Garuda: A Scalable, Tiled Display Wall Using Commodity PCs

Nirnimesh

Pawan Harish

P. J. Narayanan

Center for Visual Information Technology
International Institute of Information Technology
Hyderabad, 500032 INDIA
{nirnimesh@research., harishpk@research., pjn@}iiit.ac.in

ABSTRACT

Cluster-based tiled display walls can provide cost-effective and
scalable displays with high resolution and large display area. Soft-
ware to drive them needs to scale too if arbitrarily large displays
are to be built. Chromium is a popular software API used to con-
struct such displays. Chromium transparently renders any OpenGL
application to a tiled display by partitioning and sending individ-
ual OpenGL primitives to each client per frame. Visualization ap-
plications often deal with massive geometric data with millions of
primitives. Transmitting them every frame results in huge network
requirements that adversely affects the scalability of the system.
In this paper, we present Garuda, a client-server based display wall
framework that uses off-the-shelf hardware and a standard network.
Garuda is scalable to large tile configurations and massive environ-
ments. It can transparently render any application built using the
Open Scene Graph (OSG) API to a tiled display without any modi-
fication by the user. The Garuda server uses an object-based scene
structure represented using a scene graph. The server determines
the objects visible to each display-tile using a novel adaptive algo-
rithm which culls the scenegraph to a hierarchy of frustums. Re-
quired parts of the scenegraph are transmitted to the clients, which
cache them to exploit the inter-frame redundancy. A multicast-
based protocol is used to transmit the geometry to exploit the spa-
tial redundancy present in tiled display systems. A geometry push
philosophy from the server helps keep the clients in sync with one
another. Neither the server nor a client needs to render the entire
scene, making the system suitable for interactive rendering of mas-
sive models. Transparent rendering is achieved by intercepting the
cull, draw, and swap functions of OSG and replacing them with
our own. We demonstrate the performance and scalability of the
Garuda system for different configurations of display wall. We also
show that the server and network loads grow sub-linearly with in-
crease in number of tiles which makes our scheme suitable to con-
struct very large displays.

Keywords: Parallel Visualization and Graphics Clusters, Visual-
ization over Networks, Large scale displays.

1 INTRODUCTION

The size of a display in terms of the dimensions of the surface and
the number of pixels are important for visualization applications.
The available computing power has been following Moore’s law
over the past few decades. However, display resolutions have only
grown modestly over the same. Public displays need large area for
wider viewing but do not require high resolutions. A large screen
lit by a projector serves such applications. Many visualization ap-
plications, however, require large display areas and high display
resolutions simultaneously to provide both detail and context. Vir-
tual Reality environments, scientific visualization, etc., are exam-
ples where large display size with high resolutions can be useful.
Such displays can be built using specialized hardware or using a

cluster of computers.

Hardware to drive large displays and display mechanisms like
CRT and LCD are severely limited in the maximum achievable res-
olution. Costs increase prohibitively beyond a few mega pixels.
Tiling multiple displays is an effective way to create arbitrarily large
displays for visualization applications. General purpose systems
with off-the-shelf graphics accelerators can be used in a cluster to
provide a cost-effective and scalable alternative for setting up large
tiled displays.

There is a trade off between resolution and display size in com-
puter displays. The resolution of the display affects the visible de-
tail and the size affects the visual context. Zooming in to view the
fine details results in a loss of the bigger picture. Zooming out bring
the big picture at the expense of the details. Baudisch et al. attempt
a creative solution by embedding the high-resolution portions on a
screen while displaying low resolutions for the rest in an effort to
achieve focus and context simultaneously [12]. Wang et al. pro-
posed a focus-plus-context framework to magnify the features of
interest [42]. These methods, however, assume that the viewer con-
centrates on a small region of the screen; the focus doesn’t extend
to the entire screen. It is observed that in a large display environ-
ment people tend to move about and change viewpoints, and there-
fore might be distracting, especially at the edges of the resolution-
change [15]. Displays with large size and high resolution solve the
trade-off between focus and context. A few efforts are underway to
build very large displays. Displays with 100-200 mega pixels have
been built by multiple teams [2, 37, 22, 3]. These are mostly used to
display static or slow-changing images. Driving such displays di-
rectly from a graphics program will facilitate their use in interactive
visualization and virtual reality applications.

In this paper, we present the design of Garuda, a cluster-based
tiled display wall for interactive graphics applications. Garuda sys-
tem uses commodity PC hardware on Ethernet for driving individ-
ual tiles with a high-end server to coordinate them. We currently
use low-end PCs on 100Mbps network to drive the tiles. Garuda’s
software system is built on the Open Scene Graph API [7]. Any
application built on OSG can be rendered transparently on the dis-
play wall without any modification. Garuda caches and manages
the transmitted geometry at the rendering clients to exploit tempo-
ral and spatial coherence in the scene. This sets it apart from solu-
tions like Chromium [25] whose demands on the network are very
high. Wallace et al. describe the design issues behind the Princeton
display wall from the point of view of scalability to videos, images,
graphics and audio [41]. A recent survey on large, high-resolution
displays cite scalability to large tiles, high-performance rendering,
and integration into a computing environment as among the top ten
research challenges faced today [29]. The design of Garuda has
addressed these issues directly.

The main contributions of the Garuda system for tiled-displays
are two: (a) applicability to a large scenarios and (b) scalability of
the hardware and architecture to very large displays. For wide ap-
plicability, we provide the ability to render any Open Scene Graph
application to the display wall without modifications. Scalability in

hardware is achieved by the use of low-end PCs on commodity Eth-
ernet as the rendering nodes, keeping costs low. Scalability in the
architecture has multiple components. An adaptive algorithm at the
server culls the object hierarchy to the frustum hierarchy optimally
to determine the objects inside each tile’s frustum. The caching
of the partial scenegraph at each node facilitates the transmission
of only the new objects in each frame, keeping the network require-
ments low. As the number of tiles increases, caching becomes more
effective as fewer objects are visible to each tile. Lastly, the objects
are sent to the rendering nodes using a multicast protocol to further
reduce the network load. Since the server is on one end of all net-
work traffic, multicasting can send an object to all clients in about
the same time needed to send to one client. As the number of tiles
increases, more objects will be visible to multiple tiles, bringing
greater gains using a multicast protocol. Garuda system exploits
the power of distributed rendering. No node in the system includ-
ing the server needs to render the entire scene. This facilitates the
rendering of very large scenes in a distributed manner. The server
deals only with the bounding volumes and each client only renders
the sub-frustum corresponding to its tile. As a result, a 2x2 system
could render the full Powerplant model at about 50 fps and above
at a resolution of 2048 x 1536. A single node of the same capac-
ity achieved only 10-12 fps rendering a 1024 x 768 image. A 4 x4
system using low-end machines with ATI Xpress 200 motherboard
graphics achieved 10 fps on the same model, with a display resolu-
tion of 4096 x 3072.

This paper is organized as follows. The related literature is re-
viewed in Section 2. The design of Garuda system is given in Sec-
tion 3. Transparent rendering for OSG applications appears in Sec-
tion 4 and experimental results from it in Section 5. Discussions
and conclusions are presented in Section 6.

2 RELATED WORK

We present a review of the literature related to the construction of
large displays in this section. See the recent survey on the hard-
ware, software and human-factors aspects of large, high-resolution
displays [29] to get a comprehensive review of the options for build-
ing such displays.

2.1 Specialized Hardware Setups

Large graphics display systems have been built using specialized
hardware by companies like Silicon Graphics. High-end computer
systems like the Onyx2, with multiple graphics pipelines and chan-
nels with each driving a display unit, are often used for creating
large displays. Implementations of such Power Walls exist at sev-
eral places [8]. CAVE™ can also be classified as such a system
though it focuses on surround display [19]. Sepia by Heirich et al. ,
also falls under this category as it is a hardware approach to image
combining; using additional hardware for image combining over a
specialized high speed, high bandwidth network [27]. Metabuffer
by Bajaj et al. is a software cum hardware approach to image com-
bining using a special framebuffer for color combining and blend-
ing to a tiled display [45]. Though these systems achieve interactive
framrates, they are expensive, have poor scalability to large sizes,
and require expert-level maintenance and setup.

2.2 Cluster-based Displays

Cluster-based solutions for creating large displays have gained a lot
of interest recently [16, 25]. Such displays have the potential to
put high-performance visualization within the reach of more users.
These systems consists of a number of commodity PCs that are
interconnected over a LAN or via low-latency networks like the
Myrinet [8, 25, 9]. Cluster-based displays are economical, scalable

in performance and resolution, and are easy to maintain. The com-
puting resources of a cluster can be used for running distributed
tasks or doing parallel computations. Upgrading a cluster based
display wall is as easy as upgrading the individual nodes in the
cluster. Cluster-based displays have to address the concerns of
color-balancing across displays. Recent advances in color-balance
and seamless tiling technologies address this issue [15, 26]. Chen
et al. classify cluster-based display setups into two approaches:
master-slave and client-server [16]. We describe each briefly now.

2.2.1 Master-Slave Approach

In the master-slave setup, the dataset is mirrored across all the nodes
and multiple instances of a program run in parallel, one on each
node. Their running is synchronized such that they assume identical
behaviors at synchronization boundaries. Each node renders the en-
tire scene but displays only a certain portion of it. The master-slave
model can be sub-classified as System-level program synchronized
(SSE) or Application-level program synchronized (APE) depending
on the level at which the synchronization is carried out [16]. SSE
attempts to synchronize transparently, i.e., without requiring modi-
fication or even relinking of the source and has been studied in the
context of fault-tolerant computing. Bressoud et al. proposed Hy-
pervisor, that treats an actual software system as running on a vir-
tual machine, close to the actual microprocessor architecture [14].
Due to the low level of synchronization involved, the program slows
down considerably and SSE mechanism is not guaranteed to work
with arbitrary multi-threaded applications. With APE, the respon-
sibility of synchronizing lies with the application. This approach
has the lowest network bandwidth requirement. However, since
each node runs an instance of the application, there’s no perfor-
mance gain with the cluster setup as compared to the performance
without it; there is only a gain in the display resolution. VR Jug-
gler, a framework for virtual reality applications, falls under this
category [13]. Net Juggler is an open source library that turns a
commodity cluster running the VR Juggler into a single image clus-
ter [11].

The master-slave approach assumes that each node in the clus-
ter would be able to render the entire environment in its entirety.
This runs counter to the motivation of load-balancing that is criti-
cal to cluster-based displays. Little performance gain is achieved
from using a cluster setup. It is also difficult to handle dynamic
environments since the data is replicated. Even if the data source
is centralized, it is difficult to access real time data stream from a
single external network source.

2.2.2 Client-Server Approach

The client-server models store the dataset on a central server. The
server can also use a distributed data management framework, as in
[23]. The server distributes appropriate data to each client node and
performs the synchronization among the rendering nodes. The data
distribution can follow the sort-first or the sort-last strategies or a
hybrid k-ary distribution strategy [34, 33]. One way to distribute the
data transparently is to intercept function calls at the graphics API
level [25] or at the display manager level [1]. The former provides
the large display facility to any application using the API. The lat-
ter can additionally provide all windowing applications to the large
displays including menus, toolbars and decorations. This approach
is close to image level splitting and may not exploit the render-
ing capabilities of the clients. Chromium intercepts and distributes
OpenGL graphics primitives to a cluster of PCs for rendering [25].
It is used by display walls such as the Hyperwall [35], VisWall [9],
LionEyes Display Wall [4], etc. The plus point of Chromium is
that it can clusterize any application built over OpenGL transpar-
ently. However, it fails to capture the coherence of data across time
as each frame is treated independently. The network requirements

are thus very high even when the scene is unchanged. It is also not
able to take advantage of the high-level object structure encoded in
scene graphs due to its low-level focus.

Another approach to the client-server architecture is to carry out
the distribution at the 3D object level itself rather than at the primi-
tives level. Virtual Graphics Platform (VGP), similar to Chromium,
can handle 3D objects transparently for OpenGL based applications
but is still high on network requirements. ModViz Renderizer soft-
ware, based on VGP, can render any OpenGL Performer application
to a tiled display with some code modification [6]. Though these
systems render 3D data they do not exploit the spatial arrangement
of objects in the scene. Spatial structure of a scene is captured well
using a scenegraph representation. The server can determine the
objects that need to be sent to each client using frustum culling.
This helps reduce the network requirements significantly. This is
the approach followed by Syzygy [36] and OpenSG [40] for dis-
play wall rendering. The Syzygy software library consists of tools
for programming VR applications on PC clusters [36]. It includes
two application frameworks: a distributed scenegraph framework
for rendering a single application’s graphics database on multiple
rendering clients, and a master/slave framework for applications
with multiple synchronized instances. Germans et al. presented a
software environment Aura which has a multi-copy mode that uses
a master-slave approach and a broadcast mode that uses a client-
server approach [24, 39]. Corréa et al. described iWalk, an out-of-
core rendering scheme using visibility-based prefetching of data in
massive models [18]. They also described their system for parallel
rendering to tiled displays where the rendering nodes follow a pull-
philosophy, which could be a limitation when dynamic objects are
involved [17]. Blue-C Distributed scenegraph by Naef et al. uses a
scenegraph node distribution approach, using OpenGL Performer,
to distribute the scene across multiple clients with some user inter-
action [28]. The Garuda system follows a server-push philosophy
which allows us to exploit temporal and spatial coherence during
computations. The server-push philosophy also helps in handling
dynamic objects in a scene. Garuda distributes the scenegraph
nodes across multiple clients automatically in a manner such that
all nodes common to all the clients are multicast only once and ex-
isting nodes at clients are not sent again, keeping the network load
minimal.

2.3 Display Synchronization

The rendering nodes in the cluster need to be synchronized to avoid
display tearing effects during rendering. All nodes need to fulfill
three requirements for locking: Genlock, Swap-lock and Data-lock.
Genlock provides coherency to the display signals across all the
nodes. Pure hardware solutions like Lightning2 [38], WinSGL [43]
and Matrox’s ASM [5] or software/hardware solutions like Soft-
GenLock [10] are used for this purpose. Swap-lock compensates
for the differential rendering times in different nodes. Data-lock
refers to application-level coherency in the scene to be rendered.

2.4 Multi-projector Displays

There has been a lot of interest in multi-projector displays re-
cently. The emphasis has been on systems that can auto-configure
themselves even when the projectors are placed together casually.
Raskar et al. described a camera-based scheme for easily config-
uring multi-projector displays [31]. Yang et al. use a camera for
closed-loop calibration of controllable projectors to automatically
calibrate multiple screen configurations [44]. Majumder et al. pre-
sented a method to achieve luminance matching across all pixels
of a multi-projector display that results in photometrically uniform
displays [26].

In this paper, we concentrate on the culling and management of
geometric representation for transparent rendering to a clustered,

tiled display system, using CRT-based tiled displays. The issues
of display alignment, color correction, etc, will be relevant if the
tiled display is made using projectors. We do not concentrate on
these aspects currently and restrict our attention to the algorithmic
aspects of tiled displays.

2.5 Geometry Server

Garuda system grew from an earlier work from our group on build-
ing a Geometry Server for heterogeneous clients. We built a high-
performance, centralized storehouse for massive geometric data
that serves geometry to each client adaptively [21]. The Geometry
Server stores and manages the scene’s representation using multi-
ple levels of detail (LoD). It can simultaneously serve a number of
heterogeneous users adaptively, ranging from a graphics worksta-
tion on the LAN to a PDA connected over a wireless network. Each
user gets a visibility-limited representation of the model at an LoD
compatible with its rendering capabilities, computational resources,
and network characteristics. The objective is to provide consistent,
interactive frame rates to every user irrespective of the users capa-
bility and connectivity. The remotely served geometry appears as
just another object in the client’s environment and can be combined
with other objects or modified like a local model. Dynamic objects
are handled using a server-push for information and lazy-download
for the geometry data. The server streaming philosophy was fur-
ther extended for rendering of massive terrains in real-time [20].
The Garuda display wall system extends this philosophy for high-
performance rendering to a cluster-based tiled display system. The
Geometry Server treats each client as an independent user with in-
dependent viewpoint control, with very little coordination between
them. The emphasis there is on the adaptation of the service to the
network and computation capabilities of each client for an accept-
able quality of service. Garuda, on the other hand, has a single user
who controls the viewpoint. The emphasis is on the use of the tiled
clients as a high-resolution display without the users even realizing
its tiled nature. Coordinated culling, transmission, and rendering
are the focus of the server in Garuda. The rendering nodes are uni-
form and connected using a reliable commodity network.

3 GARUDA: A GEOMETRY-MANAGED DISPLAY WALL

Two considerations guided the design of the Garuda system: scal-
ability to large displays and usability to a number of applications.
The system follows a client-server approach (see Figure 1), but ad-
ditionally exploits the temporal and spatial coherence in the scene
structure to minimize the network resource utilization. The Garuda
system consists of a server that coordinates all activities and several
rendering clients, currently one for each tile, that perform the ren-
dering!. The server is a high-end machine while the clients are built
using commodity computers. We currently use low-end PCs in our
experiments; clients with better graphics and memory resources can
directly enhance the performance of the overall system. No client
nor the server needs to render the whole scene in our design. The
client nodes and the server are connected using a standard 10/100
Mbps Ethernet.

The user application, built on an Open Scene Graph API, runs
on the server machine. The interception mechanism takes the view-
point from the running application at every frame in response to
keyboard or mouse input. The server has a reference pointer to the
entire scene loaded into memory by the running application as a
scenegraph and determines the objects that are visible to each tile
using an adaptive view frustum culling algorithm described later.

The tiled-rendering literature refers to the rendering nodes as tile-
servers and the node where the application runs as the tiling client [25, 39].
‘We use a traditional interpretation of server and client in this work and have
multiple rendering clients and one tile server that coordinates them.

Rendering Rendering
Node/ Ethemet Node/
Client g _ | Client

Figure 1: Schematic of the Garuda hardware system. The server
runs the user application and controls the rendering and synchronous
display of the rendering nodes of the clients, each of which draws a
single tile. The server is connected to the clients over commodity
ethernet network.

(One of the easy extensions to the system is the use of out-of-core
rendering at the server to handle truly massive environments.) The
objects not already present in the cache of the clients are sent to
each using a multicast approach. Multicasting can exploit the spa-
tial coherence of objects that intersect multiple tiles. The clients
cache these objects so as to reuse them subsequently. This ex-
ploits the temporal coherence in the visible models in each tile.
The clients start rendering a frame immediately after receiving all
necessary data and inform the server when they are ready to swap
the buffers. The server synchronizes the displays by ordering a
common swap after receiving the ready-to-swap messages from all
clients. Garuda facilitates transparent tiled display of any Open
Scene Graph-based application without the user having to modify
anything. This is accomplished by replacing the cull-draw-swap
actions of the Open Scene Graph system using Garuda’s cull, dis-
tributed draw, and synchronized swap mechanisms described later.

Figure 2 shows the tasks undertaken at the server and client along
with the flow of control between them for each frame rendered us-
ing our system. We now explain the different steps involved in
Garuda’s operations.

3.1 System Startup and Initialization

The Garuda library is loaded before running any OSG based user
application at the server machine. The init function in the Garuda
library initializes all the client connections and pre-processes the
scenegraph before entering the rendering loop. The user applica-
tion loads the scenegraph into memory whose reference pointer is
stored with the server. The server computes the oriented bounding
boxes (OBB) for all nodes in the scenegraph using a simple PCA
approach. OBBs are used for view-frustum culling by the server
at each frame in the rendering loop. A generic OSG-based viewer
application is fired up at each client node. A simple client-daemon
enables the server to initiate this process over the network. The
client application receives scenegraph data and viewing parameters
from the sever incrementally and performs the steps described be-
low.

Data transmission starts when the first frame is rendered. The
cull traversal of the first frame by OSG will result in the Garuda
server determining the objects to be sent to each tile. A partial
scenegraph is constructed at each client as objects are received from
the server. The package of data sent to the clients contain the ge-
ometry nodes for the visible objects as well as the entire path from

Server process

Determine Visibility for
each rendering node
- l Rendering Node/

Client process

,r,
Transmit Visibility Info :‘ Receive Visibility Info
Tx L Rx

Multicast Geometry for - Receive fresh
freshly Visible Objects ™| geometry, and cache

1 ¥ v I

Render Scene

Wait for all clients

to finish rendering
Notify Ready-to-Swap
to Server

¢ Wait

Order all clients to - Wait for Swap Orders
swap buffers

v

Swap Buffers

Figure 2: Server and client side processing and control flow for each
frame. Vis refers to the visibility determination stage, Tx and Rx
refer to the transmission stage, and R denotes the rendering stage.
Pipelining of these stages is not shown here.

the scenegraph root to them. Transmission, rendering, and synchro-
nization of the first frame is handled like all subsequent frames as
explained in Section 3.2. Rendering the first frame involves large
data transmission due to the starting up issues; subsequent frames
take less time as only the incremental portions of the scenegraph
needs to be sent.

3.2 Rendering Pipeline

The user or the application program need not be aware of the tiled
display when using Garuda system as any Open Scene Graph based
application can be displayed on it without any modification. The
system expands the user’s view volume — called the primary view
frustum — to fill the complete tiled display, creating internal sub-
frustums for each tile. The primary view frustum is divided into
equal-sized tiles in accordance to the arrangement of tiles in the
display wall. The user controls the viewpoint and can modify the
scenegraph. The cull and draw operations of the user program ini-
tiate special processes that render the scene to the tiled display.
Garuda’s rendering pipeline can be divided into three stages: Visi-
bility determination, data transmission, and rendering and synchro-
nization. These are the operations that determine the overall perfor-
mance of the system and are pipelined to maximize the rendering
performance. We describe each stage now.

3.2.1 Visibility Determination

Visibility needs to be calculated for each tile’s view frustum for
tiled rendering. We use an adaptive view frustum culling algorithm
to do the tile-sorting. This algorithm culls the objects of the scene-
graph to each tile’s sub-frustum in every frame. We do not use
visibility culling as the temporal coherence is better exploited with
frustum culling than true occlusion culling for a tiled display. This
is because the occluded objects in the view frustum can become
visible in subsequent frames. It is thus safe to send such objects to
the tiles in the first place. The tile-clients can do occlusion culling
to reduce rendering load. Our philosophy of using low-end clients
for scalability, however, makes this difficult.

Primary View
Frustum

'

Figure 3: Frustum hierarchy is built by dividing the primary view frus-
tum using horizontal and vertical planes successively. Each division
creates an additional level in the hierarchy. The near and far planes
are common and do not play any role.

Garuda’s visibility algorithm deals with two hierarchies: the Ob-
ject Hierarchy (OH) of the scenegraph and the Frustum Hierarchy
(FH) of the primary and sub-frustums. The Frustum Hierarchy is
obtained by bisecting the primary view-frustum recursively — al-
ternately using vertical and horizontal planes — until each individ-
ual tile’s view-frustum is reached (see Figure 3). The bisection
plane used at each level is saved at the internal nodes in the FH.
The algorithm traverses the OH and the FH adaptively to mini-
mize the number of frustum-box intersection tests. The process
begins by marking all objects visible to any tile using conven-
tional culling of the scenegraph to the primary view frustum. The
adaptive_OHandFH_Cull(OH_Node, FH_Node) algorithm isin-
voked with the root 0H_Node of the culled scenegraph and the root
FH_node of the frustum hierarchy.

Algorithm 1 adaptive_OHandFH_Cull(OH_Node, FH_Node)

1: if leaf(FH_Node) then

2 Mark OH_Node as visible to FH_Node

3 return

4: end if

5: [L,C,R] <= ClassifyLCR(OH_Node, FH_Node.plane)
6

7

8

: for all ¢ in set C do
adaptive_OHandFH_Cull(c, FH_Node.neg)
. adaptive_.OHandFH_Cull(c, FH_Node.pos)
9: end for
10: for all / in set L do
11: adaptive_OHandFH_Cull(/, FH_Node.neg)
12: end for
13: for all r in set R do
14: adaptive_OHandFH_Cull(r, FH_Node.pos)
15: end for

In Algorithm 1, if FH_Node is a leaf, it represents a tile, and
the corresponding OH_Node is marked to be visible to it (line 2).
If OH_Node is a leaf, FH_Node needs to be unfolded to its sub-
frustums. However, if neither FH_Node nor OH_Node is a leaf,
a decision needs to be taken to determine which of the two hi-
erarchies to unfold next. Line 5 uses ClassfiyLCR, an auxiliary
function which groups the children of 0H_Node into three sets: L
(Left), C (Cuts) and R (Right), with respect to FH_Node’s bisec-
tion plane. Classification to these groups is done using OBB of the
OH_Node instead of its actual geometry as it is a compact and con-
servative representation for it. Note that the sets L, C and R are
disjoint. So, objects in set L need to be tested further with the left
sub-frustum only (lines 10-12), whereas those in set R need to be
tested with the right sub-frustum only (lines 13—15). Objects in set
C cut the bisection-plane and hence must to be tested with both the

sub-frustums. In a typical scene, a majority of objects fall in sets L
and R, thereby potentially reducing the computations by half. The
algorithm adapts to the scene structure and the viewpoint, follow-
ing an optimal route to assign objects to a tile using the shortest
path. If N is the number of objects in the primary view frustum
and M the number of tiles, the algorithm has a worst-case running
time of O(MN) when all objects intersect all tiles and a best-case
running time of O(log M) when all objects are in one tile. The av-
erage running time depends on the branching factor of the scene-
graph and the number of nodes that intersects the frustum plane in
each step. For good hierarchical scenes the running time varies in
practice as O(min(NlogM,MlogN)). The culling time for a hier-
archical version of the Powerplant model for a 4 x4 tiled display is
under 4 milliseconds (see Section 5). More analysis and details on
the culling algorithm including comparison with other approaches
can be found in [30].

3.2.2 Transmission

The visibility determination stage identifies the OSG nodes present
in each tile’s view-frustum. Garuda server needs to send these
nodes to the respective clients and coordinate their rendering for
every frame. Transmission over the network is a serious limiting
factor in all cluster-based display systems. The performance of this
stage is determined by the network bandwidth and latency. The
server updates the visibility information at each client by sending
it the list of objects in its frustum for the next frame. This infor-
mation in the Garuda system is less than 512 bytes per frame for
each client. The visible objects that are not present already in each
client’s cache are subsequently send to it next. The server keeps
track of the cache state of each client and has the necessary infor-
mation for this. These nodes to be sent are serialized into memory
buffers using OSG’s file-writing mechanism; this data can option-
ally be compressed. The serialized data is then multicast over the
network to a multicast group that includes all clients. The client
nodes gather the necessary data from this multicast, deserialize the
geometry, add it to the scenegraph and cache it for later reuse. The
server keeps track of the objects that have been transmitted to each
client to avoid retransmission in later frames. A simple handshake
mechanism ensures that the data is transmitted reliably using the
UDP multicast. The protocol overheads are low as packet losses
are insignificant even on the UDP as the system is built as a tight
LAN sub-network.

The alternative to multicasting is the use of unicast using a more
reliable TCP protocol. Multicasting ensures that the sever transmits
data only once even when an object is needed by multiple clients.
This situation is common for tiled displays, especially as the num-
ber of tiles increase and the tile size shrink. This is a critical aspect
for the scalability of the Garuda system. Multicasting thus ensures
that the network requirements don’t scale linearly with the number
of tiles. The network requirements remain practically constant for
different tile configurations. A demonstration of this for the initial
startup of the display wall — when the network requirements are the
highest — is given in Section 5. A unicast-based scheme needs to
send each object separately to each client that needs it, increasing
the network requirements.

All communications between the server and the clients are exe-
cuted in separate threads or processes in the respective computers.
This ensures that the communication doesn’t hold up other activ-
ities. Integrity of the data is checked before the received data is
used, to make sure all of it is available.

3.2.3 Rendering and Synchronization

The clients start rendering the scene for a frame when all objects
for it are available. The time taken for this step is proportional to
the geometry inside the view frustum. This can vary from client

to client. A server-coordinated swapping of the frame buffers is,
therefore, used for synchronizing the display to ensure simultane-
ous change. Each client sends a ready-to-swap signal to the server
after rendering to the back buffer is completed. The server sends a
swap message to all clients after receiving ready-to-swap from all
of them. Network latency is crucial for this simple synchronization
procedure. Our experiments show that a commodity Ethernet can
synchronize satisfactorily at interactive frame-rates.

3.3 Scenegraph Management

Data sent to the client contain the position of an object with respect
to the root node in the scenegraph along with its geometry. The
client creates the tree structure from the data received and inserts
each node at the appropriate location in its scenegraph. As more and
more objects are sent to a client, its scenegraph begins to resemble
the overall scenegraph present at the server.

The client also caches the geometric objects received. The cache
enables our system to exploit the inter-frame coherence of data.
Each client has a fixed cache and uses an LRU algorithm to remove
objects from it when the cache gets full. Only the geometry nodes
are cached and removed; the internal nodes of the scenegraph are
retained. Eventually, the structure of the server’s scenegraph will be
present at every client, but with only fewer leaf nodes. Such a repli-
cation of scenegraph structure helps for consistent and incremental
scenegraph management by the server.

The caching and the exploitation of temporal coherence is an-
other important step towards scalability to a large number of tiles.
As the number of tiles increases, each client needs to render less
and can hold more data in its cache. The server-push philosophy
reduces the client’s load and hence low-end clients can be used.

3.4 Pipelining

Other rendering

nodes w Swap Swap Swap

" ") frame frame frame
. L i+1 i+2

) Vis [x| Wait
! :} Vis [Tx [. wai
Server i1 :>\ vis | T‘x [Wait

i+2

i+1
A Rendering Node [Rx | R | wait |
Time

Figure 4: Inter-frame pipelining of the different stages. Vis denotes
the visibility determination, Tx the geometry transmission, Rx geom-
etry receiving and R the rendering. Here i denotes the current frame
number. The effective FPS of the system gets increased due to this
interleaving.

The three stages of Garuda’s rendering pipeline (Section 3.2) can
be pipelined. While the server is waiting to order swap for frame
i, it can perform the visibility computation and transmission for the
next frame. The client, on the other hand, can receive data for the
next frames when frame i is being rendered. Figure 4 illustrates this
pipelining between the various stages of the server and a client. We

implement pipelining by taking advantage of the pipelined App-
Cull-Draw of the Open Scene Graph system.

3.5 Handling Dynamic Objects

Handling dynamic objects properly is a big challenge in any master-
slave framework. Yet, the possibility of some objects chang-
ing their positions or orientations is critical to many applications.
The Garuda system handles this using the dynamic transformation
nodes of Open Scene Graph. Selected intermediate transformation
nodes are monitored every frame for any change in their parameters.
If the parameters change, the composite transformation matrix at
that node is extracted and sent to all clients that have the node using
a special notification mechanism. The client will replace the matrix
with a new one and the object will appear transformed when the
next frame is drawn. This mechanism can handle all dynamic and
articulated objects which are the most common form of dynamic
objects. Dynamic objects could also include those that change their
shape or appearance. Since the geometry itself changes in this case,
the server can order the deletion of the corresponding nodes. The
new object added will automatically be identified and transmitted
using the normal visibility mechanism.

3.6 Garuda System: Summary

In summary, the Garuda server performs the following for each
frame.

Receive new viewpoint from the application

Determine the visible objects for each tile

Transmit visibility information to each rendering node

Identify objects not in the cache and the dynamic objects that

were modified for each client.

5. Serialize these objects from the scenegraph nodes and
multicast them to the clients

6. Wait for each client to complete its rendering and send it the
Ready to Swap signal

7. Send Swap order to all rendering clients

Bl e

Each client performs the following for each frame.

—_

Receive the visibility information from the server
Receive the newly visible object nodes and attach to the
scenegraph.

Render the scenegraph, no culling required

Send Ready to Swap to the server

Wait for Swap order from server

Swap buffers

N

SN kW

4 RENDERING TRANSPARENTLY TO A TILED DISPLAY

A central issue concerning a tiled display wall system is its uni-
versal applicability. One would not want to specially modify an
application for rendering it to a tiled display, as it would severely
restrict the applicability of such a system. The utility of a tiled dis-
play system is high only if any application developed using a stan-
dard graphics/visualization API can be rendered automatically to it.
Chromium system manages to do this for any OpenGL application
by intercepting all OpenGL calls and sending the primitives to the
clients. However, it does not cache the data easily at the rendering
nodes. This increases the network requirements heavily, especially
for scenes with huge geometry.

The Garuda system is designed to automatically render any ap-
plication built on the Open Scene Graph API [7], without modify-
ing the application in any way. A scenegraph structure enables the
caching of objects at the clients to exploit the inter-frame coherence

056~ - Garuda
control Control
Flow Flow

Lv App

'

Adaptive
OH-FH Culling

[

—h
Data Transmission
and Rendering

Tile Sync
and Swap

Figure 5: The cull, draw and swap steps of OSG's default control
flow (left) are intercepted and replaced in the control flow (right) so
the user program doesn’t need to be modified for tiled rendering.

A

Draw

/

|
e
]

(M \a

\
|
A
Swap

(P

-l
-

of data and helps reduce the network traffic. The scenegraph API
also provides the mechanism to pipeline the app-cull-draw stages to
enhance the throughput of the system. A standard API like the OSG
has a wide user-base which can benefit from transparent tiled ren-
dering. Other scenegraph APIs like OpenGL Performer [32] can
also be used. We selected OSG for its rising popularity and the
open-source development model. Transparent, tiled rendering is
provided by intercepting relevant calls of the OSG API and replac-
ing them with our own. Since OSG maintains high level objects as
nodes, the intercept mechanism is less computation-intensive and it
is possible to optimize the usage of network bandwidth by caching
OSG nodes at the clients.

An OSG application typically loops through three main stages:
App, Cull, and Draw. For transparent rendering, the Garuda sys-
tem intercepts the calls to these at the OSG API level and performs
the culling, drawing and synchronization steps needed for the tiled
display. Figure 5 shows the normal control flow for OSG and the
control flow adopted by our system. Garuda’s actions in each stage
are described below.

1. App: The application stage includes keyboard/mouse event
handling, scenegraph manipulations, animations, etc. This is
how the user controls the viewpoint and manipulates the envi-
ronment. Garuda does not alter this stage and leaves it under
the user program’s total control.

2. Cull: The cull stage performs visibility culling of the scene
graph in preparation for rendering. Garuda overrides OSG’s
native culling to perform the adaptive OH and FH culling as
discussed in Section 3.2.1. The results of the culling are the
list of visible objects for each tile and the list of objects to be
sent to each client.

3. Draw: The draw stage renders the visible portions of a scene
graph. Garuda replaces OSG drawing stage with rendering on
the tiles. All scenegraph data required for rendering is trans-
mitted in this stage (Section 3.2.2). The clients draw their
scenes when all data is received but postpone the buffer swap
until notified by the server.

These stages are followed by a call to swap the display buffers,
available with the windowing API. Garuda intercepts the swap call
at the server (which is strictly not part of OSG) and implements
the last part of the synchronization described earlier. The server
makes sure all ready-to-swap messages have come and orders all
the clients to swap, thereby rendering a frame. The overhead in-
volved is kept low by performing the communication between the
client and the server in different threads and sometimes processes.

Garuda’s ability to transparently render any OSG-based appli-
cation brings clustered, tiled-display to a large number of applica-
tions. The user does not need to learn a new API or modify their
programs in anyway. All aspects are handled implicitly if OSG
is used in a standard manner. Garuda today supports OSG-based
applications that use groups, geodes and static and dynamic trans-
formation nodes. Support for textures, normals and lighting is also
present. Advanced features such as animation, FX effects, particles,
etc., are not currently handled.

5 EXPERIMENTAL RESULTS

The Garuda system was evaluated for its performance on typical
complex scenes, and on its scalability to large displays. We want
to achieve good frame rates on challenging applications. We also
want to provide a scalable design such that very large display walls
can be built using commodity hardware.

Test Setup: The test setup consists of 16 low-end systems with
AMD Athlon 64 3000+ CPU, 512 MB RAM, and an ATI Radeon
Xpress 200 on-board graphics. The GPU on these systems uses 64
MB of system RAM as the video memory. These machines act as
rendering nodes in the cluster. For all experiments, each tile renders
its frustum to a 1024 x 768 display in all configurations. The 4 x4
display wall thus has a total resolution of 4096 x 3072, or well over
12 Million pixels. The server has an AMD Athlon 64 3200+ system
with 3GB RAM. It has an Nvidia 6600GT GPU, but the graphics
capabilities of the server are not important. Our server also dou-
bles as a rendering node in our cluster. The low-end systems serve
our objective of building a display wall using low-end hardware.
An increase in the rendering capabilities at the clients results in a
direct performance improvement for our system, as shown by the
experiments below. Unless mentioned otherwise, the experiments
are carried out over a 100 Mbps Ethernet network. We present re-
sults of tests for scalability with various tile-configurations (2 x 2,
2x3,2x4,3%x3,3x4,4x4).

Two hierarchical OSG models were used for the experiments.
The first is the model of Fatehpur Sikri?, an architectural monument
with a scenegraph hierarchy with 530,000 triangles spread over
1113 geometry nodes with 331 internal nodes. Its average branch-
ing factor is 4.36. The second is a hierarchical version of the UNC
Powerplant model. It consists of about 13 million triangles spread
over 19666 geometry nodes with 4760 internal nodes. Its average
branching factor is 5.13. The spatial hierarchy was created from the
original non-hierarchical models which resulted better scene man-
agement at the cost of increase in the number of triangles. Another
synthetic, hierarchical teapot model was also employed in testing
certain aspects of the system as described later.

The server reads and initializes large amounts of data and sends a
lot of it to the clients on system start up as described before. Table 1
compares the startup transmission time when using UDP multicast
with the TCP unicast approach, for the Powerplant model. This in-
cludes the preprocessing of the scenegraph and the preparation and
transmission of the data for the first frame. The startup time of our
system is virtually independent of the tile-configuration when us-

2Fatehpur Sikri is a world heritage site located near Agra. It was con-
structed by the Moghul emperor Akbar in the late 16" century. The graphics
model was created by NCST/CDAC, India.

Tile Time for TCP Time for UDP
configuration | unicast (seconds) | multicast (seconds)
2x2 7.24 11.95
2x3 10.35 11.76
2x4 13.33 11.53
3x3 15.07 11.87
3x4 19.38 11.52
4x4 25.09 11.58

Table 1: Startup transmission times using the unicast and multi-
cast approaches for the Powerplant model, including the transmis-
sion of the initial data to the clients. The time for multicast remains
constant practically while the unicast time grows linearly with the
number of tiles.

Tile Powerplant Fatehpur Sikri
configuration | Culling time (ms) | Culling time (ms)
2x2 0.81 1.05
2x3 1.20 1.55
2x4 1.44 1.77
3x3 1.68 2.22
3x4 2.05 2.48
4x4 2.36 2.60

Table 2: Visibility determination time using the adaptive visibility
culling algorithm on the full Powerplant and Fatehpur Sikri models.

ing multicast but increases linearly when using TCP unicast since
it ends up sending the same object multiple times to each node that
needs it. It should be noted that as the number of tiles go up, the
frustum of each tile shrinks, and the number of objects that are vis-
ible to multiple tiles increases. This results in greater gains for the
multicast approach. This makes the Garuda architecture scalable to
large display sizes.

The adaptive visibility algorithm is an important step of the dis-
play wall. Table 2 shows the time taken to perform the visibil-
ity determination on the Powerplant and Fatehpur Sikri models for
various tile-configurations using Algorithm 1. The culling time in-
creases sub-linearly as the number of tiles increases, owing to the
hierarchal treatment of scene and frustums in our algorithm. This
implies that the algorithm scales well for large display configura-
tions. Sub-linear increase in the culling time improves the scalabil-
ity of the system to a large number of tiles. The table shows the
culling time averaged over a 3000 and 2700 frame typical walk-
through for the Powerplant and Fatehpur Sikri models respectively.

Figure 6 shows the performance of Garuda on a 2700-frame
walkthrough on the Fatehpur Sikri model, that goes over dense and
sparse areas of the model. In the dense regions, the performance
is about 10 frames per second (fps) due to the limited rendering
capabilities of the clients. Framerate increases to about 40 when
less geometry is visible (frames 1000-1400 and 2100-2350). Note
that the framerate remains constant for different configurations as
the resolution increases four-folds from 2x2 to 4x4. The multi-
cast communication scheme and the server’s data-push philosophy
make it possible by facilitating concurrent transmission to multiple
clients. The network requirements are kept to a minimum with the
use of caching of objects at the clients.

The performance of the Garuda system is determined by the
worst-performing rendering node. Better system performance can
be obtained if better rendering performance is available at each tile.
Figures 7 shows the results using high-end client nodes with 1GB
RAM and Nvidia 6600GT GPU. The walkthrough used is more
challenging than the previous experiment with viewpoints that see

45

2x2
2x3
2x4
3x3
3x4 |
4x4

Frames per second (avg. over 15 frames)

.
0 500 1000 1500 2000 2500 3000
Frame Number

Figure 6: Framerate achieved during a 2700 frame walkthrough of the
Fatehpur Sikri model. The performance remains almost unchanged
for different tile-configurations though the display resolution increases
four-fold.

600 T

2x2
3x2

o
=3
S
T
L

IN
o
S
T
L

n
o
S

Frames per second (avg. over 150 frames)
]
o

o
S

. . . .
0 2000 4000 6000 8000 10000 12000
Frame Number

Figure 7: Framerate for a 12000 frame walkthrough of the Fateh-
pur Sikri model using high-end rendering nodes with Nvidia 6600GT
graphics cards. The system achieves a rendering performance as high
as 200 fps due to the improved graphics capabilities.

more of the model at all times. Frame rates of 200 fps and above
were obtained, confirming that the experiment shown on Figure 6
is rendering limited on the low-end clients. Note the improvement
in performance even using smaller tile configurations.

The fps does not increase with the number of tiles in Figures
6 and 7 because of the poor load distribution. A lot of the model
geometry is concentrated in the lower quarter of the display (refer
Figure 15) around the ground region. The ground region also con-
tains models with large triangles which do not get frustum-culled
effectively. The worst-performing rendering node ends up draw-
ing about the same amount of scene even after the tile size reduces.
Better load distribution can be observed for scenes with granularity
such that the geometry is distributed evenly over the entire scene.
Figure 8 shows a synthetic environment created to test this. The
scene has 417 teapots with a total of 1.5 million triangles, that are
distributed randomly in space. The figure shows near-linear in-
crease in the frame rates when rendering to tile configurations of
2x2,3%3, and 4x4. Based on these experiments, we can recom-

2x2
3x3
4x4 |

w
=]
T

- n n
o =] o

o

Frames per second (avg. over 15 frames)

o

0
0 100 200 300 400 500 600 700 800
Frame Number

Figure 8: Rendering performance of Garuda on a synthetic environ-
ment with 417 randomly distributed teapots and 1.5 million triangles.
The distributed rendering results in increased fps as the number of
tiles increases on low-end clients.

100

\ — Client 2x2
90F \ Server 2x2 | |
\ Client 4x4
801 Server 4x4 | |
o 70
f=2}
@
12}
> 60
]
S
> 50
[=2}
g
§ 40
<4
&
30

20

0 .
0 50 100 150
Time in Seconds

Figure 9: The CPU load for different tile sizes on the server and the
client for the Powerplant model. CPU usage is nearly constant for
different tile configurations resulting in excellent scalability.

mend that the the lower portions of a tiled display should perhaps
be powered by nodes with high-end graphics for better performance
on architectural models. Using different levels of detail (LoD) for
objects is another option to ensure more even load distribution. This
has to be done for the whole scene as all tiles should have the same
LoD for an object. The LoD switching cannot easily be performed
without the user application being aware of it. Since applicability
to any OSG-based application was in initial goal, we did not pursue
this approach further.

Figure 9 shows the CPU usage for different tile configurations at
the server and a typical client node for Garuda. The startup phase is
compute-intensive on the server, but its load settles to a comfortable
40% of CPU usage very quickly. The client’s CPU usage picks up
slowly since it only has rendering to perform. The client node’s
usage settles at a 50% level to manage the scenegraph, the cache
and the rendering. The CPU usage is practically constant for a 2 x
2 configuration and a 4 x4 configuration. Please note that the 50
seconds of startup time includes the time to load the models from
files, to pre-process the loaded scenegraph, to compute the visibility

35 T T T T T

— 10 Mbps
— 100 Mbps

- n n w
o =] o =]
T

o

Frames per Second (avg. over 15 frames)

.
0 500 1000 1500 2000 2500 3000
Frame Number

Figure 10: Framerates for the 2700 frame walkthrough of the Fatehpur
Sikri model on a 4x4 wall with 10 Mbps and 100 Mbps networks.
Caching at clients significantly lowers the network dependence, both
networks have near-constant fps after the initial startup time.

60 T T T T T

—20M
40M

— 100M

o
=)
T

IS
o
T

n
=]

Frames per second (avg. over 15 frames)
w
o

o

. . . .
0 500 1000 1500 2000 2500 3000
Frame Number

Figure 11: Framerates for a 2x2 system for three cache sizes on the
Fatehpur Sikri model for the 2700 frame walkthrough. 20 MB cache
has lesser frame rate because of retransmission of geometry data.

for the first frame and to send the data to the clients. The loading
time was not shown in Table 1. This again establishes that our
system architecture is scalable to a large number of tiles.

Figure 10 demonstrates the low dependence of the system on the
network bandwidth for a 4 x4 configuration. The faster network
performs better initially, as more and more scenegraph is discovered
and fresh objects are transmitted to the clients (till frame number
900). Both 10 Mbps and 100 Mbps networks perform equally well
thereafter. This is due to the caching of geometry at the tiles, which
ensures minimal transmission of bulky geometry data for subse-
quent frames. These results suggest that the Garuda architecture
can comfortably scale to display walls that have several dozens of
tiles using commodity LANs of 100 or 1000 Mbps.

We show the impact of caching for different cache sizes in Fig-
ure 11 for a 2x2 display wall. A 2x?2 wall was used here as cache
size is more critical for smaller tile configurations. The experiment
shows the same walkthrough as in Figure 6 for three different cache
sizes. The optimal cache size depends on the density of objects in
an environment and can vary from scene to scene. It can be seen that

@
=]

T T
Single System Rendering
2x2
3x2

N
o
T

n
=]
T

o
S

Frames per second (avg. over 15 frames)
o]
o

.
0 500 1000 1500 2000 2500 3000
Frame Number

Figure 12: Framerate for an 800 frame walkthrough of the Pow-
erplant model using rendering nodes with Nvidia 6600GT graphics.
The system performs at more than 40 fps for most part of the walk-
through. The 3x2 configuration performs better due to lower ren-
dering load on individual tiles.

the framerates are less with a 20 MB cache than with 40 MB or 100
MB cache. This is due to the retransmission of objects necessitated
by their eviction when cache fills up. For the regions with higher
framerates (frames 1000-1200 and 2100-2300) there is lesser ge-
ometry to render in the walkthrough. No retransmission is required
even with smaller caches. The framerates for the 40 MB and 100
MB are almost identical, which suggests that a 40 MB cache is suf-
ficient for this model. It is interesting to consider the case when
the cache is sufficient to hold the whole scene at each rendering
client. The performance of Garuda’s client-server architecture will
approach that of the master-slave architecture [16], but with better
handling of dynamic objects. The server needn’t perform elabo-
rate visibility computations. This, however, will not be compatible
with our initial design goal of using an inexpensive processor as the
rendering client.

Figure 12 shows Garuda’s performance on a walkthrough of the
Powerplant model. All tiles are powered by high-end systems with
an Nvidia 6600GT card in each. The framerate is maintained above
40 fps for most of the walkthrough even on such a challenging
model. For comparison, we setup a 2 x2 configuration involving
the high-end machines using Chromium for tiled rendering. The
system was able to achieve only about 0.2 fps due to the high net-
work requirements. The same walkthrough performs at about 10
fps on a single machine of similar configuration. The display wall
achieves a framerate 4-5 times higher in spite of increasing the pixel
resolution 4 to 6 times. The high variability in the fps is due to
the inherent randomness associated with network communications
while the overall improvement in fps is due to the cluster rendering.

A gigabit Ethernet will be able to provide better predictability
and lower variations in performance. Levels of detail (LoDs) can
be used to reduce the network load, if high. This requires that the
user’s model be available in multiple detail, which runs counter to
the objectives of transparent rendering. The same LoD needs to
be used on all clients for visual continuity. This may involve addi-
tional data management between the server and the clients. Clients
can exchange data among themselves when that is more efficient.
This adds to the complexity of the clients and makes it harder for
the server to keep track of the state of the clients. True visibil-
ity or occlusion culling could be employed to spread the network
load over time. This will require very fast occlusion culling at the

30

T
—— 2 dynamic nodes

— 10 dynamic nodes
— 50 dynamic nodes | |

n
o
T

n
=]

Frames per second (avg. over 15 frames)
&

.
0 500 1000 1500 2000 2500 3000
Frame Number

Figure 13: Fatehpur Sikri walkthrough for a 4x4 system with dynamic
Open Scene Graph transformation nodes. The scene has different
number of rotating cow models (each with 5800 triangles) added
to it. The transformation nodes are updated every frame. The fps
remains constant practically. Low-end clients were used for this test.

server using the graphics processing unit. Viewpoint prediction and
a second level of cache can also be used to reduce variability at the
expense of complexity of the server.

The same walkthrough runs on a 4 x4 configuration using the
low-end clients (ATI Xpress 200 with 64 MB shared video memory)
at about 3 fps. The application fails to startup due to poor resources
on a single system of same capabilities. This demonstrates that the
Garuda system is able to exploit the power of distributed rendering
to render challenging models using modest computers.

Dynamic scenes can also be rendered at interactive frame rates
using the Garuda system. Figure 13 shows the system’s perfor-
mance for a scene with many dynamic objects. The Fatehpur Sikri
model was modified by adding 2, 10 and 50 Open Scene graph dy-
namic transformation nodes, each with a cow model of 5800 trian-
gles. Data for these nodes changes every frame and hence must be
sent every frame, adding to the the overhead of rendering dynamic
environments. Culling at each frame needs to recompute the trans-
formed OBB for each node for proper results. The system is able to
maintain more than 10 FPS throughout the walkthrough even with
large number of moving objects in the scene. The graph also shows
that Garuda is scalable with respect to number of dynamic nodes
in the scene; as the reduction in fps is very low even for a large
increase in dynamic nodes.

We also check to see to what extent a single server can be pushed
to power a tiled display. Figure 14 shows a single server culling
time on the Fatehpur Sikri model for the 2700 frame walkthrough
for various tile sizes. The culling time increases sub-linearly with
the increase in tile size which adds to scalability of the Garuda sys-
tem to large configurations. Although the increase is sub-linear, for
an 8§ tile configuration a single server takes around 6.5 ms for
culling only which leaves around 9 ms for other overheads and data
transmission if the required 60 fps is expected. Clearly for a larger
display system a hierarchy of servers will be need, consisting of
culling stages. First stage culls to a bigger sub-frustum and sends
the information to next stage which in turn culls to the tile frustums
inside its sub-frustum. The second stage is done in parallel and
hence much culling time is saved. A single server hence becomes a
bottleneck after a 7x 7 tile configuration.

w » o
T T T
L L L

Average Culling time (ms)

N
T
L

0
2x2 3x3 4x4 5x5 6x6 7x7 8x8
Tile Sizes (number of frustums)

Figure 14: Fatehpur Sikri 2700 frame walkthrough's average culling
times. The increase in culling time is sub-linear, adding to the scal-
ability of the Garuda system. Also showing that the culling becomes
a bottleneck after 7x7 tile configuration for a single server system.

6 CONCLUSIONS, DISCUSSIONS AND FUTURE WORK

In this paper, we presented Garuda, a geometry-managed, tiled dis-
play system built using commodity computers that can transpar-
ently render any application built using the Open Scene Graph API.
The design choices made with respect to the hardware and software
make Garuda scalable to large displays. It can also find wide ap-
plications due to its ability to render any OSG-based application
without modifying it. Local caching of the geometry and the mul-
ticast mode of transmission keeps the network requirements mod-
erate and the system scalable. Garuda was shown to be scalable
for different tile geometry using commodity components. Spatial
and temporal coherence are exploited by using a push-philosophy
adopted by the server. This also allows for consistent handling of
dynamic objects in the scenegraph.

Scalability is critically important to the design of a cluster-based
tiled display system [29]. Can the system be scaled to a billion pix-
els driven by a single interactive graphics application? We believe
that the Garuda architecture can scale to those levels. We discuss
the design issues for such a large display.

Display: The display is best built using LCDs. CRTs can also
be used but are more bulky and will be discontinuous at the borders
because of larger casing. Projectors are not suitable as they are
more expensive for the same resolution and are more cumbersome
to handle.

Clients: A giga-pixel display will need 500 tiles if each tile
is of 2 mega pixel resolution. It is important to keep the cost of
each low for the sake of scalability. The rendering load per tile
will be low for most reasonable scenes as the tiles are likely to be
small. The pixel fill-rate may be the bottleneck for such a system.
Game consoles like Microsoft Xbox 360 or Sony PS-3 are ideal
for the rendering nodes. They have very good CPU power, excel-
lent graphics capabilities, and cost about the same as the low-end
servers we use. The Sony PS-3 may be able to render two tiles si-
multaneously going by its specs. A giga-pixel display can be built
using 250 clients controlling the 500 displays with a significant sav-
ings in costs.

Network: Geometry caching and multicast transmission pro-
duce better gains when the number of tiles increases as described

Figure 15: A 4x4 display wall showing the Fatehpur Sikri model.
The combined resolution is 12 mega pixels.

Figure 16: A 4x4 display wall showing the Powerplant model. The
combined resolution is 12 mega pixels.

earlier. The network activity for administrative aspects like com-
municating visibility and synchronization increases linearly but the
bulky data transmission activity remains more or less constant due
to multicasting. Commodity 1000 Mbps Ethernet will be able to
handle the network load comfortably under such an architecture.
Their higher performance will be able to reduce the high variability
we witness with the current system.

Server: The visibility computation load increases with the
number of tiles but the adaptive algorithm keeps the increase loga-
rithmic. A multilevel server hierarchy may be required to handle the
additional load when there are 500 tiles. The top-level server per-
forms tile-sorting to 25 large tiles and sends geometry to as many
second-level servers. Each of those perform the tile sorting to 20
tiles each and send the data to the actual rendering clients. The
user’s application process runs on the primary server, which is also
responsible for synchronization. The network performance can also
be improved by using dedicated switches at each of these servers.
This arrangement can handle large tile configurations, perhaps at a
slightly increased latency.

Architecture: The basic tile-sorting philosophy can be mod-
ified if the tile processors are as powerful as those advertised for

the game consoles. The server can cull the scene to the primary
view frustum and multicast all surviving objects to all tiles. The
tile-clients then cull the scene to its sub-frustum before rendering.
Since the second cull step is happening in parallel, the overall visi-
bility computation time could be smaller.

Swap-lock and gen-lock of the display system need further re-
search. Since the use of commodity graphics cards is a design goal
of our system, hardware gen-lock is not an option. We are working
on a camera based scheme to bring the displays into perfect syn-
chronization. A high-speed camera and a calibration pattern that
appears on all tiles in the same frame can together estimate the de-
lay between each tile’s display from a reference tile. It is possible
to adjust the low-level video parameters of the display card till the
delay is minimized. This may be performed in an iterative manner
till the genlocks are sufficiently synchronized. This needs further
experimentation.

Acknowledgments: We thank Microsoft Research for partly
funding this research through their university relations, India. We
also thank the National Center for Software Technology (NCST)
(now renamed CDAC), Mumbai for providing the Fatehpur Sikri
model and the University of North Carolina for the Powerplant
model.

REFERENCES

[1

—

Distributed Multihead X Project (DMX)
http://dmx.sourceforge.net.

GigaPixel Project, Virginia Tech
http://infovis.cs.vt.edu/gigapixel/index.html.
HIPerWall,
http://cg.calit2.uci.edu/mediawiki/index.php.
LionEyes Display Wall. Penn State University.
http://viz.aset.psu.edu/gabin/DisplayWall.html.
Matrox Advanced Synchronization Module.
http://www.matrox.com/mga/products/asm/home.cfm.
ModViz Renderizer,
http://www.modviz.com/products/renderizer.asp.
[7] OSG: OpenSceneGraph.
http://www.openscenegraph.org.

PowerWall. University of Minnesota.

[2

—

3

=

[4

=

[5

=

[6

=

[8

[t}

http://www.lcse.umn.edu/research/powerwall/powerwall.html.

[9

—

VisWall High Resolution Display Wall.

http://www.visbox.com/wallMain.html.

[10] Jeremie Allard, Valerie Gouranton, Guy Lamarque, Emmanuel Melin,
and Bruno Raffin. SoftGenLock: Active Stereo and Genlock for PC
Cluster. In Proceedings of the Joint Immersive Projection Technology
/ Eurographics Virtual Environments’03 Workshop, 2003.

[11] Jeremie Allard, Valerie Gouranton, Loick Lecointre, Emmanuel
Melin, and Bruno Raffin. Net Juggler: Running VR Juggler with Mul-
tiple Displays on a Commodity Component Cluster. In /EEE Virtual
Reality Conference, pages 273-274, 2002.

[12] Patrick Baudisch, Nathaniel Good, and Paul Stewart. Focus plus con-
text screens: Combining display technology with visualization tech-
niques. In ACM Symposium on User Interface Software and Technol-
ogy, 2001.

[13] Allen Bierbaum, Christopher Just, Patrick Hartling, Kevin Meinert,
Albert Baker, and Carolina Cruz-Neira. VR Juggler: a virtual platform
for virtual reality application development. In VR ’01: Proceedings of
the Virtual Reality 2001 Conference (VR’01), pages 89-96, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

[14] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based fault-
tolerance. In Fifteenth ACM Symposium on Operating System Prin-
ciples (ASPLOS V), pages 1-11, Copper Mountain Resort. Colorado,
1995. ACM.

[15] Michael S. Brown and Aditi Majumder. SIGGRAPH 2003 Course
Notes: Large-Scale Displays for the Masses, 2003.

[16] Han Chen, Douglas W. Clark, Zhiyan Liu, Grant Wallace, Kai Li,

and Yuqun Chen. Software environments for cluster-based display

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

systems. In IEEE International Symposium on Cluster Computing
and the Grid, 2001.

Wagner T. Corréa, James T. Klosowski, and Cldudio T. Silva. Out-
of-core sort-first parallel rendering for cluster-based tiled displays.
In EGPGV ’02: Proceedings of the Fourth Eurographics Workshop
on Parallel Graphics and Visualization, pages 89-96, Aire-la-Ville,
Switzerland, Switzerland, 2002. Eurographics Association.

Wagner T. Corréa, James T. Klosowski, and Cldudio T. Silva.
Visibility-Based Prefetching for Interactive Out-Of-Core Rendering.
In IEEE Symposium on Parallel and Large-Data Visualization and
Graphics, 2003.

Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A. DeFanti.
Surround-screen projection-based virtual reality: The design and im-
plementation of the CAVE. In Proceedings of ACM SIGGRAPH, vol-
ume 27, pages 135-142. ACM, August 1993.

Soumyajit Deb, Shiben Bhattacharjee, Suryakant Patidar, and P. J.
Narayanan. Real-time streaming and rendering of terrains. In In-
dian Conference on Computer Vision, Graphics and Image Process-
ing, volume 4338 of Lecture Notes in Computer Science, pages 276—
288. Springer, 2006.

Soumyajit Deb and P. J. Narayanan. Design of a geometry stream-
ing system. In Indian Conference on Computer Vision, Graphics and
Image Processing, pages 296-301. Allied Publishers Private Limited,
2004.

Michael Deering and David Naegle. The SAGE graphics architecture.
In SIGGRAPH °02: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, pages 683—-692, New
York, NY, USA, 2002. ACM Press.

Jinzhu Gao, Jian Huang, C. Ryan Johnson, Scott Atchley, and
James Arthur Kohl. Distributed data management for large volume
visualization. In IEEE Visualization, page 24, 2005.

Desmond Germans, Hans J.W. Spoelder, Luc Renambot, and Henri E.
Bal. VIRPI: A High-Level toolkit for interactive scientific visualiza-
tion in virtual reality. In Immersive Projection Technology / Euro-
graphics Virtual Environments Workshop, pages 109—120, 2001.
Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ah-
ern, Peter D. Kirchner, and James T. Klosowski. Chromium: a stream-
processing framework for interactive rendering on clusters. In SIG-
GRAPH ’02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 693-702, New York, NY,
USA, 2002. ACM Press.

Aditi Majumder and Rick Stevens. Color nonuniformity in projection-
based displays: Analysis and solutions. IEEE Transactions on Visual-
ization and Computer Graphics, 10(2):177-188, 2004.

Laurent Moll, Mark Shand, and Alan Heirich. Sepia: Scalable 3d
compositing using pci pamette. In FCCM '99: Proceedings of the Sev-
enth Annual IEEE Symposium on Field-Programmable Custom Com-
puting Machines, pages 146—155, Washington, DC, USA, 1999. IEEE
Computer Society.

Martin Naef, Edouard Lamboray, Oliver Staadt, and Markus Gross.
The Blue-C distributed scene graph. In EGVE ’03: Proceedings of the
workshop on Virtual environments 2003, pages 125-133, New York,
NY, USA, 2003. ACM Press.

Tao Ni, Greg S. Schmidt, Oliver G. Staadt, Mark A. Livingston,
Robert Ball, and Richard May. A Survey of Large High-Resolution
Display Technologies, Techniques, and Applications. In Virtual Real-
ity, 2006.

Nirnimesh, Pawan Harish, and P. J. Narayanan. Culling an object hi-
erarchy to a frustum hierarchy. In Indian Conference on Computer Vi-
sion, Graphics and Image Processing, volume 4338 of Lecture Notes
in Computer Science, pages 252-263. Springer, 2006.

Ramesh Raskar, Michael S. Brown, Ruigang Yang, Wei-Chao Chen,
Greg Welch, Herman Towles, Brent Seales, and Henry Fuchs. Multi-
projector displays using camera-based registration. In VIS ’99: Pro-
ceedings of the conference on Visualization *99, pages 161-168, Los
Alamitos, CA, USA, 1999. IEEE Computer Society Press.

John Rohlf and James Helman. Iris performer: a high performance
multiprocessing toolkit for real-time 3d graphics. In SSIGGRAPH '94:
Proceedings of the 21st annual conference on Computer graphics and
interactive techniques, pages 381-394, New York, NY, USA, 1994.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

ACM Press.

Rudrajit Samanta, Thomas Funkhouser, and Kai Li. Parallel rendering
with k-way replication. In IEEE Symposium on Parallel and Large-
Data Visualization and Graphics, pages 75-84, 2001.

Rudrajit Samanta, Thomas Funkhouser, Kai Li, and Jaswinder Pal
Singh. Hybrid sort-first and sort-last parallel rendering with a clus-
ter of pcs. In SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware, pages 97-108, 2000.

Timothy A. Sandstrom, Chris Henze, and Creon Levit. The Hyper-
wall. In CMV ’03: Proceedings of the conference on Coordinated and
Multiple Views In Exploratory Visualization, pages 124-133, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

Benjamin Schaeffer and Camille Goudeseune. Syzygy: Native PC
Cluster VR. In VR ’03: Proceedings of the IEEE Virtual Reality 2003,
pages 15-22. IEEE Computer Society, 2003.

Rajvikram Singh, Byungil Jeong, Luc Renambot, Andrew E. Johnson,
and Jason Leigh. Teravision: a distributed, scalable, high resolution
graphics streaming system. In CLUSTER, pages 391-400, 2004.
Gordon Stoll, Matthew Eldridge, Dan Patterson, Art Webb, Steven
Berman, Richard Levy, Chris Caywood, Milton Taveira, Stephen
Hunt, and Pat Hanrahan. Lightning-2: a high-performance display
subsystem for pc clusters. In SSIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive techniques,
pages 141-148, New York, NY, USA, 2001. ACM Press.

Tom van der Schaaf, Luc Renambot, Desmond Germans, Hans
Spoelder, and Henri Bal. Retained mode parallel rendering for scal-
able tiled displays. In Immersive Projection Technology (IPT) Sympo-
sium, 2002.

Gerrit Voss, Johannes Behr, Dirk Reiners, and Marcus Roth. A multi-
thread safe foundation for scene graphs and itsextension to clusters.
In Eurographics Workshop on Parallel Graphics and Visualization,
pages 33-37, 2002.

Grant Wallace, Otto J. Anshus, Peng Bi, Han Chen, Yuqun Chen,
Douglas Clark, Perry Cook, Adam Finkelstein, Thomas Funkhouser,
Anoop Gupta, Matthew Hibbs, Kai Li, Zhiyan Liu, Rudrajit Samanta,
Rahul Sukthankar, and Olga Troyanskaya. Tools and applications for
large-scale display walls. IEEE Comput. Graph. Appl., 25(4):24-33,
2005.

Lujin Wang, Ye Zhao, Klaus Mueller, and Arie E. Kaufman. The
magic volume lens: An interactive focus+context technique for vol-
ume rendering. In IEEE Visualization, page 47, 2005.

Michael Waschbiisch, Daniel Cotting, Michael Duller, and M. Gross.
WinSGL: Software Genlocking for Cost-Effective Display Synchro-
nization under Microsoft Windows. In Eurographics Symposium on
Parallel Graphics and Visualization, 2006.

Ruigang Yang, David Gotz, Justin Hensley, Herman Towles, and
Michael S. Brown. Pixelflex: a reconfigurable multi-projector display
system. In VIS ’01: Proceedings of the conference on Visualization
’01, pages 167-174, Washington, DC, USA, 2001. IEEE Computer
Society.

Xiaoyu Zhang, Chandrajit Bajaj, and William Blanke. Scalable iso-
surface visualization of massive datasets on COTS clusters. In PVG
’01: Proceedings of the IEEE 2001 symposium on parallel and large-
data visualization and graphics, pages 51-58, Piscataway, NJ, USA,
2001. IEEE Press.

