
Efficient Implementation of SVM for Large Class Problems

P. Ilayaraja, Neeba N. V. and C.V. Jawahar
Center for Visual Information Technology,

International Institute of Information Technology, Hyderabad, India - 500 032

Abstract

Multiclass classification is an important problem in
pattern recognition. Hierarchical SVM classifiers such
as DAG-SVM and BHC-SVM are popular in solving
multiclass problems. However, a bottleneck with these
approaches is the number of component classifiers, and
the associated time and space requirements. In this pa-
per, we describe a simple, yet effective method for effi-
ciently storing support vectors that exploits the redun-
dancies in them across the classifiers to obtain signif-
icant reduction in storage and computational require-
ments. We also present our extension to an algebraic
exact simplification method for simplifying hierarchical
classifier solutions.

1. Introduction

Multiclass pattern classifiers have significant appli-
cations in many real-life problems. Recent compara-
tive studies have argued that Support Vector Machine
(SVM) based classifiers provide the best results on a
wide variety of data sets [1]. SVMs were originally de-
signed for binary (two-class) classification. Direct ex-
tension of SVM to multiclass classification is not at-
tractive due to the complexity of the associated opti-
mization task [2]. Therefore, multiclass problems are
usually solved using several independent binary classi-
fiers [3, 4].

Figure 1 shows the basic architecture of DAG and
BHC for 4-class and 8-class problems respectively.
Each node represents a trained binary-SVM classifier
designed for a specific pair (or set) of classes. Each
of these classifiers take decision based on the asso-
ciated support vectors (si) it has, using f(x) =∑

i αiyiK(x, si) + b. Here, x is the test sample, αis
are the lagrangians and yis are the predictions corre-
sponding to the si. A node contains an array A of scalar
values (αi · yi) (we refer this product as Ai) and an-
other array V of support vectors (SVs). Support Vectors

are of dimension D, where D is the feature dimension.
Clearly, the storage and computational complexity of
each node is proportional to the number of SVs it has.

There are well established methods that reduce the
complexity of SVMs by reducing the number of SVs.
Some of them are exact simplification methods while
others aim at approximate reductions. Burges [5] intro-
duced a method for determining a reduced set of vec-
tors from the original SVs. The reduced set of vectors
is computed from the original support vector set such
that it provides best approximation to the original deci-
sion surface. However the method proved to be com-
putationally expensive. Downs et al. [6] presented a
method for exactly simplifying SVM solutions. The
method eliminates unnecessary SVs and modifies the
Lagrangians of the remaining SVs so that the solution
remains unchanged.

In this paper, we describe an effective multiclass re-
duction using an ideal data structure, exploiting the re-
dundancies in hierarchical classifiers. We also propose
an algorithm that extends the application of exact sim-
plification method for further reduction in classification
time.

2. Multiclass Data Structure

In this section, we describe first a Multiclass data
approach for efficiently storing and accessing SVs
(Fig. 1.c). It consists of two major components. First
one is a set of nodes, each of which represents a modi-
fied independent pair-wise classifier node. Second one
is a list of vectors L, containing reduced set of SVs for
the multiclass problem. The effectiveness of this ap-
proach comes from the following change in the node
structure. The first scalar array A in the node is retained
as such, while the second array of vectors that stored the
SVs in the original node are replaced with a scalar array
INDEX . This second array now stores the index po-
sitions of the corresponding SVs, that are moved to list
L.

A primitive implementation treats the pairwise clas-

2/ 4

1/ 2 2/ 3 4/ 3

2 3 41

Not 1
Not 2

Not 3
Not 3

Not 4Not 2

1/ 3

Not 3 Not 2Not 4Not 1

1/ 4

Not 1Not 4

..

α . y SVs

..
a1 SV − 1
a2

SV − k

SV − 2

ak

A V
(a)

..

α . y SVs

..
a1
a2 SV − 2

ak

A V

SV − 1

SV − k

g beca d f h

a, e, c, g Vs b, d, f, h

a, c Vs e, g b, d Vs f, h

b Vs de Vs ga Vs c f Vs h

(b)

(N−1) Vs N

....

..

...

...

1 Vs 2
a1
a2

ak

1 Vs N
1

SV − 1

SV − 3
SV − 2

Reduced list ofA
SVs(L)

SV − R

2
1
0

SV − ’R−1’

SV − ’K+1’
SV − K K−1

K

R−1
R−2..

R−1

K
K−1

.2.
R−2

..
1
0

K−1

Node 1

Node (N−1)

Node N(N−1)/2

INDEX (c)

Figure 1. (a)DAG with independent binary classifiers. (b) BHC architecture (c) Storage schema
for multiclass problem. Support vectors are stored in a single list (L) uniquely.

sifiers as independent. Such an implementation treats
the set of SVs that belong to a particular binary classi-
fier to be independent of SVs that belong to other binary
classifiers. Hence it stores the SVs of each binary clas-
sifier at the corresponding node(See 1(a), (b)). This
multiclass implementation breaks the independence as-
sumption and maintains a single list (L) of all SVs,
thereby allowing component binary classifiers to point a
single instance of the shared SVs. Thus it brings a true
and exact multiclass reduction, exploiting the redundan-
cies in a multiclass scenario. This helps in scaling the
solution for large classes as explained below.

Suppose we have a DAG with S support vectors and
only R of them are unique. Though MDS adds an extra
storage (S× i) for indexing, it is negligible considering
the amount of reduction in the storage of SVs for large
class problems. Our experiments show that for a 300-
class problem R is only 1% of S. As N increases, the
space reduction approaches S−R

S
, since the space re-

quirement of A and INDEX are negligible compared
to that of SVs. SVs are stored as a vector/array and not
as a list of index and content.

Though the N(N−1)
2 pairwise classification problems

are independent, we observe that many of these classi-
fiers share SVs. This is because of the fact that SVs are
the samples on the class boundaries. Therefore, even
if the number of classes increase, the unique SVs in
the solution increase only marginally. This is the pri-
mary reason for obtaining very high reduction in space
requirement. Figure 2 shows that as many binary clas-
sifiers as there are in the decomposed solution, the de-
pendency among them will also be high for any type of
kernel. i.e. the number of shared SVs is more. Hence,
as we combine the SVs of the binary classifiers into a
unique reduced set, the reduced set converges only with
SVs from a fraction of binary classifiers.

Algorithm 1 shows the computations performed by a

0 N(N−1)/8 N(N−1)/4 3*N(N−1)/8 N(N−1)/2
Nodes−Binary SVMs

No
. o

f S
Vs

 in
 re

du
ce

d
se

t

Linear

Polynomial

RBF

R

R/2

R/4

R

3R/4

Figure 2. Dependency analysis

binary SVM for classifying a sample. It makes use of
the MDS architecture. The costly kernel evaluations are
saved for duplicate SVs and thus achieving a significant
reduction in the evaluation cost.

Algorithm 1 SVM CLASSIFY(Node, Sample)
1: for i = 1 to (Node→NumOfSVs) do
2: index← (Node→ INDEX[i])
3: if FLAG[index] = 0 then
4: KERNEL[index]← K(Sample, L[index])
5: FLAG[index]← 1
6: end if
7: Add KERNEL[index]× (Node→ A[i]) to D

8: end for
9: Add (Node→ b) to D

10: RETURN sign of D

11: END SVM CLASSIFY
In all our experiments, SV M light [7] implementa-

tion was used as binary classifier. There are multiclass
SVM implementations available from libraries such as
LIBSV M , SV Mmulticlass, and SV MTorch. LIB-
SVM stores the SVs uniquely, similar to the approach
discussed above. However it needs to be refined for op-
timizing the kernel evaluations for a large class prob-
lem for minimizing the redundant kernel evaluations as

the 1. SV M light computes a single linear weight vector
w =

∑
i αiyisi for linearly separable problems. There

exists a large number of real life problems that are lin-
early separable. So the binary classifier stores only w
and need not require the SVs for classification. There-
fore the multiclass solution stores only (N(N − 1)/2)
linear weights and uses (N−1) of them for classifying a
sample in the case of a DAG. Though this linear weight
method gives better space reduction for 10 and 50-class
problems, MDS has better reduction for large classes,
since R < N(N − 1)/2 for N >= 100.However,
R > (N − 1) for all N = 10 300, hence lin-
ear weight method has faster classification rate. (The
serious limitation of the linear weight method is that it
is not applicable to non-linear kernels). While handling
a large class problem, usually the model file(file con-
taining classifier parameters and SVs) size will be in
Gigabytes. Hence it is a advisable to write the model
file in binary format to reduce the storage requirement.

Table 1 shows the results against two UCI data sets.
The reduction in SVs for linear and polynomial kernels
are observed to be closer, while RBF kernel gives higher
reduction rate. Because RBF solution picks more sam-
ples as SVs, that leads to more redundancy among the
SVs from the binary solutions. Also, comparing the re-
sults from PenDigits and Letters data sets shows that
the reduction rate increases with increase in number of
classes, irrespective of the type of kernel used.

Experiments with large class character recognition
data set, with 300 classes, were performed to test the
scalability of our proposed implementation. A 10 class
problem , a subset of the dataset, gives 66.02% reduc-
tion in SVs and 15.47% reduction in the classification
time, while we obtain 98.5% of reduction in SVs and
60% reduction in classification time for linear and poly-
nomial kernels on the 300-class data set. This huge re-
duction in storage is in comparison with a direct/native
implementation assuming that each node is solving an
independent problem. The time reduction is lesser than
the reduction in SVs obtained, since classifying a sam-
ple involves only N−1 binary classifiers and not all the
N(N − 1)/2. The reduction in SVs gradually increases
as N goes from 10 to 300. All our experiments are con-
ducted on DAG, but similar kinds of reduction can be
achieved in a BHC also.

3. Hierarchical Simplification of SVs

Downs et al. [6] introduced a method called Exact
Simplification for recognizing and eliminating unneces-
sary SVs in SVMs. The method reduces a given set of
SVs by finding those SVs that are linearly dependent of
other SVs in the feature space and removing them from

Data set Kernel No. of SVs
Name Type IPI(S) MDS(R)

PenDigits Linear 5788 2771
Poly. 3528 1777

(10-class) RBF 67450 7494

Letters Linear 113249 15198
Poly. 80553 12961

(26-class) RBF 482975 18666

Table 1. MDS Vs IPI on UCI data sets.

the solution. Suppose we have a support vector solution
that has r SVs that determine the decision surface

f(x) =

r∑

i=1

αiyiK(x, si) + b. (1)

Now suppose that SV xk is linearly dependent on
other SVs in the feature space, i.e., K(x, sk) =

r∑
i=1,i6=k

ciK(x, si), where the ci are scalar constants.

Then the solution can be simplified as f(x) =
r∑

i=1,i6=k

αiyiK(x, si) + b, where αi are the updated La-

grangians that keeps the solution otherwise unchanged.
A direct extension of this exact simplification to any

hierarchical multiclass SVM solutions is to apply the
reduction method on each of the component classifiers.
This reduces each component classifier by removing a
subset of SVs, leaving only the linearly independent
SVs in their corresponding solutions. However, the ob-
tained reduction from each component classifier need
not be the best for the overall multiclass solution. At the
same time, the method cannot further eliminate any SVs
since all of them are now linearly independent within a
component solution.

We can eliminate SVs further from the solutions of
the component classifiers, if we break the linear inde-
pendence. This is possible if we add new vectors to
each component solutions. Suppose we have a compo-
nent classifier that has a reduced set of SVs I that are
linearly independent. We could add a new set of vectors
to I to get an extended set of vectors E. If the extended
set of vectors are no longer linearly independent, then
we can further reduce the component classifier by elim-
inating many SVs. Note that while we are eliminating a
subset of SVs from I , we have already added some new
vectors to the solution to get the benefit. The addition of
new vectors is justifiable and do not bring any extra cost
when we add the SVs that belong to component classi-
fiers that are up in the hierarchy in a decision path to
the one at a lower level for reducing the later. Since the
kernel computations K(x, si) for those SVs once com-
puted at any component classifier higher in the decision

path are reusable anywhere down the decision path.
The hierarchical simplification involves two steps as

given in Algorithm 2. The algorithm also simplifies a
multiclass solution exactly, by reducing the number of
SVs as explained below.

Algorithm 2 Hierarchical Exact Simplification(HC:
Hierarchical Classifier)

Step 1: Individual component reduction.
for each component classifier (node) ′X ′ in HC do

Reduce ′X ′ using Exact Simplification method.
end for
Step 2: Reduction across component classifiers.
for each decision path ′P ′ in HC do

for each internal node ′X ′ in ′P ′ do
Extend the set of SVs in ′X ′.
Identify the linearly dependent SVs ∈ X and elimi-
nate them.

end for
end for
Suppose a component classifier X has its solution of

the form Equation 1. Let V denote the set of SVs in the
solution. Step 1 of the algorithm reduces V to a subset
I of SVs and the solution becomes

f(x) =

r∑

i=1,si∈I

αiyiK(x, si) + b (2)

Step 2 of the algorithm now adds a set of SVs A that are
picked up from any of the component classifiers above
X in the decision path. Let A = a1, a2,, ak be the
SVs with corresponding Lagrangians αa1

, αa2
,, αak

that are added to I . The exact simplification method is
now applied on the extended set E = I ∪ A. Let a set
of SVs R ⊆ I are recognized as linearly dependent on
other SVs ∈ E in the feature space, i.e. for each sk ∈

R, K(x, sk) =
∑

si∈(I−R)

ciK(x, si) +
∑

aj∈A

cjK(x, aj)

where the ci and cj are scalar constants.This allows the
algorithm to eliminate the SVs ∈ R from E resulting in
a reduced set V = (I−R)∪A. Hence the final solution
for X is of the form

f(x) =

r∑

i=1
si∈(I−R)

αiyiK(x, si)+

k∑

j=1

αaj
yaj

K(x, aj)+b

(3)
Note that the lagrangians of the SVs ∈ A are now up-
dated as per the exact simplification method. However
this updated values are only used in computing the so-
lution for X , leaving the original lagrangians at the cor-
responding component classifiers intact.

Table 2 shows the computational advantage obtained
by applying Algorithm 2 on standard datasets. The ex-
tended set in Step 2 was obtained by adding all the SVs

Dataset Reduction(%)
(# Class) #Dim. Step 1 Step 2 Overall

PenDigits (10) 16 85.42 71.49 95.84
Letters (26) 16 94.87 17.78 95.60

OptDigits(10) 64 59.25 54.92 81.63
Vowel(11) 10 76.89 68.90 92.81

Table 2. Reduction in classification time
(using linear kernel).

from nodes that are higher in a decision path to a par-
ticular node to reduce the later and the procedure was
repeated iteratively. Note that the computational advan-
tage comes with an additional storage requirement of
modified lagrangian values. The reductions obtained
are problem dependent in both the steps as also ob-
served by Downs et al. [6] in their experiments.

4. Conclusion

In this paper we have presented an efficient method
for implementing multiclass solutions. We had shown
that our method reduces both space and time complexity
significantly on multiclass problems and the reduction
becomes enormous on large class problems. The hier-
archical exact simplification method reduce the number
of necessary support vectors. However as the number
of classes increases, the increase in number of decision
paths becomes a challenge for scalability that needs to
be addressed in future.

References

[1] R. Caruana and A. Niculescu-Mizil, “An empirical com-
parison of supervised learning algorithms,” in ICML,
2006.

[2] N. Cristianini and J. Shawe-Taylor, An Introduction to
Support Vector Machines and Other Kernel-based Learn-
ing Methods. 2000.

[3] J. Platt, N. Cristianini, and J. Shawe-Taylor, “Large mar-
gin dags for multiclass classification,” in ANIPS, pp. 547–
553, 2000.

[4] T. K. Chalasani, A. M. Namboodiri, and C. V. Jawahar,
“Support vector machine based hierachical classifieds for
large class problems,” in ICAPR, 2007.

[5] C. J. C. Burges, “Simplified support vector decision
rules,” in ICML, vol. 13, 1996.

[6] T. Downs, K.E.Gates, and A. Masters, “Exact simplifica-
tion of support vector solutions,” in Journal of Machine
Learning Research, vol. 2, pp. 293–297, 2001.

[7] T. Joachims, “Making large-scale svm learning practi-
cal,” in Advances in Kernel Methods - Support Vector
Learning,MIT-Press, 1999.

