaps. In Fig. 14 we show examples 1 | 06/08 1 3.47%
W|th_upper level gaps dsluelines and lower level gaps in 2 06/08 2 1.71%
redlines. 3 | 06/08 4 1.65%
F—-I | 4 | 08/07 1 2.67%

_ T 5 | 08/29 1 8.79%
L L o = s ~ 6 | 09/10 3 3.32%

(@) 7 | 09/10 9 2.86%

— [ 8 | 09/11 1 6.82%
— » — 9 | 09/11 2 4.68%
G T T % o 0 10 | 09/11 3 2.84%
(b) 11 | 09/17 3 2.31%

Figure 14. Different types of gaps : (a) dou- 12 | 09/17 5 4.97%

ble stack-single stack pair (b) double stack-
trailer pair.

. for double stacks and single stacks was 100% and for trail-
3. Resultsand Conclusion ers was 99%. The results of background subtraction and

Once the gap lengths are detected they are sent to anothdPOSaic generation are shown in Fig. 10 and Fig. 11 re-
system [5] which can calculate the aerodynamic efficiency SPectively. Thus we have developed a vision based system
of the IM train. The accuracy of this system critically de- which monitors an IM train, extracts |mportan_t |nf_0rmat|0n
pends on how accurately we detect the gap lengths. As thé‘nd uses t_hem for higher Ie\{el mfe_rences which in our case
videos which we have were captured from various locations, 1S c@lculation of aerodynamic efficiency [5] of the loading
we do not have ground truth data of length of the gaps in Pattern.
the IM trains. Thus we derived a measure of how accu-
rately the length of the different loads were detected using 4. Acknowledgemets
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between two frames and the velocity estimate is used in con-
structing mosaics, we can infer that low panorama genera-
tion errors imply robustness of other modules. The software
takes 5-7 minutes ( depending on the train length) to output
gap lengths on one intermodal train, which is quite compa-

rable to real time systems. The algorithm was tested on 12
sets of videos captured at the test site containing 570 dif-
ferent kinds of loads - 245 double stacks, 84 single stacks
and 241 trailers. These videos had various levels of diffi-

culty e.g. clouds in the sky, videos with less exposure, wav-

ing bushes in the background. The classification recall rate



