
Algebraic Splats Representation for Point Based Models

Naveen Kumar Bolla and P. J. Narayanan
Center for Visual Information Technology, IIIT Hyderabad.

{naveenb@research., pjn@} iiit.ac.in

Abstract

The primitives of point-based representations are in-
dependent but are rendered using surfels, which approxi-
mate the immediate neighborhood of each point linearly.
A large number of surfels are needed to convey the exact
shape. Higher-order approximations of the local neigh-
borhood have the potential to represent the shape using
fewer primitives,simultaneously achieving higher rendering
speeds. In this paper, we propose algebraic splats as a
basic primitive of representation for point based models.
An algebraic splat based representation can be computed
using a moving least squares procedure. We specifically
study low order polynomial splats in this paper. Quadratic
and cubic splats provide good quality and high rendering
speed using far fewer primitives on a wide range of mod-
els. They can also be rendered fast using ray tracing on
modern GPUs. We also present an algorithm to construct
a representation of a model with a user-specified number of
primitives. Our method to generates a hole-free represen-
tation parametrized by a smoothing radius. The hole-free
representation reduces the number of primitives needed by
a factor 20 to 30 on most models and by a factor of over
100 on dense models like David with little or no drop in
visual quality. We also present a two-pass GPU algorithm
that ray-traces the algebraic splats and blends them using
a Gaussian weighting scheme for smooth appearance. We
are able to render models like David at upwards of 200 fps
on a commodity GPU using algebraic splats.

1. Introduction

Despite triangles being the traditional primitives for ren-
dering, the point based representation has become popular
in the last few years. The major reason is the flexibility
and topology independence that comes with isolated points.
We also see triangle meshes becoming denser with triangles
projecting to a small number of pixels on the screen. The
screen resolution is not growing as fast as the density of the
triangles. Point-based representations can exploit this situ-
ation better.

Point based models can be visualized by rendering the
points directly. This requires a very large point cloud to
approximate the shape well. Points need extrapolation to
appear as a continuous surface as we move closer to the
surface. Splats or surfels are popular to extrapolate points
in a small neighborhood. They linearly approximate the sur-
face near the point. Various algorithms for point based rep-
resentation and rendering based on linear splats were dis-
cussed in the survey [14]. Surface splats are piecewise lin-
ear primitives which provide a least square approximation
to the smooth surface. Differential geometry states that el-
lipse shaped splats provide the best linear fit. Circular splats
are easier to render and provide similar quality [14].

Figure 1. Top two spheres rendered using
3200 linear (left) and quadratic (right) splats.
Bottom spheres rendered using 52 linear and
quadratic splats. Non-linear splats can ap-
proximate the shape better with fewer points.

Large number of linear splats are needed to represent the
shape of most smooth models. Since the number of lin-
ear primitives needed is large, the rendering is slow. Non-
linear patches can approximate the shape of the model well
in large neighborhoods. Thus, piecewise non-linear patches

Sixth Indian Conference on Computer Vision, Graphics & Image Processing

978-0-7695-3476-3/08 $25.00 © 2008 IEEE

DOI 10.1109/ICVGIP.2008.93

71

Sixth Indian Conference on Computer Vision, Graphics & Image Processing

978-0-7695-3476-3/08 $25.00 © 2008 IEEE

DOI 10.1109/ICVGIP.2008.93

71

Sixth Indian Conference on Computer Vision, Graphics & Image Processing

978-0-7695-3476-3/08 $25.00 © 2008 IEEE

DOI 10.1109/ICVGIP.2008.93

71

can represent the model using fewer number of primitives
with same or better quality than linear primitives. Although
rendering a non-linear patch is slower compared to a linear
splat, overall speed of rendering could be improved. The
approximation error can also be less using a small number
of higher order primitives. Figure 1 shows the advantages
of using non-linear splats over linear ones. Quadratic splats
can approximate a sphere even with a few tens of primitives.

In this paper, we consider splats that have an algebraic
form. Specifically, we use primitives defined by polynomial
functions in the local neighborhood. We call these primi-
tives algebraic splats. We represent a given point set with a
user-specified small number of algebraic splats with optimal
rendering quality. This is done by decimating the point set
and jointly approximating each using a local algebraic sur-
faces based on the MLS procedure. Our rendering provides
smooth surfaces with normals everywhere. We can render
polynomials directly on today’s GPUs using ray-tracing be-
cause of the semi-implicit nature of the splats in the local
reference domain. Our method is efficient and can repre-
sent and render the David model using about 30K (or 0.8%)
algebraic splats with little or low reduction in visual quality
(Figure 2) at 220 fps. We show results on several standard
models in this paper.

Figure 2. David model rendered using around
30K algebraic splats at 220 fps on nVidia’s
GTX 280.

1.1. Related Work

The important feature of point-based graphics is mesh
independent surface reconstruction. A point set surface
(PSS) [2, 3] is a smooth representation of a set of points
constructed an MLS technique [15]. As an approximation
scheme, moving least-squares is insensitive to noise and can
be approximated locally [15]. Many formulations of PSS
are used for surface reconstruction [4, 8, 9], with linear ren-
dering primitives. The Algebraic Point Set Surfaces (APSS)
[10] locally approximate the data using spheres instead of
points, which significantly improved stability of projection
under low sampling conditions. APSS gives good approx-
imation of the shape at sharp edges. Sphere fitting mech-
anism uses algebraic distances between points instead of
geometric distances. The planar MLS can be obtained as
special case of the APSS projection.

The second class of surface approximation algorithms
are based on Multi-level Partition of Unity (MPU) [20].
Their representation is defined by a blend of locally fit-
ted implicit quadric. Sparse Low-degree IMplicits (SLIM)
[19], approximate the geometry using bi-variate polynomi-
als. Efficient rendering is done by blending the primitives
in screen space. A GPU based rendering algorithm was also
proposed for them [12]. However this approach still suffers
from the polynomial fitting limitations and does not prop-
erly define a smooth surface due its view dependent nature.
These are sensitive to noise and are variant to the rigid trans-
formations. These surfaces are parametrized over an ε-ball
neighborhood of points, which is not a suitable for irregu-
larly sampled or noisy models.

Several ray tracing techniques for PSS on CPU have
been proposed [1, 24], but are slow. Recently Linsen et
al [16] proposed a splat based ray tracing of point clouds
on CPU. GPU rendering is more popular these days and
high-level primitives for GPUs are being proposed for ray
tracing [21]. Several methods for GPU-based ray tracing of
implicit surfaces have been proposed [7, 13]. Sigg et al [22]
rendered molecular models directly using spheres, cylinders
and ellipses using ray-casting. Stoll et al [23] proposed an
incremental ray casting method for quadratic surfaces on
the GPU. Loop and Blinn proposed a GPU based algorithm
for rendering up to fourth order algebraic surfaces defined
by tri-variate Bezier tetrahedra [18].

2. Algebraic Splats

There are many ways to approximate the surface from
an unstructured point cloud. Moving Least Squares (MLS)
surfaces are attractive as they can be constructed using local
computations. The MLS procedure approximates the local
neighborhood by defining a polynomial of second, third or
fourth order in a local reference domain. The smoothness of

727272

the surface can be controlled and the approach is well suited
to filter noisy input data. We create algebraic splats from
the MLS polynomials by bounding each to a disc in the lo-
cal parametric domain. These polynomials can be rendered
directly using ray tracing.

2.1. Moving Least Squares

Moving Least Square approximation has two stages.
First, a local reference domain, Hi, at a point ri is es-
tablished by fitting a weighted least square plane to the
points in the neighborhood. The normal (n,D) is esti-
mated by minimizing

∑N
j=1 (〈n, pj〉 −D)2 θ (||pj − qi||)

where qi is the origin of the plane and pj is a point in
neighborhood of ri. The projection of ri onto the plane
is used as the origin. In the second phase, a local bi-
variate polynomial approximation gi of surface, S, is com-
puted in the local reference domain (ui, vi, ni) by optimiz-
ing
∑N

j=1 (gi (uj , vj)− fj)2 θ (||pj − ri||) , where (uj , vj)
is the projection of pj onto H and fj = 〈n, pj − ri〉 is the
height of pj over H . The weighting function θ is a smooth,
positive, monotone decreasing function θ, such as the Gaus-

sian given by θ (d) = e(
−d2

h2). In practice k nearest neigh-
bors of ri only are used for the computation.

There are many variations and extensions [6] to the orig-
inal MLS surface approach [15]. Original approach some-
times exhibit undesirable behaviors for sharp features. In
this paper,we have used original MLS surface approach
[15]. Our method is independent of MLS surface approxi-
mation method used. Other variations and extensions which
generated algebraic MLS surfaces be can be easily fit into
this formulation. For example, the MLS surfaces can be
generated by Robust MLS[9], which preserves the sharp
features.

2.2. MLS to Algebraic Splats

The MLS surface fits the points in its local neighborhood
defined by hi. We generate an algebraic splat for point ri by
bounding its MLS approximation, gi (u, v), to a disc around
projection of ri on the planeHi. The algebraic splat at point
ri is thus defined in coordinate frame (u, v, n) as

gi(u, v)− n = 0, (1)

subject to
||u2 + v2|| ≤ R2

i , (2)

whereRi = f(hi). MLS surfaces are infinite surfaces in lo-
cal reference domain but are correct only in the local neigh-
borhood. Disk bounded MLS surface in local-reference do-
main is called an algebraic splat. Figure 3 shows the re-
lationship between MLS surface and algebraic splat in the
local domain. These splats are semi-implicit in nature and

provides a descent compromise between explicit represen-
tations and implicits like MPUs and RBFs. MLS technique
makes it easy to compute the intrinsic properties of the sur-
face such as normals. A model consists of non-conforming,
intersecting and overlapping, algebraic splats. Since al-
gebraic splats are derived from MLS surface approxima-
tion, these splats obey all the properties of MLS surfaces.
Algebraic splats of any order can be generated by control-

Figure 3. Algebraic splats are the MLS sur-
face restricted by a disc at the origin in local
reference domain. The cylinder in local refer-
ence domain bounds the MLS surface.

ling the degree of the polynomial used in the MLS approx-
imation of the surface. We restrict our attention to the sec-
ond, third and fourth orders as they are powerful enough to
approximate local neighborhood.

2.3. Algebraic Splat Representation

We want to approximate the shape of the model using as
few higher order splats as possible. This has two aspects.
First, the point set needs to be decimated or approximated
using a fewer number of points. Second, a non-linear splat
needs to be computed for each point in the reduced set with
reference to the original point set. We can either generate a
representation given an overall quality factor or a represen-
tation with user-specified number of algebraic splats.

2.3.1 Generation of a Single Algebraic Splat

Let P be the point set. The process to generate the algebraic
splat for a point ri ∈ P is given below.

1. Compute local feature size hi for each point ri ∈ P .

2. Compute the MLS approximation at point ri using P .

3. Generate the algebraic splat ai as (oi, ui, vi, hi, Ci).

An algebraic splat is represented by a tuple
(oi, ui, vi, hi, Ci), where oi is the origin of the local
coordinate system. It is defined as the projection of ri on
the local plane Hi used in MLS approximation. ui and vi

define the axes of the local ortho-normal coordinate system

737373

at ri. The third direction can be calculated using ui and
vi. Ci gives the coefficients of the bi-variate polynomial
gi. The number of coefficients depends on the order of
the polynomial. We need 6, 10 and 15 coefficients for
quadratic, cubic and quartic polynomials respectively. hi

can be used to specify the cutoff radius for the polynomial
in the local neighborhood and depends on the local feature
size.

The local feature size hi plays a major role in approxi-
mating the model. A small value of hi makes the approx-
imation more local and large values of hi smooths out the
sharp features. We define hi as the average local distance
between the points and calculated by:

1. Find k nearest neighbors of ri.

2. Project each to the plane Hi.

3. The hi is the mean distance in the (u, v) space.

2.3.2 Hole-free Algebraic Splat Representation

An MLS surface can be defined at every point of the point
set. It approximates the local shape at each point in its own
neighborhood. Since a splat at a point is able to approximate
shape in some neighborhood of radius shi, we can discard
points within the distance shi in parametric domain, where
s is a quality factor. At s = 1, the radius of splat is equal
to the local feature size. If s < 1 then more points are
included in the final hole-free representation of model. If
s > 1 the more points gets discarded and quality decreases.
The following algorithm gives a hole-free representation of
P , parametrized by a quality factor s.

1. Remove a point pi (possibly at random) from P , add it
to the set S of selected points.

2. Discard all the points from P that are inside a circle of
radius shi, the cut-off radius for algebraic splat pi.

3. Continue doing this until all the points are exhausted
from P .

4. Output algebraic splats for each point in S.

S gives a set of points for a hole-free representation of the
model using algebraic splats. The selection of points in step
1 can be improved to get a better or optimal hole-free repre-
sentation at a higher computational effort. Number of points
in the final set S depends on the quality factor s. By chang-
ing it we can control LOD of the model. Our experiments
show that the hole-free set S has fewer than 10% of the
points for most models at s = 1.

2.3.3 Fixed Size Algebraic Splat Generation

We describe how a model can be approximated using a
user-specified number of algebraic splats. The decima-
tion method should preserve the local structure. Lipman
et al [17] proposed a parametrization-free projection for ge-
ometry reconstruction using the Locally optimal projection
(LOP) operator. We use the LOP operator for decimation of
the point set as it can adapt to the local structure well.

The LOP operator projects a set of points X = {xi} ⊂
<3 to an input set of points P = {pj} ⊂ <3. Points in X
move in each iteration of LOP so as to reduce the sum of
weighted distances to P . After several iterations, the points
in X are regularly distributed into the input-point cloud. If
we start with M arbitrary points as the set X , an optimal
approximation of P usingM points can be obtained on con-
vergence.

This gives an optimal representation of the original shape
with M points. LOP is a slow process, however the number
of iterations needed for convergence will be less if the set
is close to input-point cloud. We combine decimation and
algebraic splat generation as follows.

1. Select M random points from the input cloud.

2. Apply LOP operator between these points and the in-
put point cloud P till convergence, resulting in the dec-
imated set D.

3. For each point in D, compute its MLS surface using
the set P ∪D.

4. Output the algebraic splat for each ri ∈ D. Calculate
the local feature size using the decimated set D.

The decimated point set D is regularly distributed into
the shape of the model and gives an optimal approximation
of model. This process is able to generate a algebraic splat
representation for any user specified number of points.

2.4. Approximation Error

The error of approximation at point pi in the original
point cloud is due the combined error of the near by over-
lapping splats. The error at a point pi is given by

δi =
∑
j∈J

εijθ (||oj − pi||) , (3)

where εij is the MLS approximation error at point pi due
to splat aj , J a set of overlapping splats at point pi and oj

the center of the splat aj . The total approximation error, Φ,
of the algebraic splat representation is the sum of deviations
of the point set from the surface defined by algebraic splats
and can be given by

Φ =
N∑

i=1

δi (4)

747474

The MLS surface approximation error ε depends on the
local feature size h, but is bounded [2, 3]. This ensures to-
tal weighted approximation error of algebraic splats is also
bounded. If f is the blended surface represented by non-
conforming algebraic splats and g is the surface represented
by point set then upper bound on the error of approximation
is defined as ||g − f || ≤ L · hm+1, where m is the degree
of polynomial and L is the constant that involves (m+ 1)th

derivative of f , i.e., M ∈ O
(
fm+1

)
. If h is high, the error

increases, the surface is smoothed.

Figure 4. Types of ray surface intersections
for an algebraic splat. The smaller black dots
are the desired points. Some of the bigger
dots may be closet ray-surface intersection
but falls outside algebraic splat radius.

3. Rendering Algebraic Splats

Algebraic surfaces can be rendered either as a 0-set sur-
face using marching cubes or by ray tracing. Ray tracing
method is a match for rendering on today’s GPUs. This
is because of the independence and parallelism offered by
GPU. Each ray-surface intersection is independent of others
and the equations can be solved in parallel.

We ray trace each splat individually and independently.
Since the splat is a local approximation, we need to ray trace
only a small region on the screen for each splat. The com-
putation depends on the total area we are tracing rather than
the window size. This is an output sensitive rendering algo-
rithm. Bounding the rendering area can improve the speed.

3.1. Single Splat Rendering

A screen space bounding box is first computed for each
splat. A splat is ray traced only inside its bounding box.
This generates the fragments necessary for finding ray-
surface intersection. The information required to ray-trace

Figure 5. Comparison of the head of David.
Top Left: Linear splats; Top Right:Quadratic
splats; Bottom:Cubic splats. The model used
had 500K splats for linear, 36K for quadratic
and 29K for cubic.

ith splat are sent from CPU through the pipeline. Since a
splat has its own coordinate system, the camera center and
the ray are transformed to local coordinate system for ray
tracing. The equation of a ray is Rf = ci + t ~df , where
ci is origin of rays for ith algebraic splat, t is ray parame-
ter and ~df is direction of ray for fragment f . Equation 3 is
transformed to ray parameter space as follows:

Ff (t) = gi(cx + tdx, cy + tdy)− (cz + tdz) = 0, (5)

where Ff (t) is a polynomial in t. The smallest positive
real root inside the disc gives the closest point of ray-
algebraic splat intersection. ui, vi of desired root should
satisfy ‖u2

i +v2
i ‖≤ R2

i . Figure 4 shows various types of ray
surface intersection possible.

If algebraic splats are at most fourth order, Equation 5
can be solved analytically. For quadratic splats, Ff , can
be solved trivially. We use the simple and robust method
proposed by Blinn to solve cubic splats [5] and the Ferrari
method to solve quartic splats [11].

The normal of the surfaces is given by the surface gradi-
ent ~∇{gi(u, v)− n} at the point of intersection. The nor-
mals are transformed to the camera coordinates and are used
in lighting calculations.

3.2. Rendering Multiple Splats

The final representation consists of an algebraic splat for
each point in D, each needing 16-25 floating point numbers
depending on the degree. These numbers are packed into

757575

Figure 6. Rendering of the head of David with linear, quadratic, and cubic algebraic splats. All the
models used 400K splats.

Figure 7. Rendering of Armadillo with 12K,
Ball Joint with 6K, Dragon with 42K and
Happy Buddha with 24K algebraic splats us-
ing hole-free representation.

a 2D texture and stored on the GPU memory. Each splat
occupies a 2D section to take advantage of texture caching.
Each splat can be accessed by vertex shader and rendered as
described above. The rendering of these splats directly can
create discontinuities at intersection. The surfaces need to
be blended to have a visually smooth approximation. Each
splat is ray-traced as described in 3.1. A 2-pass rendering
algorithm is used to blend close by overlapping surfaces
[26].

The first pass is the visibility pass. In this pass, the ray-
surface intersection is calculated by using an appropriate
root finding methods. The solution is discarded if the in-
tersection falls outside the bounding circle of radius Ri.
The depth for each intersection point is shifted away from
camera by certain percentage of current depth, say δ, and
sent to the z-buffer. The closest z value remains in z-buffer.
This ensures that all surfaces within the δ distance will be

Figure 8. Comparison of linear and quadratic
for same quality. Left and Middle images are
rendered with s = 0.25 and s = 0.50. Right im-
age is rendered using quadratics with quality
factor s = 1. These are rendered at 98, 141
and 262 fps respectively.

blended in the second pass.
In second pass, blending is turned on. The colors and

depths of the ray-surface intersections that differ by less
than δ are blended along the ray. Early z-culling will ensure
that the farther splats are quickly discarded. The output of
the color buffer after second pass is (

∑
αiCi,

∑
αi), where

αi is the weight given to the point and Ci = (ri, gi, bi)
is the color after shading. The weight αi decreases expo-
nentially with the distance from oi in the local reference
domain. The net effect is similar to EWA splatting used
with linear splats [26]. Final step normalizes the texture
per-pixel and writes it to the color buffer. The color written
is (
∑
αiCi/

∑
αi, 1.0). This ensures that the splat points

within the δ-distance of the closest splat are interpolated.

4 Results and Discussion

We tested our scheme on models with points ranging
from 32K to 3.6M points. These are approximated using
MLS surfaces of second, third and fourth order. As the or-
der of algebraic splats increases, similar quality of render-
ing is achieved with less number of primitives. Figure 5
shows the quality of rendering with decreasing number of

767676

Model
Hole-free Representation LOP Sampling [10%] LOP Sampling [5%] Linear

#splats (% of total) FPS #splats FPS #splats FPS at s=0.25
Quadric Cubic Quadric Cubic Quadric Cubic FPS

David 29769 (0.8) 220 135 360K 43 22 180K 91 38 22
Angel 7270 (3.0) 390 191 23K 164 102 11K 290 196 92

Armadillo 6567 (3.8) 350 186 17K 187 123 8K 300 210 110
Bone 5324 (3.9) 270 158 13K 193 120 6K 260 170 125

Bunny 1315 (3.6) 401 190 3K 220 130 1K 315 160 261
Dino 2292 (4.0) 393 206 5K 298 185 2K 490 300 194

Dragon 17,653 (4.0) 198 119 43K 158 92 1K 215 141 40
H.Buddha 14,897 (2.7) 240 159 54K 167 75 27K 200 129 45

Horse 2983 (6.1) 460 220 4K 350 245 2K 560 311 260
Igea 4819 (3.6) 221 148 13K 170 110 6K 240 310 135
Lucy 9123 (3.5) 290 143 26K 165 297 13K 248 155 102
Santa 3922 (5.1) 418 213 7K 350 205 3K 436 304 284

Sphere 112 (3.5) 540 341 321 315 235 161 460 389 440

Table 2. Comparison of rendering speed of models using algebraic splats for hole-free representation
of model on nVidia’s GTX280.

Figure 9. Rendering of Igea model with fixed
size sampling at 2, 5 and 10% of points from
the complete model using algebraic splats.

primitives as order of primitives increases.
For a given number of splats the shading quality in-

creases as the order of splats increases. Figure 6 shows the
rendering of linear, quadratic and cubic algebraic splats at
400K points. The third order splats brought out more detail
with equal number of points on some models. The quartic
splats were equivalent to the cubic ones in quality (the 4th

order coefficients were close to 0) but were much slower to
render.

The observe that shading quality increases as the order
of splats increases.Figure 9 shows the rendering quality of
LOP sampled models. Using very few (less than 5%) of
points in LOP sampling we can see some holes on the fore-
head of Igea. This is because LOP distributes fewer points
in the flat regions. As the number of points increases the
points density in the flat regions also increases and hence
the quality also increases. So, with algebraic splats we can
get same or better quality than linear splats at higher fps.
See figure (8).

Model #Splats Algebraic splats SLIM[12]
G1 G2 G3 G3

Lucy 130K 92 49 11 7
Armadillo 24K 168 94 39 23

Dino 6K 308 180 87 44
David 932K 18 10 4 3
David 126K 108 69 14 7

Table 1. Comparison of the FPS of algebraic
splat rendering on G1 (nVidia GTX280), G2
(nVidia 8800 GTX), G3 (nVidia 7900 GTX) with
SLIM surface rendering on G3 for equal num-
ber of primitives. The Hole-free represen-
tation with s = 1 is comparable in quality
with SLIM and achieves much better render-
ing speeds (see Table 2).

Figure 7 shows comparison of Armadillo, Ball-joint,
Dragon and Happy Buddha models using hole-free repre-
sentation of point set with quality s = 1. Table 2 shows the
rendering speed achieved with second and third order alge-
braic splats. The hole-free representation for linear splats at
s = 0.25 equals hole-free representation at s = 1 for higher
order splats for most of the models. All the readings are
taken with 512x512 rendering window on nVidia GTX 280.
The hole-free representation gives comparable quality with
SLIM and requires less number of primitives. This may be
due to inability of SLIM to approximate over large neigh-
borhoods due to its view dependence nature. With algebraic
splats, we can represent the point based models with less
number of primitives with little or no drop in visual quality.

777777

Table 1 gives comparison of rendering speeds with SLIM
and algebraic splats. At a given number of splats, the alge-
braic splats performs better.

One of the limitation of this method is that sharp edges
are smoothened out. This can be solved using other MLS
formulations such as [9]. The hole-free representation may
not give optimal representation or placement of splats. Get-
ting optimal representation is computationally expensive.

5. Conclusions and Future Work

We introduced the algebraic splats for point based model
contrary to existing linear splats. These splats were based
on Moving Least Square surfaces. These piecewise splats
are rendered directly by a two-pass GPU algorithm. Al-
though hole-free representation requires fewer points it
gives comparable visual quality with SLIM. We also dis-
cussed an algorithm based on LOP operator to generate the
algebraic splats for a user specified number of primitives.
Thus algebraic splats have potential to represent large point-
based models using few primitives with little or no drop in
visual quality. Large models can be rendered at interactive
speeds on commodity GPUs.

We are implementing adaptive anti-aliasing for ray-
tracing. The silhouette pixels can be detected using first
order derivative of the function. These silhouette pixels will
be sub-divided into a nxn grid of sub-pixels. A grid of rays
are intersected with the splats at those pixels. Anti-aliasing
is achieved at the cost of rendering speed.

6. Acknowledgments

We gratefully acknowledge the partial financial support
provided by the Naval Research Board of India. We also
acknowledge Stanford University for making the data on
David available for our research.

References

[1] A. Adamson and M. Alexa. Ray tracing point set surfaces. In
SMI ’03: Proceedings of the Shape Modeling International
2003, page 272, 2003.

[2] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin,
and C. T. Silva. Point set surfaces. In Proceedings of the
IEEE Conference on Visualization VIS, pages 21–28, 2001.

[3] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin,
and C. T. Silva. Computing and rendering point set sur-
faces. IEEE Transactions on Visualization and Computer
Graphics, 9:3–15, 2003.

[4] N. Amenta and Y. J. Kil. Defining point-set surfaces. ACM
Trans. Graph., 23(3):264–270, 2004.

[5] J. F. Blinn. How to solve a cubic equation, part 5: Back
to numerics. IEEE Computer Graphics and Applications,
27(3):78–89, 2007.

[6] Z.-Q. Cheng, Y.-Z. Wang, B. Li, K. Xu, G. Dang, and S.-Y.
Jin. A survey of methods for moving least squares surfaces.
In Symposium on Point-Based Graphics, 2008.

[7] E. de Groot and B. Wyvill. rayskip: faster ray tracing of
implicit surface animations. GRAPHITE, 2005.

[8] S. Fleishman, D. Cohen-Or, M. Alexa, and C. T. Silva. Pro-
gressive point set surfaces. ACM Transactions on Graphics,
22(4):997–1011, 2003.

[9] S. Fleishman, D. Cohen-Or, and C. T. Silva. Robust mov-
ing least-squares fitting with sharp features. ACM Trans.
Graph., 24(3):544–552, 2005.

[10] G. Guennebaud and M. H. Gross. Algebraic point set sur-
faces. ACM Trans. Graph, 26(3):23, 2007.

[11] D. Herbison-Evans. Solving quartics and cubics for graph-
ics. In Graphics Gems V, pages 3–15, 1995.

[12] T. Kanai, Y. Ohtake, H. Kawata, and K. Kase. Gpu-
based rendering of sparse low-degree implicit surfaces. In
GRAPHITE, pages 165–171, 2006.

[13] A. Knoll, Y. Hijazi, C. Hansen, I. Wald, and H. Hagen. In-
teractive ray tracing of arbitrary implicits with simd interval
arithmetic. Interactive Ray Tracing, 2007. RT ’07, pages
11–18, Sept. 2007.

[14] L. Kobbelt and M. Botsch. A survey of point-based tech-
niques in computer graphics. Computers and Graphics,
28(6):801–814, 2004.

[15] D. Levin. Mesh independent surface interpolation. Geomet-
ric Modelling for Scientific Visualization, 2003.

[16] L. Linsen, K. Muller, and P. Rosenthal. Splat-based ray trac-
ing of point clouds. In Journal of WSCG, volume 15, 2008.

[17] Y. Lipman, D. Cohen-Or, D. Levin, and H. Tal-Ezer.
Parameterization-free projection for geometry reconstruc-
tion. ACM Trans. Graph, 26(3):22, 2007.

[18] C. Loop and J. Blinn. Real-time GPU rendering of piecewise
algebraic surfaces. ACM Trans. Graph., 2006.

[19] Y. Ohtake, A. Belyaev, and M. Alexa. Sparse low-degree
implicits with applications to high quality rendering, feature
extraction, and smoothing. In EG Symposium on Geometry
Processing, 2005.

[20] Y. Ohtake, A. G. Belyaev, M. Alexa, G. Turk, and H.-P. Sei-
del. Multi-level partition of unity implicits. ACM Trans.
Graph., 22(3):463–470, 2003.

[21] S. M. Ranta, J. M. Singh, and P. J. Narayanan. GPU objects.
In ICVGIP, volume 4338 of LNCS, pages 352–363, 2006.

[22] C. Sigg, T. Weyrich, M. Botsch, and M. Gross. GPU-based
ray-casting of quadratic surfaces. In Symposium on Point-
Based Graphics, pages 59–65, 2006.

[23] C. Stoll, S. Gumhold, and H.-P. Seidel. Incremental raycast-
ing of piecewise quadratic surfaces on the gpu. IEEE Sym-
posium on Interactive Ray Tracing, pages 141–150, 2006.

[24] I. Wald and H.-P. Seidel. Interactive ray tracing of point-
based models. In Proc. of the Eurographics Symposium on
Point-Based Graphics, pages 9–16, 2005.

[25] M. Zwicker, M. Pauly, O. Knoll, and M. Gross. Pointshop
3D: An interactive system for point-based surface editing.
In ACM Trans. Graph., 2002.

[26] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface
splatting. In SIGGRAPH ’01: Proceedings of the 28th an-
nual conference on Computer graphics and interactive tech-
niques, pages 371–378, 2001.

787878

