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Abstract

Recognition of object categories from their images is ex-
tremely challenging due to the large intra-class variations,
and variations in pose, illumination and scale, in addition
to lack of depth information of the object. Recovering the
depth information from multiple images or from image cues
such as variations in illumination or focus, is both computa-
tionally intensive and error prone. In contrast, the appear-
ance based approaches are more robust and computation-
ally efficient. However, they lack the potential accuracy of
3D feature based approaches due to the lack of shape infor-
mation. We propose the use of structured lighting patterns
projected on the object, which gets deformed according to
the shape of the object for recognition. Since our goal is ob-
ject classification and not shape recovery, we characterize
the deformations using simple texture measures, thus avoid-
ing depth recovery step. Moreover, the shape information
present in the deformations is implicitly used for classifica-
tion. We show that the information thus derived can signifi-
cantly improve the accuracy of object category recognition
from arbitrary-pose images.

1. Introduction

The shape of a three dimensional object can be thought
of as the variations in depth over the object, looking from a
particular view point. For rigid objects, the nature of these
variations is deterministic, while that of a 3D surface texture
is stochastic in nature. Even for rigid objects, a particular
shape can result in different depth profiles depending on the
view. During imaging, the depth information is lost as the
camera captures only image cues such as variations in shad-
ing, focus, texture, silhouette, etc., which are induced by the
shape and lighting.

Figure 1 shows, the variation in appearance of three dif-
ferent objects from different view points. Note that objects
with different shapes may appear quite similar from certain
view points (first row), while the same object might look

Figure 1. Variation in appearance in three dif-
ferent objects with change in pose.

very different as the view changes (columns of figure 1).
Clearly, it is extremely difficult to recognize such objects
from their appearance only. The problem of object cate-
gory recognition has to deal with the additional variations
introduced by the differences in shape of objects within
a category (such as a cup), and the similarity in appear-
ance of different object classes (see bowl and saucer in fig-
ure 1). The ability to recognize objects and object classes
plays an important role in enabling a variety of applica-
tions such autonomous robots for human assistance and au-
tomated search and rescue operations, factory automation,
mobile camera based and information retrieval, automated
surveillance, etc.

Object category recognition algorithms that use the ob-
ject shape explicitly, try to recover the depth information
from images using a variety of methods. Shape recovery
methods using correspondence information from multiple
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images or additional cues from a single image such as shad-
ing, focus, texture, etc. [21] could fail in presence of large
variations in the texture and scale of different objects. Meth-
ods using a projector-camera pair for structured lighting
can be more robust in presence of varying object appear-
ance. Structured lighting can be used for recovering 3D
shape [18] and for improving correspondence [22, 13, 10]
in multiple images. In [12], encoded structured light was
used for recognition by improving the correspondence. We
note that the process of depth recovery is both computation-
ally intensive as well as error prone as the nature and shape
of objects vary considerably, as in the case of object cate-
gory recognition. Moreover, for the purpose of recognition,
one needs to characterize the recovered depth, invariant to
the pose variations, which is not a trivial task [14].

An alternate approach is to recognize the object classes
directly from appearance based features. Riesenhuber and
Poggio [15] explores various view based representations
of objects for recognition. Image-based object recognition
algorithms usually compromise the depth information for
higher computation efficiency and robustness. They char-
acterize the objects directly based on image features such
as edges, shading [2] and texture [11]. The challenge here
is to come up with a representation that is invariant to illu-
mination and pose, thus providing robust classification. In
addition, different objects of a category can vary consider-
ably in appearance [8].

Popular approaches to object recognition use part and
structure models [9] to represent an object. Examples of
such models include the constellation model [3]. The struc-
ture can also be learned with probabilistic models from ex-
amples [19, 20]. Current algorithms employ powerful ma-
chine learning approaches to learn the object structure in
terms of object part descriptors from large number of exam-
ples [7, 5, 8]. Such approaches have become popular both
due to its simplicity and robustness to object and pose vari-
ations within a category. However, the classification power
of image based approaches is limited as some of the 3D
information is lost during the imaging process. Detailed
surveys of appearance based approaches for object and cat-
egory recognition may be found in [21, 8].

Our primary contribution to the area is the use of struc-
tured lighting patterns, which we refer to as projected tex-
ture, for the purpose of recognition rather than explicit
shape recovery. The deformations in the projected texture
are induced by the depth variations over the object, and
these deformations encode the shape information. We also
propose a set of simple position and pose invariant features
for characterizing the deformations based on the popular
bag-of-words paradigm [6] for object representation (see
figure 2). Formulation of the problem as that of recogni-
tion of the object directly from the deformations rather than
reconstruction allows us to concentrate on features that are

Figure 2. Variations in deformation on similar
looking objects.

relevant to discrimination between object classes rather than
reconstruction of their exact shape. Experimental results
clearly indicate the superiority of the approach as compared
to traditional image based classification algorithms.

2. Projected Patterns and Deformation

A 3D object can either be characterized by its exact
shape (rigid or non-rigid objects), or the nature of stochas-
tic variations (3D texture). In this paper, we look at the
problem of recognizing rigid objects from arbitrary poses.
Specifically, we concentrate on the problem of category
recognition, where the learning algorithm needs to gener-
alize from a variety of objects in a category. Note that the
images of a functional category of objects such as a cof-
fee mug can vary significantly in size, shape and pose. Our
challenge is to arrive at a shape descriptor from the image
that is discriminative enough to separate the functional cat-
egories, while generalizing over the within-class variations.
In our case, this boils down to the characterization and rep-
resentation of pattern deformations of an object category.

The object is placed in an arbitrary pose and a specific
texture pattern is projected on it while imaging. The pro-
jected pattern, falling on the scene containing the object,
gets transformed according to the depth map of the object
under illumination. These transformations falls into two
categories: pattern shift and pattern deformation. Pattern
shift depends upon the absolute depth of the surface from
which the projected light in reflected, in addition to the pro-
jector camera configuration. On the other hand, pattern de-
formation depends on the change in depth of the surface.
These deformations depend on the absolute angle between
the projector axis and the normal to the surface at a point as
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well as its derivative.
We will now look at the exact relationship between the

projector camera configuration, the object surface and the
amount of deformation.

Figure 3(b) shows a planar object being illuminated by
a sheet of light. The slope of the line can be expressed in
terms of the angle of illumination, φ, and the slope of the
object plane, θ (see Appendix A). Thus, the slope of object
surface directly affects orientation of the projection of a 3D
line onto the image plane. This indicates that a characteri-
zation of an image patch in terms of the angle of the imaged
lines can capture the surface height variations at that point.
The above relationship enables us to predict the projector
camera configuration as well as the pattern to be projected
for a class of objects with a specific range of depth varia-
tions. In addition to depth deformation, one also need to
take into account the reflective properties of the object sur-
face and shadow effects while deciding on a projection pat-
tern. In our problem we selected a set of vertical stripes
as the texture, since the camera and projector are displaced
horizontally in the setup. The spacing and width of patterns
were selected experimentally, while intensities were chosen
to reduce inter-reflections and specularities.

2.1. Selection of Projection Pattern

The choice of an appropriate projection pattern is impor-
tant due to a variety of factors:

1. For the deformation to be visible in the captured at any
point in the image, the gradient of the texture at that
point should not be zero in the direction of gradient of
the object depth.

2. One should be able to capture the deformations of the
projected pattern using the texture measure employed
for this purpose.

3. The density of the projected pattern or its spatial fre-
quency should correspond to the frequency of height
variations to be captured. Hence, analyzing the geom-
etry of an object with a high level of detail will require
a finer texture, whereas in the case of an object with
smooth structural variations, a sparse one will serve
the purpose.

4. Factors such as the color, and reflectance of the object
surface should be considered in selecting the color, in-
tensity and contrast of the texture so that one can iden-
tify the deformations in the captured image.

For the purpose of object category recognition, we use a
set of parallel lines with regular spacing, where the spacing
is determined based on the scale of the objects to be recog-
nized. The width and spacing of the lines were selected ex-
perimentally so that it captures the height variations within

an object at the angle of projection selected. Once the se-
lected pattern is projected on the object of interest, we need
to compute a characterization of the deformations that is
appropriate for recognition. In [4], it has been shown that
curvature of the projected pattern gives information about
the surface type.

3. Characterizing Shape with Deformation

The primary concern in developing a representation for
object category is that the description should be robust to
both shape and pose of the object class. Note that the use
of projected patterns allows us to avoid object texture, and
concentrate only on its shape. Approaches such as ’bag of
words’ computed from interest points have been success-
fully employed for image based object category recogni-
tion [8]. Our approach is similar in spirit to achieve pose
invariance. We learn the class of local deformations that are
possible for each category of objects by creating a codebook
of such deformations from a training set. Each object is then
represented as a histogram of local deformations based on
the codebook. Figure 4 illustrates the computation of the
feature vector from a scene with projected texture.

There are two primary concerns to be addressed while
developing a parts based shape representation:

The location of points from which the local shape de-
scriptor is computed is important to achieve position invari-
ance. In image based algorithms, the patches are localized
by using an interest operator that is computed from object
texture or edges. However, in our case the primary objec-
tive is to avoid using texture information and concentrate
on the shape information provided by the projected texture.
Hence we choose to use a set of overlapping windows that
covers the whole scene for computation of local deforma-
tions. Our representation based on the codebook allows us
to concentrate on the object deformation for recognition.

The description of the local deformations should be suf-
ficient to distinguish between various local surface shapes
within the class of objects. The feature vector computed
should exploit the periodic nature of projected pattern that
we employ. Fourier domain representations provide us with
effective descriptors for periodic signals. A 2D discrete
Fourier transform (DFT) of an image function f(x, y) can
be described by equation [1].

F (u, v) =
1

MN

M−1∑
x=0

N−1∑
y=0

f(x, y) exp−j2π( xu
M + yv

N ), (1)

where |F (u, v)| represents the magnitude of 2D DFT and
Φ represents phase information as defined in equation (2).

|F (u, v)| =
√
Fr(u, v)2 + Fi(u, v)2

Φ = tan−1(Fr(u,v)
Fi(u,v)

)
(2)
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Figure 3. The image capture setup and the pattern deformation geometry.
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Figure 4. Computation of feature vector.

Since we are interested in the nature of deformations
and not its exact location, we compute the magnitude of
the Fourier coefficients (referred to as AFC) within each of
the window patch as our feature vector. To make compar-
isons in a Euclidean space more effective, we use a logarith-
mic representation of these coefficients (LAFC). We show
that this simple Fourier magnitude based representation of
the patches can effectively achieve the discriminative power
that we seek.

The feature extraction process proceeds as follows. The
images in the training set are divided into a set of overlap-
ping windows of size 20 × 20 (decided experimentally).
Each window is then represented using the magnitude of
Fourier representation in logarithmic scale (LAFC). This re-
sults in a 200 dimensional feature vector (due to symmetry
of Fourier representation) for each window. A K-means
clustering of windows in this feature space allows us to

identify the dominant pattern deformations, which forms a
codebook for the classification problem (see figure 5). Dur-
ing the testing phase, the feature representations of the win-
dows in an image are computed as above, and each window
is mapped to the nearest codebook vector. A histogram of
the codes present in an image forms the representation of
the object contained in it. As shown in figure 4 the patches
that are part of the background maps to a few locations in
codebook. Thus codebook can isolate the words that cap-
tures maximum information for defining an object category.

We note that the representation is independent of the po-
sition, while the classification algorithm achieves pose in-
variance due to the generalization from different poses in
the training set.
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Figure 5. Spatial and spectral representations of 100 words from our codebook.

4. Experiment Results and Analysis

We have collected dataset of 225 images of objects se-
lected from 5 object categories: i) Coffee Cup, ii) Steel
Tumbler, iii) Plastic Mug, iv) Deodorant Spray, and v)
Alarm Clock. Even though the number of categories is lim-
ited, they were chosen to introduce challenging similari-
ties between the categories. Five objects of each category
were chosen so that they have large intra-class variations
(see Figure 6). For each object, 9 different images were
collected with views around 45 degrees apart, making the
dataset an challenging one. All images were captured under
8 different texture patterns with varying widths as well as
under uniform illumination for comparison.

The pre-processing stage includes removal of object tex-
ture by subtracting a uniformly illuminated image of the ob-
ject from the image with projection and Gaussian smooth-
ing to reduce the imaging noise. For the purpose of classifi-
cation, we have used two different classifiers: Multi Layer
Perceptron (MLP), which has good generalization capabil-
ities, and a simple Nearest Neighbor (1NN). All results re-
ported are the mean error rates based on 4-fold cross vali-
dation with training and testing sets decided randomly. The
number of hidden nodes in the MLP was set to 20 for all
experiments.

For the purpose of comparison, we conducted similar ex-
periments with SIFT based features proposed by [8] on our
dataset without the projected patterns. SIFT feature might
not be work well in case of object with low texture but our
approach will avoid this problem as we are projecting tex-
ture on object surface. Note that the comparison is made

Figure 6. Selected views of objects from the
dataset.

only to show the effect of the additional information intro-
duced by the projected patterns into the classification pro-
cess and is not a testimony of the classification algorithm
itself. In fact, the algorithms are remarkably similar, and
the primary differences are in the selection of locations of
the patches and its representation. Table 1 presents the mean
error for both of the approaches, which clearly shows supe-
riority of our approach over the state-of-the-art. The error
rate is only 1.33%, which amount to three misclassifications
on the whole dataset.

Table 2 shows the confusion matrix between the object
classes, and Figure 7 shows an example of the misclassified

378378378



LAFC SIFT
MLP 1.33 % 21.33 %
1-NN 5.73 % 20.09 %

Table 1. Error Rates for Recognition with the
proposed and SIFT feature.

1 2 3 4 5
1 45 0 0 0 0
2 0 45 0 0 0
3 0 0 45 0 0
4 0 2 0 43 0
5 0 0 1 0 45

Table 2. Confusion matrix of object cate-
gories.

objects and its representation.

Figure 7. Miss classification example

We also conducted experiments with different codebook
sizes and pattern variations. Figure 8(a) shows the graph of
accuracy vs size of code book, and Figure 8(b) depicts the
variation in performance with change in width of projected
pattern. We note that variations in performance with vari-
ations in both the codebook size and the pattern width are
not significant when compared to the gain in performance
from the existing image based approaches.

We have also extended the approach for other categories
of recognition such as fixed pose objects as well as 3D sur-
face textures. With appropriate projections and deformation
characterizations, the idea of projected can effectively en-
hance the applicability and performance in such problems
as well. The results were reported elsewhere.

5. Conclusion and Future Work

We have proposed a novel approach for object category
recognition based on characterization of objects from defor-
mations of a projected light pattern. A patch based repre-
sentation of the object categories is proposed, where each
patch is characterized by a frequency domain representa-
tion of the deformed texture. The effectiveness of the ap-
proach is demonstrated on a small but challenging dataset,
which demonstrates a significant improvement in recogni-
tion rates. The approach can also be used for other cate-
gories of objects as with fixed pose objects as well as 3D
surface textures.

We are currently working on approaches to deal with
more complex backgrounds as well as to verify the ap-
proach on a larger dataset of objects. Another possible di-
rection of future work is to learn appropriate projection pat-
terns that are best suited to discriminate different classes of
objects as well as objects in a specific dataset. Another di-
rection to improve the performance is to avoid quantization
as proposed by [1]. Also a hybrid approach can be tested
using natural texture in combination with projected texture.
The idea of projected texture is successfully applied for bio-
metric authentication [17] and for classifying 3d texture sur-
face [16].We can also apply this idea for other shape based
biometric application like 3d face based recognition.

Appendix

Quantifying Deformations of Projected Tex-
ture

Let θ be the slope of the plane (we will call it object
surface plane) with respect to the X-Y plane. Let the angle
between the plane created by the projected line (we call this,
projector plane) and the Y-Z plane be φ. The equation of
projector plane will be

x

a
+
z

b
= 1,

where a can be expressed as

a = b tanφ

Thus, we can express the projector plane in terms of b and
φ as

x cotφ+ z − b = 0 (3)

Object surface plane can be represented by

z − y tan θ = 0 (4)

The line cd as shown in figure is the intersection of both
of these planes, and it can be expressed by single point on
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(a) (b)

Figure 8. Performance with variation in Codebook size and Pattern width.

that line and the direction vector of the line obtained by find-
ing cross product of the normal of both intersecting planes.
If ~n1 and - ~n2 represent the normals of the projector plane
and object surface plane respectively, the direction of the
line cd will be

~n3 = ~n1 × ~n2

~n3 = [ cotφ 0 1]T × [ 0 tan θ − 1]T

or,

~n3 = [ − tan θ cotφ tan θ cotφ]T (5)

One point common to both plane say p can be obtained by
solving equation 3 and 4

p = [ b tanφ 0 0]T

Hence equation of 3D line can be written as

~r = [ b tanφ− s tan θ s cotφ s tan θ cotφ]T , (6)

where s is the line parameter and different values of s will
give different points on line.

In order to express a 2D projection of this 3D line onto
the image plane of a camera, we consider two points on 3D
line such that they are in the Field of View (FOV) of cam-
era. Let Q1 and Q2 be two such points, with corresponding
value of s as s = l1 and s = l2 respectively.

Q1 = [ b tanφ− l1 tan θ l1 cotφ l1 tan θ cotφ]T (7)

Q2 = [ b tanφ− l2 tan θ l2 cotφ l2 tan θ cotφ]T (8)

For simplicity, let us assume camera to be a pinhole cam-
era with camera matrix P = K[R|t]. Let K = I (i. e. the
internal parameter matrix is unity matrix) and R and t be

R =

 R1 R2 R3

R4 R5 R6

R7 R8 R9

 , t =
[
t1 t2 t3

]T
The image of these points in camera plane be q1 = PQ1

and q2 = PQ2. q1 can be represented in matrix form in
terms of R1 to R9, l1 and φ, θ

q1=

 R1(b tanφ−l1 tan θ)+R2l1 cotφ+R3l1 tan θ cotφ+t1

R4(b tanφ−l1 tan θ)+R5l1 cotφ+R6l1 tan θ cotφ+t2

R7(b tanφ−l1 tan θ)+R8l1 cotφ+R9l1 tan θ cotφ+t3


(9)

For simplifying the expressions, lets write q1 in terms of
variables X1, Y1 and Z1.

q1 =
[
X1 Y1 Z1

]T
, (10)

where,

X1 = R1(b tanφ−l1 tan θ)+R2l1 cotφ+R3l1 tan θ cotφ+t1

Y1 = R4(b tanφ−l1 tan θ)+R5l1 cotφ+R6l1 tan θ cotφ+t2

Z1 = R7(b tanφ−l1 tan θ)+R8l1 cotφ+R9l1 tan θ cotφ+t3

similarly q2 can be represented in terms of R1 to R9, l2
and φ, θ or, in term of variables X2, Y2 and Z2.
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q2 =
[
X2 Y2 Z2

]T
(11)

In homogeneous coordinate system q1 and q2 can be rep-
resented as

q1 =
[

X1
Z1

Y1
Z1

]T
, q2 =

[
X2
Z2

Y2
Z2

]T
(12)

Thus the equation of line in 2D image plane can be written
as

~L : q1 × q2 = 0

or,

~L : X(Z1Y2−Z2Y1)−Y (Z1X2−Z2X1)−X1Y2+X2Y1=0 (13)

m = (Z1Y2 − Z2Y1)/(Z1X2 − Z2X1) (14)

From the equation of line it can inferred that the slope m
of the line in the image computed in equation (14) will de-
pend upon X1, Y1, Z1 and X2, Y2, Z2, which can be further
expanded in terms of b, φ and θ.

References

[1] O. Boiman, E. Shechtman, and M. Irani. In defense of
nearest-neighbor based image classification. In Proceedings
of CVPR, pages 1–8, 2008.

[2] M. Burl and P. Perona. Recognition of planar object classes.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 223–230, 1996.

[3] M. Burl, M. Weber, and P. Perona. A probabilistic approach
to object recognition using local photometry and global ge-
ometry. In Proceedings of the European Conference on
Computer Vision, pages 628–641, 1998.

[4] R. Cipolla and A. Zisserman. Qualitative shape from defor-
mation of image curves. International Journal of Computer
Vision, 8(1):53–69, 1992.

[5] D. Crandall, P. Felzenszwalb, and D. Huttenlocher. Spatial
priors for part-based recognition using statistical models. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, San Diego, volume 1, pages 10–
17, 2005.

[6] G. Csurka, C. Bray, C. Dance, and L. Fan. Visual catego-
rization with bags of keypoints. In Workshop on Statistical
Learning in Computer Vision, ECCV, pages 1–22, 2004.

[7] L. Fei-Fei, R. Fergus, and P. Perona. A bayesian approach to
unsupervised one-shot learning of object categories. In Pro-
ceedings of the 9th International Conference on Computer
Vision, Nice, France,, pages 1134–1141, 2003.

[8] R. Fergus. Visual Object Category Recognition. PhD thesis,
University of Oxford, 2005.

[9] M. A. Fischler and R. A. Elschlager. The representation
and matching of pictorial structures. IEEE Transactions on
Computer, 22(1):67–92, 1973.

[10] S. Inokuchi, K. Sato, and F. Matsuda. Range imaging system
for 3-d object recognition. In International Conference on
Pattern Recognition, pages 806–808, 1984.

[11] D. Lowe. Local feature view clustering for 3d object recog-
nition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Kauai, Hawaii, pages 682–
688. Springer, 2001.

[12] E. Petriu, Z. Sakr, H. Spoelder, and A. Moica. Object recog-
nition using pseudo-random color encoded structuredlight.
In Proceedings of Instrumentation and Measurement Tech-
nology Conference, volume 3, pages 1237–1241, 2000.

[13] J. Posdamer and M. Altschuler. Surface measurement by
space-encoded projected beam system. CGIP, 18(1):1–17,
January 1982.

[14] R. Ramamoorthi and J. Arvo. Creating generative models
from range images. In Proceedings of the 26th annual con-
ference on Computer graphics and interactive techniques,
pages 195–204, New York, NY, USA, 1999. ACM Press
Addison-Wesley Publishing Co.

[15] M. Riesenhuber and T. Poggio. Models of object recogni-
tion. Nature Neuroscience, pages 1199–1204, 2000.

[16] A. Sharma and A. Namboodiri. Projected texture for object
classification. In Proceedings of the European Conference
on Computer Vision, 2008.

[17] A. Sharma, N. Shobhit, and A. Namboodiri. Projected tex-
ture for hand geometry based authentication. In Proceedings
of CVPR Workshop on Biometrics, 2008.

[18] M. Takeda and K. Mutoh. Fourier transform profilometry
for the automatic measurement of 3-d object shapes. Applied
Optics, 22(24), 1983.

[19] M. Weber. Unsupervised Learning of Models for Object
Recognition. PhD thesis, California Institute of Technology,
Pasadena, 2000.

[20] M. Weber, W. Einhauser, M. Welling, and P. Perona.
Viewpoint-invariant learning and detection of human heads.
In Proceedings of 4th IEEE International Conference Auto-
matic Face and Gesture Recognition, FG2000, pages 20–27,
2000.

[21] R. White and D. Forsyth. Combining cues: Shape from
shading and texture. In Proc. of CVPR, volume 2, pages
1809–1816, 2006.

[22] L. Zhang, B. Curless, and S. M. Seitz. Rapid shape acqui-
sition using color structured light and multi-pass dynamic
programming. 3DPVT, pages 24–37, 2002.

381381381


