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Abstract

We propose a video mosaicing scheme which exploits
the motion information, implicitly available in the video.
The information about the camera motion is propagated to
the homographies used for mosaicing. While some of the
recent approaches make use of the information stemming
from non-overlapping pairs of frames, the smoothness of
the camera motion has gone largely under-capitalized. We
present a technique which exploits this useful cue for refin-
ing homographies. Moreover, a generic framework which
exploits the camera motion model, to relate homographies
in a video, is also proposed. The analysis and results of
the proposed algorithms demonstrate significant promise,
in terms of accuracy and robustness.

1. Introduction

Mosaicing is an important step in many computer vision
applications such as video stabilization, data compression,
visualization of virtual environments, panoramic photogra-
phy, etc. The conventional approach to video mosaicing
extends the image mosaicing procedure to video by regis-
tering and stitching successive frames [5, 13, 14]. However,
a video contains much more information than a set of iso-
lated images, and little effort has gone into utilizing this
information to provide better-quality mosaics. This work
reveals how the redundant motion and texture information
present in the video can be effectively used in building bet-
ter quality mosaics.

Recently, graph-based global alignment approaches [6,
7, 10, 12] have become pupular wherein all overlapping
frames, not just consecutive ones, are used for estimat-
ing homographies for mosaicing. First, homographies are
computed for all pairs of images with sufficient overlap
and a graph-based representation is built from it. In the
second step, the problem of global registration is cast as
the identification of an optimal structure (e.g., Minimum

Spanning Tree) in the graph. The desired homographies
are uniquely characterized by this graph structure (e.g.,
MST). The graph-based approaches are well-suited for bi-
directional camera motions where the camera comes back
to capture an object it has seen before. However, for uni-
directional motions, it more or less degenerates to the con-
ventional register-only-successive-video-frames approach.
Another class of approches [2, 7] employs bundle adjust-
ment wherein features from all frames are combined to op-
timize all the homography parameters at once. It helps over-
come the phenomenon of error propagation i.e., the errors in
registering the initial pairs of frames being carried forward
to all the subsequent ones. Typically, the closed form esti-
mate of the homography parameters is given as the initial
estimate for bundle adjustment.

In spite of the above two approaches, there still remains
scope for higher robustness and better accuracy in video
mosaicing, leading to the exploration of a different cue
which is the properties of the camera motion. It is observed
that the trajectory of the camera, that captures the video
to be mosaiced, is often smooth. Our approach is formu-
lated to exploit this important piece of information for im-
proved video mosaicing. In this paper, a simple but effective
technique is proposed, which utilizes the decomposition of
homography into pose [R|T ] and extrapolation in the pose
space to refine the desired homography estimates.

In [1], homography is represented by three rotation an-
gles and focal length to recognize images that are a part
of the panorama and then, to generate the panorama. It is
applicable for panoramic mosaicing where the camera ro-
tates about its optical center, enabling them to use a 4 pa-
rameter homography representation. Our work is aimed at
planar mosaicing and accounts for general camera motions,
including translation.

Often, the camera motion that we encounter is not only
smooth, but also follows a specific known motion model.
If we have this apriori knowledge, the ensemble of homo-
graphies required for video mosaicing can be shown to be
related by a well-defined model. This paper describes a



generic approach that exploits this relationship for robust
estimation of the homographies and thereby obtaining visu-
ally pleasing mosaics. Such algorithms are especially ap-
plicable when imaging is done by machine-controlled cam-
eras, as in the case of robots and autonomous vehicles.
Fig. 1(b) is the result of such an algorithm on a desert area
wherein our approach can be observed to improve over the
mosaic built using the conventional techniques.

2. Space of Homographies for Video Mosaicing

Almost all the mosaicing techniques [2, 5, 7, 10, 13, 14]
in the literature consider the homographies between differ-
ent pairs of images to be independent of each other. How-
ever, in a video, the homographies between different pairs
of frames may often be tightly related, depending on the
camera motion. The seminal work analyzing the relation-
ship between homographies was done by Shashua and Avi-
dan [11]. They considered a scenario wherein all possible
planes are viewed from two fixed cameras, leading to a fam-
ily of homographies. These homographies are shown to be
constrained as given below.

Observation 1 The space of all homographies (induced by
any plane) between two fixed views is embedded in a four
dimensional linear subspace.

This implies that given any four base homographies (cor-
responding to four base planes), any new homography (cor-
responding to a new plane) can be expressed as their linear
combination. This result, in the present from, is not very
relevant for the mosaicing problem. In mosaicing, the prob-
lem on hand is the dual of the one described above. The
plane is fixed while the camera views are changing. An-
other relevant work was done in [15] wherein a constraint
was derived on relative homographies for a pair of planes,
over multiple camera views. Each of these relative homo-
graphies corresponds to a fixed view and maps the image
of one plane (captured from that fixed view) onto the other
(captured from the same view).

Observation 2 The collection of all relative homographies
of a pair of planes (homologies) across multiple views,
spans a 4-dimensional linear subspace.

While Observation 2 provides useful insight, what we
typically need for mosaicing is a contraint relating homo-
graphies mapping images of a single plane, captured from
multiple views. This was done in [9] wherein the authors
derived relationships between incremental (frame-to-next-
frame) and reference (frame-to-reference) homographies,
given certain camera motion models. Results in [9] can be
generalized to arrive at Observation 3.

Observation 3 The homographies induced by a fixed
plane, between pairs of video-frames are related by a fixed
set of parameters, depending on the camera motion model.

This observation implies that a large number of homo-
graphies can be computed from a fixed, small number of
parameters. Therefore, rather than using pair-wise informa-
tion to compute the homographies individually, the infor-
mation from all the frames can be pooled to estimate the
parameters of the global homography model (i.e., model-
fitting). The desired homographies can then be directly
computed from these parameters. Note that estimation of a
pair-wise homography from point correspondence can also
be viewed as model-fitting, wherein an 8-parameter model
(i.e. homography) is fitted to a subset of matching points.
However, the ratio of the number of samples available to the
number of parameters to be estimated, is much lower in this
case.

3. Mosaicing in Presence of Continuous Cam-
era Motion

There are certain real-life situations when the camera
globally does not follow a specific motion model and the
homographies can not be parameterized. In such cases, the
smoothness of the camera trajectory can serve as a useful
clue in improving the mosaicing process, especially if the
camera motion is continuous.

3.1. Mosaicing using Smoothness of the
Camera Trajectory

We detect and replace outlier homographies to improve
the mosaicing accuracy. The most commonly encountered
cause for the outlier homographies is poor quality (blurred,
on most occasions) frames. It should be noted at the out-
set that in our approach, the emphasis is laid on replacing
inaccurate homographies, and not on detecting and remov-
ing blurred frames (e.g., [8]). The substitute for an outlier
homography is computed using the information encapsu-
lated in the neighboring homographies. This involves the
decomposition of each incremental homography to obtain
the camera pose. The motivation for this decomposition is
the fact that smoothness in the pose space does not translate
into smoothness in the homography space due to the non-
linearity in the pose-to-homography relationship. There-
fore, in order to exploit smoothness to refine an outlier ho-
mography, we move onto the pose space via homography
decomposition, extrapolate in the pose space and finally, re-
construct the desired homography.

The relationship between homography and pose is the
following [4]:
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H = K
(

R̃−
T̃ ñT

d̃

)

K−1 (1)

where, [R̃|T̃ ] is the relative pose of the second camera as-
suming that the pose of the first camera is [I |0]. The vector
ñ is the normal of the plane of interest and d̃ is the perpen-
dicular distance to the plane. Note that R̃, T̃ , ñ and d̃ are
relative to the reference camera pose. For video mosaic-
ing, we want to express the current incremental homogra-
phy Hi,i+1 relating frame Ii to frame Ii+1, in terms of the
current pose [Ri|Ti], the next pose [Ri+1|Ti+1], n and d, all
defined in the (fixed) world coordinate system. Using the
basics of rigid transformation, we express

Hi,i+1 = K

[

Ri+1R
−1

i −(Ti+1−Ri+1R
−1

i Ti)
nT R−1

i

d̃

]

K−1

(2)
such that R̃i = Ri+1R

−1

i , T̃i = Ti+1 −Ri+1R
−1

i Ti, ñT =

nT R−1

i , d̃ = d−nT R−1

i Ti and K is the internal calibration
matrix.

Decomposition of the homography Hi,i+1 is done as
in [3] wherein Singular Value Decomposition (SVD) is used
to compute R̃i, T̃i

d̃i

and ñi. Now, the next pose can be com-
puted given the current pose, using the expressions for R̃i,
T̃i, d̃i and ñi, given in Equation 2, along with d. Assuming
the first camera pose to be [I |0] allows us to reconstruct the
complete camera motion, from only homographies, which
are computed from image measurements. Note that no 3D
information is assumed to be known other than an approxi-
mate estimate of d.

Since the camera motion is smooth, the rotation angles
and camera position vary smoothly for successive pairs of
frames. The rotation angles are obtained by decomposing
Ris. The absolute position of the camera Pi is given by
−R−1

i Ti. Now, for each successive pair of frames, we use
the rotation angles and Pi, along with the reprojection er-
ror, to determine if the homography for the pair is an out-
lier. The cumulative average reprojection error is defined as
follows.

E =
1

m ∗ (N − 1)

∑

i,j

‖Π(Xj
i+1

)−Π(Hi,i+1X
j
i )‖2

where, i ∈ {0, 1, . . . , N−1} denotes the frame number and
j ∈ {0, 1, . . . , M−1} is the feature point index and Π is the
imaging function. If the homography is not found to be an
outlier, we decompose it and retain the decomposed param-
eters to compute the next pose if required. If it is an outlier,
we individually extrapolate in the space of rotation angles
and in the position space to obtain a locally smooth estimate
of Ri+1 and Pi+1. Then Ti+1 can be directly computed
from them. These, along with the previously computed n,

are substituted in Equation 2 to compute a reasonable esti-
mate for the outlier homography. The whole procedure is
summarized in Algorithm 1.

Algorithm 1 Compute homographies enforcing smooth-
ness of the camera motion

1: for frames i = 0 to N − 2 do
2: Compute Hi,i+1 from feature-correspondences (or

other methods).
3: [R̃i,

T̃i

d̃i

, ñi]← Decompose(Hi,i+1).
4: Compute Ri+1 and Ti+1 from the above (decom-

posed) parameters and [Ri Ti] i.e. the pose computed
in the previous iteration.
(Initial pose is [I 0])

5: Compute Position Pi+1 and Rotation Angles from
Ri+1 and Ti+1.

6: Check reliability of Hi,i+1 using the cumulative av-
erage projection error and displacement in the cam-
era position.

7: if Hi,i+1 is an outlier homography then
8: Extrapolate in the space of P and Rotation Angles

to obtain reliable estimates of Ri+1 and Ti+1.
9: Compute the new estimate of Hi,i+1 using Ri+1,

Ti+1 and calibration matrix K.
10: end if
11: end for

3.2. Mosaicing using a Motion Model

Our second method does not need the camera calibra-
tion. It is suitable for situations when the camera motion is
controlled. To facilitate better understanding of the model-
based approach, we begin with a simple model - the linear,
translational camera motion model. We know from [9] that
under linear translational motion, all incremental (frame-to-
next frame) homographies are related by an eleven parame-
ter model:

Hi,i+1 = I +
C

c1 + i.c2

(3)

where, C is a 3 × 3 matrix and c1 and c2 are scalars. This
directly leads to

X
j
i+1

=

[

I +
C

c1 + i.c2

]

X
j
i

where, X denotes a feature point, i denotes the frame num-
ber and j is the feature point index in the given frame.

It can be seen from the above equation that each cor-
responding pair of points gives two linearly independent
equations in the model parameters C and c1, c2. Thus, what
we have is an over-determined linear system of equations
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Figure 1. Mosaic of an Aerial Video over a Desert. (a) Bundle Adjustment, (b) Proposed Model-based
Approach. Our algorithm is able to produce good quality mosaics even if features to track are rare.

in the model parameters and we can use SVD to solve it.
Mostly, the solution given by this linear technique is satis-
factory. If not, it may be used as the initial guess to a non-
linear, iterative algorithm like the Levenberg and Marquardt
algorithm. This simple technique is generalized to cater to
any arbitrarily complex homography model. The steps of
this generic algorithm are given in Algorithm 2.

Algorithm 2 Build mosaic using a camera motion model
1: Establish correspondences between all pairs of frames.
2: Estimate the homography model parameters Mp such

that

E =
∑

i,j

‖(Π(Xi)−Π(H(Mp, i, j)Xj))‖
2

is minimized. (Use a non-linear optimization technique
such as the Levenberg-Marquardt algorithm)

3: Identify samples, for which reprojection error is greater
than twice the average reprojection error, as the outliers.

4: Re-estimate the model parameters Mp from the inliers
alone.

5: Compute the reference homographies from the model
and build the mosaic.

In Algorithm 2, first, the global model (Mp) is esti-
mated from the measurements from the individual frames
and the homography is computed directly from. i.e., Hi,j =

f(i, j, Mp), where Mp is the set of parameters of the global
homography model. Note that the noisy image measure-
ments will have far lesser influence on the estimation of
f(·), compared its influence on the individual homography
estimates. This helps us in providing better mosaics, by not
worrying about the failure in correspondence in a specific
frame pair.

4. Results and Discussions

Now, we analyze the performance of the proposed mo-
saicing schemes in various situations. Experiments done
in this section are carefully designed on synthetic data, to
study the quantitative performance in a systematic manner.
First, we consider the problem of mosaicing a video cap-
tured by a camera undergoing a smooth motion. For the
purpose of mosaicing, frame to frame homographies were
computed between every pair of successive frames. Some
of these homography estimates were poor. This can be seen
by large errors in the reprojection values at certain frames
in Fig. 2(a). Camera trajectory is computed from the esti-
mated homographies by their decomposition. As expected,
the homography errors propagate into this procedure. In
Fig. 2(b), one can see the the homography errors reflected
in the camera trajectory. Notice that this camera trajectory
is not smooth in many places. After applying our approach
of extrapolation in the pose space, the camera trajectory be-
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Figure 2. Experiments on a video of 34 frames. Noisy homographies were computed at frames 8-
9,17-18,18-19,29-30 and 30-31. (a) and (d) show the reprojection errors for incremental homographies,
before and after applying Algorithm 1, respectively. (b) and (c) show the camera trajectories in x, y

and z directions, from top to bottom. The originally computed trajectory ((b)) is smoothened and
shown in (c). Then, the homographies are refined using (c), as indicated by the low errors in (d).

comes smooth (Fig. 2(c)). We use these reconstructed poses
to compute substitutes for the outlier homographies, and
then, perform the mosaicing. The reduction in the repro-
jection errors (Fig. 2(d)), after applying our extrapolation-
based algorithm, may be observed.

We analyzed the sensitivity of our model-based approach
to noise in the image measurements. Uniform noise was
added to the set of point correspondences. To compare the
homographies computed using our approach and the con-
ventional approach, wherein homographies are individually
computed using RANSAC, we compute the cumulative av-
erage re-projection error for the noise-free points. Fig. 4
shows that for our approach, the error increases at a much
slower rate with the level of noise, compared to the conven-
tional approach.

In Fig. 1, we present the mosaic of an aerial video of
a desert area. There is little texture information in the in-
put frames. Thus, as expected, the feature extractor was not
able to find enough (accurate) points in the frames. There-
fore, the conventional technique, using RANSAC on suc-
cessive pairs of frames, could not perform accurate regis-
tration. Applying bundle adjustment on top of it, using an
objective function similar to the one used in [7, 12], reduced
the reprojection error marginally but made no visible differ-
ence to the appearence of the mosaic. However, our model-
based approach performed very well since it combines in-
formation from all over-lapping frame pairs for computing
each homography. A part of the mosaic is zoomed and
shown. Note that the graph-based approach is also likely
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Figure 4. Cumulative Average Reprojection
Error Vs Noise. The error for Algorithm 2 is
always lower than that for the conventional
approach.

to fail here because of the uni-directional motion, as men-
tioned in Section 1.

Fig. 3 demonstrates how our approach tackles the fre-
quently encountered repetitive texture problem. The con-
ventional RANSAC-based technique, even after bundle ad-
justment, failed to compute accurate homographies for
many frames of this video because of several false matches
in the feature matching step. However, since our approach
accumulates correspondence from many frames, it was less
affected by the mis-matched points and was able to yield
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Figure 3. Mosaicing in presence of Repetitive Texture. (a) Bundle Adjustment, (b) Our Approach. (b)
shows that our approach stays unaffected under false feature matching.

quite accurate homographies and consequently, a better mo-
saic.

5. Conclusions

We have presented video mosaicing algorithms with ap-
plicability to a variety of real-life scenarios, including un-
calibrated and calibrated camera as well as parameterized
and unparameterized motion models. Experiments were
carried out keeping in mind the frequently occurring mo-
saicing problems and results show the robustness of our al-
gorithms.
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