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Abstract

Capture of dynamic events is an active research area to-
day. Capturing the 2 1

2
D geometric structure and photomet-

ric appearance of dynamic scenes finds applications in 3D
tele-conferencing systems, 3DTV etc. The captured “depth
movies” contain aligned sequences of depth maps and tex-
tures and are often streamed to a distant location for immer-
sive viewing. The depth maps are heavy and need efficient
compression schemes. In this paper, we present a scheme to
compress depth movies of human actors using a parametric
proxy model for the underlying action. We use a generic
articulated human model as the proxy and the various joint
angles as its parameters for each time instant to represent
a common prediction of the scene structure. The difference
or residue between the captured depth and the depth of the
proxy represents the scene to exploit spatial coherence. Dif-
ferences in residues across time are used to exploit temporal
coherence. Intra-frame coded frames and difference-coded
frames provide random access and high compression. We
show results on several synthetic and real actions to demon-
strate the compression ratio and resulting quality using a
depth-based rendering of the decoded scene.

1 Introduction

Digital capture of dynamic events has assumed great im-
portance recently [5]. Sensors for 3D data including multi-
camera systems, laser range scanners, etc are common to-
day. Some of them are suitable for the real-time capture
of the shape and appearance of dynamic events, like in the
other previously existing multiview capture teleimmersive
systems. The 2 1

2
D model of aligned depth map and image,

called a Depth Image, has been popular for Image Based
Modeling and Rendering (IBMR). Time varying depth and
image sequences, called Depth Movies, can extend IBMR
to the dynamic events. The applications of such systems
include virtual-space tele-conferencing, remote 3D immer-
sion, 3D entertainment, etc. Tele-immersive environments

are now emerging as the next generation of communication
medium to allow remote users more effective interaction
and collaboration in joint activities at various research, aca-
demic and social levels. Tele-immersion creates an illusion
that the user is in the same physical space like the other re-
mote participants, though they are miles apart.

Depth Movies are time-varying sequences of depth maps
and texture, as shown in figure 1. A depth movie consists of
three channels of data: (a) The I Channel contains the se-
quence of image with Ik[i, j] giving the colour at pixel (i, j)
at time instant k, (b) the D Channel contains the sequence
of depth maps with Dk[i, j] giving the depth or distance at
pixel (i, j) at time instant k, and (c) the C Channel gives
the sequence of time varying calibration parameters that
help map the depth into the 3D coordinates in a common
reference frame, with Ck giving the 3 × 4 calibration ma-
trix. Continuous, hole-free capture requires multiple depth
movies to cover the event from all directions. In this paper,
we study dynamic events involving a single human actor, a
common case for entertainment and tele-conferencing. We
assume that the event is captured using m depth movies of
length n. That is, the 2 1

2
D structure of the event is avail-

able from m different positions or views for n uniformly
sampled time-instants or “frames”.

Depth movies are bulky and call for effective represen-
tations and compression methods. Compression is essential
as the captured event is often transmitted to a remote loca-
tion for 3D playback. For such a setting, the server at the
capture site is linked over a network to a client at the ren-
dering site. Video compression can be used effectively on
the I Channel. Compression of static and dynamic light-
fields have been studied before [8, 9, 14]. The C Channel
contains light and slow-varying data and a standard data
compression scheme can compress it effectively. The D
Channel, however, contains time-varying depth maps from
multiple sources. Effective compression of such data is im-
portant and is the focus of this paper. The D channel is a
video of depth values. It may appear that video compres-
sion schemes like MPEG can work well on it. Critical dif-
ferences between images and depth maps make this tricky
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Figure 1. Doo-Young Dataset Depth Movie from ETH-Z.

and undesirable. Video compression is psycho-visually mo-
tivated and give less emphasis to the high frequency com-
ponents. However, the high frequency regions represent oc-
clusion boundaries; they are critical for depth maps [6], es-
pecially if used rendering.

Depths from different viewpoints contains redundant in-
formation derived from the common geometric structure of
the scene. We exploit this spatial redundancy in addition to
the temporal redundancy for effective compression of depth
movies. The geometric structure is approximated using a
light-weight, parametric proxy model for each time instant.
We use an articulated human model as the parametric proxy
with the joint angles serving as its parameters. The time-
varying parameters approximate the underlying geometric
structure of the action in a viewpoint independent manner.
The depths from each viewpoint is replaced with the residue
or the difference from the depth due to the proxy model.
The residues are small in range and are correlated spatially
and temporally. We show different ways to encode them for
different quality/size trade-offs.

We present related work in section 2. Section 3 presents
our work on proxy-based compression of depth movies, fol-
lowed by results in section 4.

2 Related Work

Geometric structure of real-life scenes can be captured
using multicamera setups, range scanners, etc. Several
teleimmersion systems have been built for this purpose over
the past decade or so [11, 15, 10, 2, 16, 4, 17]. They attempt
to capture dense or sparse 3D structure of the scene using

cameras as time-varying depth and texture maps or depth
movies.

Disparity compensated compression of multiview im-
ages exploit the spatial redundancy in a lightfield.
Levkovich-Maslyuk et al. compute the disparity maps and
use them to predict the appearance in other views to ex-
ploit spatial redundancy of the lightfield [8]. Magnor et
al. use block-based disparity compensation to predict other
views of a multiview set [9]. They computed the disparity
or depth maps for encoding but never stored them. Wu et
al. extended disparity compensation to dynamic lightfields
to compress video objects [14]. They used an MPEG-like
algorithm to compress multiple video data using temporal
correlation within one video stream and spatial correlation
using depth values across views. They, however, treated
depth maps as incompressible and encoded it in a separate
layer without any loss.

The compression of depth maps hasn’t attracted much
attention before. Standard image compression methods like
JPEG emphasize perceived visual quality and do not suit
depth image compression [6]. They advocate the use of re-
gion of interest (RoI) and reshaping of the depths to pre-
serve depth edges or occlusion boundaries when dealing
with depth maps. Kum and Mayer-Patel compress multiple
depth streams of a scene using motion vectors derived from
color and depths [7]. They concluded that separate mo-
tion vectors to encode color and depth perform better than a
common one. Penta and Narayanan introduced proxy-based
compression of depth images of static scenes [12]. The ge-
ometric proxy model was used as the common structure of
the scene and each depth map was represented as difference
with the proxy. Simple triangulated proxies and paramet-
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"n" Frames and "m" cameras

Figure 2. Setting of 20 cameras around the
scene.

ric proxies like ellipsoids provided good compression and
quality on static 3D scenes by them.

We extend the proxy-based compression to depth movies
of human actors in this paper. The input to the system is
multiple depth movies of a scene captured from a setup of
cameras all around the scene as showing in figure 2.

We first fit an articulated proxy model to the point cloud
for each frame. The output of this process is the joint an-
gles of the model, which are the parameters of the proxy.
Parametrization of the proxy reduces its memory require-
ments. Several methods try to fit an articulated model to
real human data [13, 3, 1]. The fitted proxy for each frame
is projected to each view to give predictions of the input
depth maps. The residue or prediction error is sufficient
to recover the input depth maps losslessly. The temporal
correlation is exploited by encoding the residue differences
between successive time instants.

3 Proxy-Based Compression

We consider depth movies involving a human performer
in this paper. We use 16-bit integer depth values for the
depth maps. This gives a compact and exact representa-
tion than using floating point without compromising on the
range of values in practice.

Parametrized Proxy Model: An articulated, parametric
human model is used as the proxy model. The joint an-
gles and bone lengths are the free variables of the model
and serve as the parameters using which any position of
the actor can be represented. The parameters change over
time, but are same for all views at any time instant. We
use an articulated model with 18 joints. Each joint has 3
angles for heading, pitch, and roll. We currently use a sin-
gle size parameter to scale the base model uniformly. Thus,
the model is defined completely using only 55 parameters
in each frame. The basic model is skeletal. A triangulated
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Figure 3. Encoding and transmission of com-
pressed 3D scene at the Server

skin-model is attached to it and provides a realistic human
model. The basic skeletal and skinned models are available
to both the encoder and the decoder. Thus, the 55 parame-
ters provide a decent prediction for the common geometric
structure of the actor for each frame.

We compute the parameters of the proxy by first unpro-
jecting each depth map from each view to get a point cloud
in the world. The problem of fitting an articulated model
from images and from depths has been studied in the past
[13, 3, 1]. The fitting can be performed by optimizing the
error between the skinned model and the point cloud. Fit-
ting subsequent frames is easier as the parameters change
slowly. Since the model fitting is not our main focus, we fit
the model interactively using a semi-automatic tool built for
the purpose to get a basic proxy with minimal efforts. In the
end, the parameters of the articulated model for each frame
represent the scene parametrically as a proxy.

Residues: Our basic idea is to replace each depth map as
the deviation from the common proxy model, thus needing
fewer bits to encode the information. We first compute the
residue depth maps by projecting the fitted proxy model to
each view for each frame. The residue map for each view
is the pixel-by-pixel difference between its input depth map
and the proxy depth map. This is the prediction error when
the proxy model is used as a common prediction for all
views. After this process, each of the mn depth maps is
replaced by a residue map losslessly. The residues have a

3
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smaller range of values and are less bulky to represent. They
are also more correlated spatially and temporally within a
view, being the differences with a good approximation of
the underlying structure.

Residue Encoding: For each residue map, we also com-
pute a foreground mask bit to identify pixels which belong
to the actor in each view. The mask is obtained by thresh-
olding the input depth values. The residue values are repre-
sented using a sign-magnitude format to facilitate bit-plane
encoding of residues. We explore two compression schemes
for the residues.

Since residues are correlated spatially and temporally
and are otherwise like videos for each view, we can encode
them using a standard video coding scheme like MPEG.
This gives m residue movies and has the random access
properties and bit-rate control as the underlying video cod-
ing scheme. The video scheme may incur high reconstruc-
tion costs.

The other method uses bit-plane encoding of the
residues, using as many bits as client demands. The scheme
(Figure 3), inspired by video coding, is as follows.

1. Exploit temporal correlation by computing residue dif-
ferences as Di = Ri − Ri−1, where Ri is the residue
for frame i.

2. Encode the residue map as blocks that contain one
R frame of residue values and several D frames of
residue differences. A block is a random-access unit
and its length is determined by the requirements for
random access.

3. Encode R frames with K most-significant bits of the
residues and the D frames with k most-significant bits
of the residue difference.

4. Encode mask bits using the JBIG algorithm.
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Figure 5. The structure of a block with R
frames, D frames and optional I frames.

Different quality points can be obtained by varying K

and k, which can be varied online in a real-time client-
server setup. We also use an incremental representation to
exploit any additional available bandwidth. We send the
next (i.e., K + 1th) bit-plane of the residue as an I frame
when this happens. The value received is added to the cur-
rent R frame, thus improving the quality of all frames till
the end of the block. As shown in Figure 5, an extra bit at
I frame provides the increment in the bit representation for
the following frames, thus there on increasing the quality of
the movie.

Ri = R0 + D1 + D2 + .... + Di−1 (1)
R

′

i = R0 + D1 + · · · + D
′

j + D
′

j+1 · · · + D
′

i−1 (2)

Equation 1 shows R0 encoded with K bits and subsequent
D frames encoded with k bits. When 1 extra bit is added to
the jth D frame as shown in equation 2, D → D

′ , and the
subsequent D frames also get better representation. Thus,
the quality of R

′

i gets more than Ri.

Compressed Representation: The data to be sent to the
rendering client includes the following. (a) The joint-angle
parameters for each frame, (b) the mask bits for each view
and each frame, (c) m MPEG streams for the residue values
when using MPEG or the sign bit and R orD values for the
each frame. We use the following compression schemes for
each. Please note that the articulated model and the skin-
ning triangles are available at both ends and need not be
transmitted at all.

1. The model parameters (joint-angles) take only few
bytes per frame. Only entropy encoding using zip is
used to reduce its size.
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2. The mask planes are bit-maps. They are compressed
using a lossless JBIG format to get maximum com-
pression. Run-length encoding and other schemes
were also tried, but JBIG gave the best performance
in all cases.

3. When using MPEG, the data is encoded using the
ffmpeg library with the given bit-rate.

4. When using bit-plane encoding, the sign bits are com-
pressed using the JBIG scheme. The R and D frames
are compressed into a long sequence of bits and then
entropy coded using zip.

Input Depth 1

Temporal

Residue 1 Residue 2
Spatial

SignDifference Residue Reconstructed Depth

Figure 6. Results showing input depth,
residues, residue differences, sign and re-
constructed depth.

Each of the m views are treated independently for this
process. The frames of each view are also independent, with
some using residue values and others using residue differ-
ences. All data is zipped together at the end as a simple
entropy-encoding method. This information is sent to the
rendering client, which decodes the depths back. The final
representation contains one parameter file per frame, one
mask, one sign bit, and an R or D plane per frame per view.
The data for a whole block (between two R frames for bit-
plane coding or between two I frames for MPEG) needs to
be together logically and can be treated like a package to be
sent to the client.

Decoding: The decoding process is shown Figure 4. Each
block of data is treated independently by the client. The
joint-angle parameters are applied to the articulated model.
The resulting model projected to the camera of each depth
stream, giving the proxy depth maps. The residue maps are
recovered from the R frames of the packet. The residue map

is added to the proxy depth map to get the decoded depth
map for that view and frame. For D frames, the residue dif-
ferences recovered from the packet are added to the current
residue map Ri to get the next residue map Ri+1, which is
added to the proxy depth map for that frame to get the de-
coded depth values as given in equation 2. The foreground
mask is needed to keep track of the changing silhouette of
the actor. The depth map of frame i + 1 may include pixels
not in frame i. If frame i + 1 is a D frame, the current av-
erage residue value is used as the reference for the residue
difference. If the incremental frame arrives, the bit-plane
for it is assembled and added to the current running residue
R′

i. The improved quality results till the end of the current
block.

4 Experiments and Results

We present the results of our scheme now. We have ex-
perimented on real depth datasets and MOCAP datasets for
dynamic scenes. Real dataset we have used is from ETH-
Z, a Doo-Young karate sequence as shown in figure 1. As
such real data is very rare, we have also experimented on
real MOCAP ( Motion Capture) data available freely with
CMU. A standard POSER human model was animated us-
ing the MOCAP parameters and 16-bit depth maps were
captured from 20 viewpoints. 16-bit depthmaps help in
capturing depth to 65535 meters. The joint-angle param-
eters for compression are very similar to the MOCAP files.
We, however, added noise to the joint angles to simulate
bad fitting of the model to real data. We also added slow-
varying noise to the depth values to simulate errors of the
depth-recovery process. The depth noise has a small ran-
dom component at each pixel which rides on top of a larger
component that varies slowly over the whole depth map.

Fitting Procedure is simple with minimal human involve-
ment. We can fit the first frame of a sequence in less than 60
seconds and the subsequent frames in less than 15 seconds,
on an average.

The proxy model is articulated using the noisy angles
to generate the depth maps and residues are generated by
subtracting the fitted proxy depth maps from the input depth
maps. Residue differences are obtained by subtracting Ri

from Ri+1. Mask bit is obtained by thresholding the depth
map. Encoding is performed as described in the previous
section. Decoding is performed as the reverse process at the
receivers end.

Results on a few synthetic datasets are shown in graphs
of figure 8. We experimented on three MOCAP sequences,
Indian dance, Ballet and Exercise, each with around 300-
400 frames each. The compression ratio is with respect
to the original, uncompressed depth maps. The PSNR is
calculated by comparing the reconstructed depth maps with
the input depth maps. The residue compression exploits the
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Figure 7. Results for IndianDance Dataset with block size=25, joint angle noise=5, and K=0,5-14,
k=0-4

spatial redundancy but we do residue difference encoding
scheme that exploits both the temporal and spatial aspects
of Depth movies. The bit-plane scheme provides high com-
pression and moderate quality at low number of bits and
good compression and excellent quality at higher number
of bits. As we increase the number of bits in encoding, the
compression ratio, as expected, decreases with increase in
the quality factor. Also, it provides totally random access
of the depths of individual frames. Most interestingly, the
option of using 0 bits of residue provides a very low bit-rate
approximation of the input scene.

Other than joint angle noise and depth noise, we var-
ied the block sizes for coding the depth movies to get nice
compression figures with good quality. We observed that
as the block size increases, the average compression ratio
increases and the PSNR decreases. Thus, higher blocks are
preferable for coding as encoding with K bits is lesser than
k bits for D-Frames, where K > k. Keeping the block size
constant, with increasing the joint noise the compression ra-
tio reduces as higher bits are needed to fully represent the
residues. Figure 7 plots the PSNR and the compression ra-
tio against the number of bits used to encode the residues,
K and number of bits used to encode residue differences, k,
for one dataset. It can be seen that the PSNR varies slowly
with the number of bits, but the compression ratio of bit-
plane encoding is good.

We compared our method with the present state of Art,
MPEG. The MPEG compression of depth and residues
(MPEG-R and MPEG-D in graphs of figure 8) provides
decent compression and quality, but the bit-plane encoding
scheme provides more size to quality trade-offs to suit any
situation.

With real dataset we carried out the same experiments.
Doo-Young dataset consists of 8-bit images. The results for

compression ratios and quality are as shown in figure 9. The
point cloud, is fitted in the same manner as in the MOCAP
dataset. Here, we do not have any noise levels since no
simulation of noise is required as it being a real dataset. We
observed that the trade-offs are much similar to the MOCAP
simulated real dataset.

We observed from graphs in figures 8, 9, if the remote
client asks for a particular range of compression ratios and
quality, he has a set of choices among various combinations
of K-bits, k-bits and block sizes. This makes the system
effective for a remote-server-client teleimmersion environ-
ment with user compatible service options.

More results and videos for sequences with varying bits
for encoding, levels of joint noise, depth noise and block
sizes are provided in the supplementary material.

5 Conclusion

We presented a proxy-based compression scheme for
multiple depth movies of a scene involving dynamic human
action in this paper. We used a simple articulated model
as the proxy and joint angles as the parameters that ap-
proximate the model for a particular frame. Spatial coher-
ence of the structure between views is exploited using the
common proxy model and replacing depths with differences
with it. Temporal coherence is exploited using incremental
encoding of these differences across time. The scheme pro-
vides good compression ratios at acceptable quality levels.
The proxy-based scheme provides several controls on the
amount of data to be sent. This makes it ideal for sending
the captured data for applications like 3D teleconferencing.
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