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Abstract

We present a non-photo realistic, real-time painterly ren-
dering technique for terrains. The painterly appearance
and the impression of terrains is created by effectively ren-
dering several brush strokes. The strokes have fixed loca-
tions on the surfaces of the terrain during animation to en-
able frame to frame coherency. The strokes are rendered as
alpha blended sprites in two-dimensions and are oriented
along the slope of terrain analogous to the way artists paint
on canvas. By exploiting the regular nature of terrain data,
we create pre-decided rendering depth orders for primitives
for any camera orientation. With this, we avoid the neces-
sity of sorting the primitives of sprites required for alpha
blending. We use DirectX10/SM4.0 based shaders to render
strokes to improve performance. Being distributed on ter-
rain, strokes get cluttered when they are closely located on
screen. We follow a level of detail scheme that maintains a
uniform stroke density in screen space. Various styles can
be achieved with different stroke variations. Phong shading
the rendered output in real-time is possible for more varied
styles. We achieve painterly rendering in real-time with a
combination of object space positioning and image space
rendering of strokes. We illustrate our method with images
and performance results.

1. Introduction

The intentions of an artist come out as the aesthetics and
expressiveness of the painting. The accurate rendering done
by computers fails to provide images with a such a feeling.
Animations are therefore often created by artists by paint-
ing a number of frames and is a tedious job. Computers have
been used over the years to generate the surrounding envi-
ronments of the main characters. This reduces the artist’s
effort, but leads to a visual disparity between the hand
drawn objects and the environment. Painterly rendering,
a non-photo-realistic rendering technique, can bring artis-

tic abstraction to the rendering and thus mix the computer
generated scenes with the hand drawn elements. Therefore,
painterly rendering has attracted the attention of graphics
researchers. Creating abstraction of landscape and terrains
seems an interesting problem since they are common in
artistic creations and animations. Painterly rendering tech-
nique for general polygons exists. These cannot be applied
directly to terrains because of level of detail complexities
and richness due to long view range. An optimal composi-
tion of terrain rendering methods and painterly rendering is
essential for real-time performance and high quality output.

The regular nature of the terrain data make them a spe-
cific type of model. We exploit this special nature of ter-
rains to provide efficient painterly rendering for them. A
technique to order the triangles of a terrain from back to the
front is at the heart of this. We achieve an fps of 120 on
Puget Sound terrain data on the Nvidia 8800GTX GPU. In
this paper we present a real-time painterly rendering tech-
nique to make abstractions of terrains. We also emphasise
our results with post processing for varied stylizations.

The organization of the paper is as follows: We de-
scribe related work in the next section (section 2). A brief
overview of the system is mentioned in section 3. In sec-
tion 4 we show the representation of terrain data and stroke
textures. Here we also explain view frustum culling and
level of detail management. Section 5 shows the method
in which we are ordering the strokes in back to front or-
der. Technique for rendering the strokes is mentioned in
section 6. Illustrations and the performance of our system
are discussed in section 7. We conclude with a discussion
on technical aspects and aesthetic considerations with some
future works in section 8.

2. Related Work

Abstract representation of still images was introduced by
Haeberli [5] using image color gradient and user interactiv-
ity for painting. Hertzmann [8] places curved brush strokes
of multiple sizes on images for painterly rendering. The
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technique fills color by using big strokes in the middle of
a region and uses progressively smaller strokes as one ap-
proaches the edges of the region. Shiraishi and Yamaguchi
[19] improves the performance of above method by approx-
imating the continuous strokes by placement of rectangular
strokes discreetly along the edges to create painterly appear-
ance. Santella and DeCarlo[18] uses eye tracking data to
get points of focus on images and create painterly render-
ing with focus information. All these techniques work well
on single images but involve iterative techniques that make
them cumbersome for real-time applications [10]. Also if
they are applied on each frame of an animation indepen-
dently, it can lead to a flickering of strokes due to inco-
herence of strokes between frames. Painterly rendering has
been tried and made coherent on videos as well [11], [7],
but these techniques are not well suited for 3D rendering.

Painterly rendering for animation was introduced by
Meier [17]. She eliminated shower door effect and achieved
frame to frame coherence by rendering several brush strokes
whose positions stick the 3D model’s surfaces. However,
view dependent sorting of these strokes is required for alpha
compositing, making it unsuitable for real-time animations.
Recent work [6, 1] describe a real-time painterly process
inspired by Meier using programmable graphics hardware.
They render the polygonal model first and store the depth
map. A second pass uses the depth map to remove occluded
strokes so that the strokes/billboards can be rendered in any
order. For a complex and distant scene, such as a terrain, the
inaccuracies due to precision in the depth map and compari-
son at boundaries can reduce the visual quality. Terrains are
rich models containing many samples and should be ren-
dered with large view distances. Other modes of NPR have
been created in past for terrains. Pen and Ink approaches
[12, 3] exist which mostly focus on silhouette of the ter-
rain. These are, however, different than painterly rendering
process.

Partitioning the terrain into fixed size square patches at
different resolutions is gaining popularity due to fast hard-
ware. The tiled structures provide compact representation
and easy rendering [20, 4]. Losasso and Hoppe introduced
geometry clip-maps, a multi-resolution, fixed memory size
scheme for efficient representation and rendering of large
terrains [15]. While other terrain rendering schemes could
also have been followed, we choose the tile based repre-
sentation since it promises better regular spacings in screen
space between samples which will be used as stroke po-
sitions while rendering. We built our painterly rendering
system over the terrain rendering system explained in sec-
tion 4 which can achieve 150 fps with an average rate of
84 million triangles per second and a highest of 200 million
triangles per second on current GPUs.

3. Overview of our Approach

Terrains are heavy objects, often involving millions of
triangles in each frame. Conventional two-pass painterly
rendering techniques will be inefficient for them. We com-
bine painterly rendering with terrain rendering optimally for
real-time performance. We treat each height in the elevation
map of the terrain as a stroke’s location in the 3D world.
Fixing the positions of strokes in 3D keeps them coherent
between frames while animations [17]. The point location
is projected on 2D screen using projection transformation
and a rectangular stroke is rendered at that location, orien-
tated along the projected slope of the terrain (see Figure 1).
Real-time performance is obtained using the following.

1. Only the strokes of the visible part of terrain are ren-
dered for efficiency. This is achieved with a view frus-
tum culling algorithm.

2. The strokes are rendered in a back to front order for
alpha compositing. We exploit the special property of
terrain representation to obtain the back to front order-
ing in one pass. This is explained in Section 5.

3. The level of detail of the terrain is changed smoothly
with distance from the viewpoint. This avoids the
problem of strokes getting cluttered at far distances,
which can be visually distracting. Level of detail also
reduces the rendering load.

The whole terrain is kept in the CPU memory. A section
of it needed for rendering is cached on the GPU memory
as elevation maps. Corresponding section of color texture,
normal map, and the slope map are also stored in the GPU’s
texture memory. The terrains are cached in terms of 1024×
1024 blocks and are rendered in terms of 64× 64 tiles. The
tile is the basic unit for rendering, view frustum culling, and
LoD management.

Figure 1. Each height in the height-map is
converted into a rectangle which is oriented
along the terrain’s slope at that point. An 8×8
grid is shown as example.

Each stroke is sent by the CPU as a single point primitive
as a geometry template, which gets converted into a rectan-
gle on which a stroke texture is mapped. This is accom-
plished with DirectX10/SM4.0 based shaders explained in
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section 6. Each point on the terrain is rendered as a stroke.
The stroke is aligned in the direction of the slope at the 3D
terrain point to imitate how artists draw such scenes. We
render the strokes in the back-to-front order by exploiting
the regular grid structure of tiled terrains. Points of a tile can
be scanned and rendered as strokes in the back-to-front or-
der, based on the view orientation. Eight such orderings are
sufficient to handle any view orientation. The tiles that sur-
vive frustum culling are also rendered in the same order to
provide a back to front ordering for the entire terrain without
sorting. This procedure enables us to render large terrains
at frame rates of 120 and above in the painterly style.

4. Terrain Representation

Our base terrains are 2D grids of heights with a fixed
post-distance in the X and Y directions.Our focus is on
painterly rendering of the terrain at real-time rates without
the CPU, the GPU, or the bandwidth between them becom-
ing the bottleneck. The available terrain data is loaded in
the CPU memory and a contiguous window of the terrain
is kept in the video RAM of the GPU based on the current
viewpoint.

Figure 2. Reference point is at the center of
ground-plane projection of the view frustum
(marked as blue). Reference point is kept
within the 2 × 2 blocks. As it goes out it is
re-centered. The figure assumes 4 × 4 cache
size.

4.1. Representation of data

Terrains are divided into fixed memory-size blocks, each
of which is divided into a number of tiles. A tile is the
basic rendering unit for the CPU. Currently, blocks are of
size 1024 × 1024 and tiles of size 64 × 64. These blocks
are loaded as textures on the GPU memory. We maintain
a GPU cache consisting of N × N blocks which gets up-
dated periodically to hold all the data needed for rendering.
We try to keep the GPU cache symmetric with respect to
the projection of the view frustum on an average “ground”

plane. We do that with the use of a reference point which
is kept close to the center of the GPU cache (Figure 2). We
use the center of ground-plane image of the view frustum as
the reference point currently. This ensures fixed in memory
representation for the terrain.

If the reference point goes beyond the central 2×2 block
of the GPU cache, the cache is re-centered by bringing an-
other row or column of blocks (Figure 2). Since the cache
is maintained in memory as an array of texture ids, re-
centering involves downloading a few blocks to the GPU
and adjusting pointers on the CPU. The data transfer time
is kept small using a job-queuing scheme. The blocks to be
brought in the GPU cache are not done at once, but done
successively in following frames to avoid possible jerks.
The basic terrain system is able to render large, CPU resi-
dent terrains at above 100 fps along with the cache updating
in the background.

Figure 3. Tiles outside view frustum (marked
red) are eliminated. Tiles totally inside (grey
shaded) are rendered with strokes at each
of its sample’s locations. LODs of tiles to
be rendered and the blending factor is calcu-
lated as a function of distance. Fewer strokes
are drawn for a lower LOD tile.

4.2. Level of Detail

The view frustum culling algorithm treats each tile as
basic units. The bounding sphere of tiles are tested against
the six planes of the frustum. On the basis of this, tiles are
marked to be inside or totally outside the frustum, and are
assigned with a LOD number. LODs (Levels of detail) for
a tile include different resolutions of an area on the ground.
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A particular LOD of a tile can be computed by dropping
alternate samples from the better LOD available. Highest
LOD for a tile contains all the samples. We calculate the
rendering LOD of a tile using its distance from the view-
point (Figure 3). Farther the distance, lower the LOD. LOD
l becomes a function of distance d as the integer part of
l = log(1 + d/dt), where dt is a pre-decided LOD transi-
tion distance. When the LOD of a tile changes from one to
another, many samples/strokes may pop up suddenly. For
this, we morph the tile from one LOD to other by fading
the alternative strokes away as they go out and vice versa.
The fractional part of l is used as the morphing factor and is
multiplied to the opacity of alternative strokes in the vertex
shader. While Wagner [20] uses the morphing factor to ge-
omorph two different heights at that same location, we use
it to fade in or fade out the strokes which are coming in and
going out respectively, giving a smooth transition without
popping artifacts.

5. Back-to-Front Stroke Ordering

Figure 4. (a) A tile can be viewed from many
yaw directions, but only eight zones are suf-
ficient for a back to front ordering of sam-
ples in it. (b) Four possible arrangements of
samples for some ranges shown in (a); Other
ranges can be handled in the similar way.

A back-to-front ordering of samples/strokes of the ter-
rain is at the heart of our algorithm. We discretize the
camera yaw into 8 zones of each 45 deg each shown in
Figure 4(a). Each zone corresponds to a particular order
of scanning the heights for guaranteed back-to-front order-
ing of triangles. The 8 zones have unique ordering, four
of which are shown in Figure 4(b). The same scan order

Figure 5. View frustum culling algorithm test-
ing tiles in a specific order depending upon
the camera’s orientation. Here zone 0 is
shown. Such eight orders of testing are pos-
sible as explained in Figure 4.

applies to the tiles inside the view frustum as seen in Fig-
ure 5. In practice, we switch the ordering a little while af-
ter the viewpoint is into the new zone to avoid unnecessary
toggling of the ordering at the boundaries between zones.
Tiles are rendered as VBOs (vertex buffer objects) for good
performance. A single VBO can render any tile, as other
parameters like tile’s world origin, blending factor etc. is
packed up in texture coordinates. For a given range of ori-
entation of the camera, an ordering is fixed. Thus each zone
corresponds to a unique VBO.

The same order is used to scan the tiles for view frustum
culling. Figure 5 shows one out of eight of the possibilities
for tile scanning shown in Figure 4(a). All the tiles far-
ther from the camera get rendered before the nearer ones.
Because of this, all the strokes in the screen in that view be-
come ordered from back to front without the cumbersome
need of sorting. This method is similar to shear-warp vol-
ume rendering [14] in which axis aligned 2D slices of vol-
ume are rendered off-screen, and are stacked into the de-
sired orientation and scale to display the 3D volume. We
are handling 2D surfaces, our method only decides the or-
der of samples and does not suffer from any less accurate
sampling problem that [14] faces.

6. Stroke Rendering

We send points to the graphics pipeline for each stroke
to be rendered. Vertex shader computes the exact world lo-
cation of the stroke at this point. It also calculates the color
from the texture and normal map of the terrain with other
lighting information (the unified architecture of latest GPUs
allow fast texture access from any shader [2]). The alpha of
the point is changed according to the morphing factor de-
cided for that tile from the CPU. The vertex shader forwards
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these things to the pipeline.
Geometry Shader of the GPU can generate primitives

[2]. It converts the single point primitive sent from the CPU
into a rectangle for the brush sprite (Figure 6). The per-
spective division of the graphics pipeline makes the strokes
smaller when they go farther, while painterly rendering
needs constant sized strokes. To compensate for this pro-
cess, the vertices are multiplied with the w value (the per-
spective scale factor) before rasterization. This reverses the
division (Haller and Sperl [6]) and the strokes always main-
tain the same size on the screen. This process can lead to
holes in the surface if the camera goes very close to the
ground for a given point density. We disable the multiplica-
tion at such distances when the strokes start to lose density.

Figure 6. Overview of rendering of stroke.
Each vertex from the VBO gets converted
into a rectangle which is mapped with a
stroke texture.

The generated rectangle is subsequently oriented in
screen space along the slope of the terrain at that location
since artists tend to place their strokes along the slopes of
mountains running down to the valleys. We pre-compute a
slope-map that gives the direction of maximum gradient at
every point in the terrain (Figure 7). Slope-map stores the
gradient vector in the world space, which is accessed by the
Geometry Shader for every sample, is transformed to cam-
era coordinates and to the image space to get the stroke ori-
entation. The fragment shader accesses the stroke texture,
and modulates its color with the color coming in from the
pipeline. Alpha blending happens between these rendered
strokes so that they mix among themselves for a smooth
output. The outline of the whole method is described in
Algorithm 1.

Figure 7. Slope-map, Puget Sound dataset

Algorithm 1 Painterly Rendering of Terrains
1: Load stroke textures st
2: Load terrain height H , color C, normal N , slope S map
3: Create 8 VBOs for different camera yaw-ranges
4: for each frame do
5: Update GPU Cache if necessary (Section 4.1)
6: Find zone q based on the yaw-range of the camera
7: Perform VFC and LOD assignment based on q.
8: for each tile do
9: Send VBO[q]

10: Vertex Shader: Calculate color using lighting
c = f(C, N). Calculate position p using height H

11: Geometry Shader: Generate a quad at p,
orient along slope S, assign color c

12: Frag. Shader: Output color co = mix(c, cst).
At a different render target, output color as normal
of stroke texture Nst

13: end for
14: Phong shade the output using the normal map
15: end for

For more stylizations, we render the normal maps of
these strokes separately as well. We do this with multiple
render targets supported by modern GPUs. In a different
pass, these two outputs are treated as a texture and its nor-
mal map respectively, and are mapped on a screen aligned
quad. With the help of the normal map, the scene can be
Phong shaded with a varying lighting source (Figure 8).
This process is inspired by [9] but we do it in real-time on
rendered outputs harnessing the power of modern GPUs.

7. Results

We built our system and experimented on a Intel Pentium
Core 2 Duo E6400 as the CPU and an NVIDIA 8800GT
as the GPU. We used the OpenGL 2.1 graphics library and
GLSL 1.20 shaders. We chose different screen resolutions
to render upon for speed of alpha blending is screen size de-
pendent. Performance is dependent on stroke size as well.
We choose an optimal stroke size; Small enough to give
good performance but not as small to leave holes in the
terrain. With a resolution of 1024 × 768, we got seam-
less performance with an average triangle rate of 40 mil-
lion triangles per second (Figure 9). With a resolution of
1280 × 1024 we get 35 million triangles per second and
120 fps (average). Traditional two pass painterly render-
ing technique (with depth map computed in the first pass)
had half the performance of our system. We did our exper-
iments on Puget Sound terrain data available from Georgia
Tech website. Blue marble data set was also included in our
experiments. We used some real satellite terrain data-set
and some synthetically created ones as well. We show the
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Figure 8. The color output and the normal
map output of the scene are used to Phong
shade on top of it to stylize it. The effect is
that of shining a spotlight on the painting.
The normal map is contrast stretched here
for visibility.

effects of different stroke directions, with along the slope
direction. In Figure 12 and 10(top-right), the strokes are
oriented along a perpendicular direction to the XY pro-
jection of the normal vector. This simulates the effect of
strokes flowing over the ridges instead of along the slopes.
An artist drawing with strokes of fixed orientation is shown
in Figure 10(bottom-left). Effect of adding small random-
ness to orientations is shown in Figure 10(top-left). Fig-
ure 10(bottom-right) shows the use of a small brush with
sharp strokes. The accompanying video contains painterly
walk-through on Puget Sound data. Some of our results are
shown in Figure 11, 13, 14, 16, 17, 15.
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Figure 9. Walk through over the terrain

8. Conclusion

We presented a real-time painterly rendering technique
for terrains. We get nice visuals with frame to frame co-
herence on animation of the scene. Considering rich nature
of terrains and cumbersome nature of painterly rendering
processes, we get good performance with our system us-
ing latest graphics hardware. Our system being single pass
only, is faster than traditional painterly rendering techniques
involving two passes. With varied stroke textures, and ori-
entations of strokes, different artistic styles can be achieved
with variety of taste. In future, we wish to render terrains
with procedural stroke textures similar to geo-graftals men-
tioned in [16] and [13] to create even varied visuals and
improve performance by optimizing the techniques specifi-
cally for terrains.

Figure 10. (top-left) Strokes placed along
slope with some perturbations in orientation.
(top-right) Strokes placed along the perpen-
dicular to the normal. (bottom-left) Strokes
placed with a fixed orientation. (bottom-right)
A sharp stroke texture. Sky is a pre-painted
texture.
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