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Abstract. In this paper, we consider the problem of finding the k most simi-
lar objects given a query object, in large multimedia datasets. We focus on sce-
narios where the similarity measure itself is not fixed, but is continuously being
refined with user feedback. Conventional database techniques for efficient simi-
larity search are not effective in this environment as they take a specific similar-
ity/distance measure as input and build index structures tuned for that measure. Our
approach works effectively in this environment as validated by the experimental
study where we evaluate it over a wide range of datasets. The experiments show
it to be efficient and scalable. In fact, on all our datasets, the response times were
within a few seconds, making our approach suitable for interactive applications.

1 Introduction

Information retrieval schemes from multimedia collection often need to compare two
multimedia objects and effectively measure their similarity [1,2,3]. A large class of
such algorithms represent the multimedia content using an appropriate feature vector
and refine the similarity measure using relevance feedback techniques. In this paper, we
consider the problem of similarity search when the query object is matched against a
large database. In the context of similarity search on large datasets, we specially focus
on scenarios where the similarity measure itself is not fixed, but is continuously being
refined. User gives direct or indirect feedback regarding whether each retrieved object
is indeed similar to the query object or not.

In order to handle large datasets, we employ an index structure that helps narrow
down the multimedia objects that actually need to be verified for similarity. The prob-
lem of exactly finding the k most similar objects from a large dataset is known to be
time consuming. Our algorithm therefore, only attempts to retrieve the k most similar
objects, approximately. Our experiments show that most of the objects retrieved are
among the true k nearest neighbors.

Existing approaches [4,5,6] for efficient similarity search take a specific similarity
measure as input and build index structures tuned for that measure. A few approaches
were designed for changing similarity measures [7,8,9,10]. Even they do not perform
satisfactorily for multimedia data and associated similarity measures. Realistic mul-
timedia data is characterized by clusters in the data rather than random uniformly
distributed data. Associated similarity measures are characterized by a large number
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of dimensions where a few are actually dominant – i.e., there is high variance in the
weights/relevance of dimensions.

In contrast, our approach works effectively in this environment as validated by our
experimental study where we evaluate it over a wide range of situations. The experi-
ments show it to be accurate, efficient and scalable. While existing techniques degrade
in the presence of clustered data and widely varying relevances of dimensions, our al-
gorithm actually thrives in their presence. On all our datasets, the response times were
within a few seconds, making our approach suitable for interactive applications related
to multimedia retrieval.

1.1 Problem Statement

In many multimedia object retrieval systems, user presents the system with a query ob-
ject (say an image or a video clip) and the system retrieves the k most similar objects
from a database. Multimedia objects are typically represented by a vector of numeric
features X1, X2, . . . , XD which form a multidimensional space. Several approaches ex-
ist to measure similarity between multimedia objects [11,12]. Most of these approaches
popularly utilize a weighted Euclidean distance to measure the (dis)similarity between
points.

Formally, given a point X = [X1, X2, . . . , XD]T in a D-dimensional space and a
query point X ′ = [X ′

1, X
′
2, . . . , X

′
D], the weighted Euclidean distance between X and

X ′ is given by:

distance2(X, X ′) =
D∑

i=1

wi(Xi − X ′
i)

2, (1)

where the vector w1, w2, . . . , wD constitutes the weights along each dimension.
As the multimedia data set grow, scalability is becoming an important issue. When

similarity function becomes dynamic, standard data structures become insufficient for
the efficient search. We propose a scalable, efficient solution to this problem. We de-
scribe our simple and effective solution in Section 2. Performance of the algorithm is
comprehensively analyzed in Section 3.

2 Our Approach

The natural approach to design systems for multimedia object retrieval from large
databases is to build an index for similarity search. Index structures for similarity search
is a well-studied field. Unfortunately, most of the available index structures in the liter-
ature require a full specification of the similarity measure as input. In our context, this
is not possible because the similarity measure is continuously being refined by the user
during the retrieval session.

Our approach is to build a simple and flexible index structure that can be used for
similarity search based on the weighted Euclidean distance measure. It does not require
a full specification of the similarity measure as input. Note that the proposed scheme is
also applicable to many other distance measures directly or with minimal modifications.



208 N. Jammalamadaka, V. Pudi, and C.V. Jawahar

2.1 Index Structure

The index structure is simple: For each of the D dimensions, a list is maintained that
contains all the data points sorted along that dimension. In actual implementation, to
prevent redundancy, these lists could contain only the pointers or ids of points and
the actual points could be stored elsewhere. The lists can be stored on disk and be
implemented as B+ trees.

Insertion and deletion of points from the index structure is simple: it only involves
inserting and deleting the projections of those points from the lists of each dimension.
These operations can therefore be accomplished in O(DlogN) time for each point,
where D is the number of dimensions.

2.2 Retrieval

The retrieval operation is designed to efficiently (but approximately) retrieve the k near-
est neighbors of a query point. The pseudo-code of this operation is shown in Figure 1
and is explained below.

Retrieve(k, t, X ′, M ):
1 neighbors = {}
2 for each dimension d (in non-increasing order of weights):
3 C = t nearest neighbors in dimension d
4 neighbors = k nearest neighbors of X ′ among (neighbors ∪ C)
5 return neighbors

Fig. 1. Approximate k-Nearest Neighbor based Retrieval

The algorithm takes as input k: the number of desired nearest neighbors, t: the num-
ber of candidate neighbors to consider along each dimension, X ′: the query point and
M : the index structure. The output consists of the k nearest neighbors (approximately).

The neighbors of the query point is initialized to the empty set (in line 1 of Figure 1).
Next, the dimensions are enumerated in decreasing order of their weights (line 2) and
the nearest t neighbors along each dimension d are retrieved (line 3). This is done by
searching for the query point in the list for dimension d in the index structure. This
search will retrieve the point closest to the query point. Then, a linear traversal along
the list from that point in both directions will retrieve the closest t points.

The t points obtained along each dimension are candidate points to be considered
for being among the k nearest neighbors of X ′. These points are compared with the
nearest neighbors so far obtained to determine whether they are to be retained in the k
nearest neighbor set, or to be discarded (line 4). Finally, the nearest neighbors obtained
after enumerating points along all dimensions are output (in line 5).

2.3 Complexity Analysis

Consider N points in the database. Each point is D dimensional. As mentioned earlier,
insertion is an offline process and can be done efficiently.
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In the search operation Step 3 takes order complexity of O(log(N) + D) and Step 4
takes O(D). Thus the search operation takes O(D∗logN+k∗D2). Since log(N)>>D
we have the complexity of the search operation to be O(D ∗ logN). For the meth-
ods [7,10] order complexity cannot be arrived at and as the weight vectors improve the
performance degrades resulting in looking at most of the disk blocks. We experimen-
tally compare the performance in the next section.

2.4 Rationale Behind Design

Our approach has been to build a simple and flexible index structure that can be used
for similarity search based on the weighted Euclidean distance measure. Rather than
attempting to modify the index structure as the similarity measure is refined during a
user-session, we use the same index structure for any combination of weights.

The key operation at the time of retrieval is to obtain the neighbors of the query point
along each dimension. This is easily achieved in our approach since the index structure
can access the nearest point in O(logN) time and then merely traverse a linked list to
enumerate its neighbors. Our approach works effectively because the neighbors along a
particular dimension do not change when the weights of dimensions are modified.

The retrieve operation enumerates dimensions in non-increasing order of their
weights. This means that the most important dimensions are enumerated first. This
makes it likely that most of the true nearest neighbors are retrieved very early dur-
ing the execution of the algorithm. This can be advantageous in situations where the
user is interested in any neighbors that are within a specified threshold distance from
the query point.

Finally, it should be noted that the retrieval algorithm only retrieves approximately,
the k nearest neighbors. This is due to the fact that there may be nearest neighbors that
are not among the nearest neighbors along any dimension. To compensate for this, the
algorithm actually retrieves t nearest neighbors along each dimension, where t ≥ k.
Our experiments show that good accuracy is obtained for reasonable values of t.

2.5 Shortcomings

Consider the situation in Fig. 2(a). Here, Q is the query point and the circles marked
around it are its true nearest neighbors. Let this region be R. Let R1 be the region of
points which are nearer to the query point along the dimension D1. And let R2 be the
region of points which are nearer to the query point along the dimension D2. When
the nearest neighbors to the point Q are desired then the points in regions R1 and R2
may interfere, because they are the closest points along their corresponding dimensions.
Thus the algorithm may fail to retrieve the nearest neighbors. On further analysis we
can classify this situation into three cases.

1. Consider the case when region R is a dense region. When the dimension D1 is
considered, along with the points in the region R, points in the region R1 are also
likely to be among the nearest neighbors. When computing the nearest neighbors
along the dimension D2, the points in the region R are preferred over those selected
from R1. Likewise, points from R2 will also get eventually rejected leaving points
only from R. Our algorithm is designed to take care of this.
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Fig. 2. (a) Suspected case of failure (b) Skew of the weight vector is increasing with the value of
parameter

2. In the case when region R is sparsely populated, the nearest neighbors along each
dimension are not necessarily from region R. Subsequently, many false positives
are output by the algorithm. However this situation can be identified by seeing the
actual number of intersections during the merge operation. This is then overcome
by increasing the t/k ratio.

3. When the query point falls in a region which is extremely sparse, any point retrieved
will be irrelevant. If there are no relevant objects in the database, errors in the
retrieval process will not affect the overall performance.

3 Performance Study

In this section we evaluate the performance of our approach on both synthetic datasets
and real datasets. The synthetic datasets consisted of uniformly distributed, clustered
and mixed datasets. The real data set that we employed is from the Corel image collec-
tion. All the experiments are performed on a 3 GHz Intel Xeon PC with 4 Gigabytes of
main memory, running RedHat Linux 2.6.5-1.

3.1 Accuracy

Since our algorithm only retrieves the k nearest neighbors approximately, we have per-
formed detailed experiments to measure its accuracy. We measure accuracy in terms of
the number of points retrieved by our algorithm that are actually among the k nearest
neighbors. For comparison purposes, the actual k nearest neighbors were found using
an exhaustive search algorithm. Accuracy could depend on different factors like the
weight distribution and number of points retrieved.

Number of Points Retrieved. Our algorithm takes a parameter t that represents the
number of neighboring points to be retrieved. Obviously, accuracy will improve as t
is increased. We have therefore experimented with various values of the ratio t/k to
determine suitable values for different datasets.
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Fig. 3. Performance on various types of data sets. (a) Clustered data (b) Uniform data (c) Real
data (Corel dataset) (d) Results of user testing. Our algorithm prefers data sets with concepts.
With variances of relevance scores increasing, accuracy increases. Also for most of the weight
vectors, our algorithm provides acceptable approximation.

The two curves in the graph of Figure 3 (a) show the accuracy when the values of
the t/k ratio is equal to 1 and 5, respectively. The x-axis in this graph represents a
parameter that is used to modify the weight vectors (described in Section 3.1) and the
y-axis represents the accuracy. The value of k is set to 10. We observed in this graph
that as the t/k ratio was increased, the accuracy also increased and reached 100% at 5:1
for all values along the x-axis.

Figure 3 (b) shows the results for the same experiment on the uniform dataset. Here
also we observe that with increase in t/k ratio the accuracy goes high. Our algorithm
performs better on data sets with one or more clusters (strong concepts). We note that
most real-world datasets are likely to contain clusters, rather than being uniformly dis-
tributed and hence our approach suits them. This is especially true when the extracted
features are relevant to the problem.

Weight Vectors. In order to study the effect of weight vectors on accuracy, we tried var-
ious weight vectors for the weighted Euclidean distance metric. Weight vectors denote
the importance given to each component (dimension) of the feature vector.

The graph shown in Figure 2(b) shows the weight vectors used. Increase in the values
of the component across weight vectors denote the user feedback. A similar plot from
the previous experiment given in Figures 3(a) and 3(b) also show the variation of accu-
racy for different weight vectors. We observe that when the variance of weights is high
(i.e, when some dimensions are much more relevant than other dimensions), accuracy
is high. The reason for this is that the algorithm takes advantage of dimensions with
high weights by enumerating them first. We note that in most multimedia applications,
there would be some dimensions that dominate in importance.

Results on Real Database. We have tested the algorithm on the two real world scenar-
ios. In the first scenario we have used a real image database and evaluated our algorithm
against it. This experimental results indicate that our algorithm can efficiently perform
on real world databases. In the second scenario we subjected our algorithm to user test-
ing. We implemented our algorithm on a standard statistical relevance feedback based
image retrieval system.

Figure 3 (c) presents the results of the experiment. We notice that the graph is in
accordance the above mentioned results. As the weight vector gets more skewed along
the x-axis the accuracy improves. Similarly, as the t/k ratio is increased the accuracy



212 N. Jammalamadaka, V. Pudi, and C.V. Jawahar

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400
Dimensions vs Blocks

Dimensions

B
lo

ck
s 

ac
ce

ss
ed

0 10 20 30 40 50 60 70 80 90 100
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Dimensions vs Time

Dimensions

T
im

e 
ta

ke
n

0 1 2 3 4 5 6 7 8 9 10
350

400

450

500

550

Size in lakhs 

B
lo

ck
s 

ac
ce

ss
ed

Size vs Blocks

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Size in lakhs 

T
im

e 
ta

ke
n

Size vs Time

(a) (b) (c) (d)

Fig. 4. (a) and (b) suggests that the algorithm has a linear complexity in dimensions and (c) and
(d) suggests that the algorithm is logarithmic in size which is desired

improves. Figure 3 (d) gives the total number of relevant retrievals obtained by using
our algorithm and the extensive search algorithm as validated by the users . In this
experiment the number of desired images are 10 and the result is averaged over 10
users. Note that the accuracy reported in Figure 3 (c) is benchmarked against extensive
search procedure. Though the accuracy reported is not 100% Figure 3(c) suggests that
the images retrieved by our approach are relevant as validated by the user.

Response Time. We evaluated the response time of our algorithm for different datasets
and parameters. We see that flat-files perform better than SQL and R-trees because the
overhead of system calls in order to scan all the points is smaller for flat files. For the
same reason, SQL performs better than R-trees. Our algorithm performs significantly
better than any of these approaches because it does not need to scan through all points
of the database – its index can help narrow down the search to only a few points. It
may be argued that the R-tree index also could be used to narrow down the search for
the k nearest neighbors. Unfortunately, this is not possible because the weight vector
indicated in the user-session may be different from what was used in the R-tree con-
struction.

3.2 Scalability

We studied the scalability of the approach in terms of the variation in response time and
number of disk block accesses with respect to the database size (number of points) and
the dimensionality. These studies were made on the clustered dataset.

Number of Dimensions. Figure 4(a) shows the effect of increasing number of dimen-
sions on the response time of the algorithm. It is seen that the relation is linear. This
is expected as per the complexity analysis done in Section 2.3, when N >> D. Fig-
ure 4(b) shows the effect of increasing the number of dimensions on the number of
disk block accesses made by the algorithm. It is again seen that the relation is linear,
further explaining the linear nature of the response times. In these graphs, each point is
the average over all the 10 weight vectors used in earlier experiments and also over 10
different queries.

Database Size. Figure 4(c) shows the effect of increasing number of database points on
the response time of the algorithm. It was seen that the relation is logarithmic. This is
expected as per the complexity analysis done in Section 2.3. Figure 4(d) shows the effect
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of increasing number of database points on the number of disk block accesses made by
the algorithm. It was again seen that the relation is logarithmic, further explaining the
nature of the response times. Again, note that in these graphs, each point is the average
over all the 10 weight vectors used in earlier experiments and also over 10 different
queries.

The relationship between the number of blocks accessed and the dimension is given
by Blocks = (Height) ∗ (D) + D ∗

∑D
i=1(LNS(i)) where Height is the present

height of the tree, and LNS(i) is the total leaf nodes accessed in the dimension i.
This relationship explains the sudden transition in the Figure 4(d). We have used B+
trees to maintain all the points along each dimensions. Increase in the height of the tree
as a result of increase in the size is responsible for the sudden transition. However, it
is important to note that after the transition, the number of blocks accessed remained
constant in-spite of huge increase in the size of the database (from 0.2 million to 1
million), thus indicating that the approach is efficiently handling large databases.

3.3 Comparison with Existing Approaches

Table 1 shows the blocks accessed of our algorithm as compared against the approach
in Kurniawati et al. [10]. In this table, we show for datasets with varying number of
dimensions, the following statistics: (1) LFO: the leaf fan out (2) IFO: inner node fan
out (3) ltouch: the number of leaf nodes of the index structures that have been visited
by the two approaches, (4) lused: the number of leaf nodes that actually contained some
of the k nearest neighbors, and (5) the number of internal nodes accessed (inode). On
observing the total number of block accesses(ltouch + lused + inode) it is clear that
our approach is almost consistently better than the approach in Kurniawati et al. [10].
In fact, it performs an order of magnitude better for high dimensions, which is often the
case in multimedia datasets.

3.4 Heuristics for Performance Enhancement

Different distance functions. We have experimented with two variants of the distance
functions with various weight vectors and t/k ratios to choose a better performing dis-
tance function both in-terms of accuracy and speed.

The first one is given by the distance=
∑D

i=1 weight(i)∗(query(i)−db(i))2 where

D is the number of dimensions of the data. The second is distance=
∑d

i=1(weight(i)∗
(query(i) − db(i))2) where d is the dimension that the algorithm is looking at. We
observed that the second formulation is doing as good as the first function Figure 5(b)
in terms of accuracy but in terms of time Figure 5(c) , it outperforms the traditional
distance measures.

Stop criteria. Many of the applications have an acceptable accuracy and provides a
scope for improvement in speed. At the end of each iteration we have a total number of
t candidates(k being desired). Of these few of them(lets say t1) will match with result of
exhaustive search algorithm. We call these t1 entries as correct additions. Observing the
correct additions in Figure 5(a), we find that initially there are large number of correct
additions, and later this rate decreases. We can safely conclude that at any given time
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Fig. 5. (a) suggests a possible scenario of how accuracy increases with dimensions. (b) and (c)
compare the accuracy and time taken for different distance metrics.

Table 1. Comparison of our approach with an existing one. Ours is an order times better than
this, particularly for high dimensions.

Our Approach Kurniawati et al
Dimension LFO IFO ltouch lused inode LFO IFO ltouch lused inode

2 682 1024 2.1 2.1 4 682 225 1.4 1.4 1
4 409 1024 4.3 4.3 8 409 146 4.5 2.7 2.2
8 227 1024 8.5 8.5 16 227 78 89.5 8.9 4.8

16 120 1024 18.5 18.5 32 120 40 740.6 25.9 20.4
32 62 1024 40.9 40.9 64 62 20 1613.0 41.0 87.0

s (< T ), the accuracy of the algorithm is approximately s
T % of the total accuracy of

the algorithm. Thus the above observation could be used as stopping criteria, given the
acceptable accuracy.

Comments on Implementation. The optimal t/k for a given session may depend on
the query scenario. This could be done by estimating the t/k ratio dynamically. The
dynamic estimation could be done based on the following observations: (a) With the
increase in dimensions the rate of correct additions is going down. (b)With each di-
mension, the distance(dis) of the ith nearest neighbor decreases. (c) As the t/k ratio
increases, the distance of the ith nearest neighbor is decreasing. (d) The amount at
which such distance would fall decreases with the t/k ratio.

4 Related Work

Content-based multimedia retrieval has been an active area of research [1,2,3]. Scalabil-
ity of these approaches for large datasets of images has not received the due attention.
A large body of work exists on the study of index structures for similarity search. These
algorithms involve building a spatial access tree, such as an R-tree [5], k-d tree [4],
SS-tree [6] or their variants. The index structures presented in these papers were novel,
elegant, and useful. However they are not applicable in our study as they take a specific
similarity measure as input and build index structures tuned for that measure. Recent
attempts [7,8,9,10] on this problem focused on scenarios where the similarity measure
itself is not fixed, but continuously being refined. These algorithms have taken a branch
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and bound approach, which may degrade to searching most of the tree structure. In this
work, we focus on efficiently retrieving the data, with bounds on the time taken, when
similarity measure is varying continuously.

5 Conclusion

In this paper, we addressed the problem of finding the k most similar objects in large
datasets given a query object, when similarity measure is continuously being refined
with user feedback. Our approach builds a simple index structure that can short-list the
points to be considered for nearest neighbor search effectively even without a com-
plete specification of the similarity measure. Experimental study over a wide range of
datasets showed our approach to be accurate, efficient and scalable. In fact, on all our
datasets, the response times were well within a few seconds, making our approach suit-
able for interactive applications.
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