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ABSTRACT
The problem of search and retrieval of images using rele-
vance feedback has attracted tremendous attention in recent
years from the research community. A real-world-deployable
interactive image retrieval system must (1) be accurate, (2)
require minimal user-interaction, (3) be efficient, (4) be scal-
able to large collections (millions) of images, and (5) support
multi-user sessions. For good accuracy, we need effective
methods for learning the relevance of image features based
on user feedback, both within a user-session and across ses-
sions. Efficiency and scalability require a good index struc-
ture for retrieving results. The index structure must allow
for the relevance of image features to continually change
with fresh queries and user-feedback. The state-of-the-art
methods available today each address only a subset of these
issues. In this paper, we build a complete system FISH –
Fast Image Search in Huge databases. In FISH, we integrate
selected techniques available in the literature, while adding
a few of our own. We perform extensive experiments on real
datasets to demonstrate the accuracy, efficiency and scala-
bility of FISH. Our results show that the system can easily
scale to millions of images while maintaining interactive re-
sponse time.

Categories and Subject Descriptors
H.3.3 [Information Storage And Retrieval]: Informa-
tion Search and Retrieval—Query formulation, Retrieval mod-
els, Search process, Selection process, Relevance feedback,
Information filtering ; H.3.1 [Information Storage And
Retrieval]: Content Analysis and Indexing—Indexing meth-
ods

General Terms
Algorithms, Design, Experimentation, Human Factors, Per-
formance, Verification
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1. INTRODUCTION
Since the last few decades, huge amounts of multimedia

data are being generated and stored digitally. The reasons
for this are the widespread use of good multimedia cap-
ture devices and the availability of virtually infinite storage
capacity. Even personal collections have become manually
unmanageable. Content-aware automatic multimedia data
management systems are needed to address this problem.
One approach is to annotate multimedia data with textual
tags representing the semantics of the data. However, the
sheer volume makes annotation impractical for most scenar-
ios. Subjectivity of interpretation also renders this approach
inadequate.

This necessitates the use of machine-centric data features
which can be automatically extracted, instead of tags. These
can then be used for indexing, search, retrieval and compar-
ison of multimedia data. All these features are not equally
relevant for all the data objects. Depending on the seman-
tics captured in the data, different features must be given
different weights.

In interactive multimedia retrieval systems, a typical ses-
sion starts with the user presenting the system with a query
object (say an image or a tune) and the system retrieves
the k most similar objects from a database. Similarity is
computed based on the features and weights stored for each
object. The user is then given an opportunity to provide
feedback regarding whether each retrieved object is indeed
similar or not. This feedback is used to modify the feature
weights appropriately and the new weights are then used to
retrieve fresh results for the similarity query.

Thus, multimedia object retrieval sessions consist of iter-
ative feedback loops, where the similarity measure and the
retrieved results are refined continuously. The refinement of
feature weights within a user-session (known as short term
learning) has been extensively studied in the literature [28].

However, a practical multimedia object retrieval system
has various requirements that are not well-supported by the
current state-of-the-art systems. Although the current sys-
tems incorporate novel and elegant ideas, most of them are
built mainly as a proof-of-concept, and not to be deployed
on a large scale. Practical systems have the following broad
requirements:



1. Long-term learning: Practical systems must sup-
port multi-user sessions and the possibility of learning
across sessions (known as long-term learning). Few
studies exist in this domain and most primarily rely
on tedious information processing of feedback logs [8,
14]. Such approaches do not scale up well with the
dataset size in terms of efficiency as well as accuracy.

2. Dynamic data collections: Multimedia data col-
lections are almost always dynamic in nature. Hence
practical systems must seamlessly handle new objects
inserted into the collection.

3. Dynamic indexing: A good index structure is re-
quired to efficiently retrieve multimedia objects that
are similar to a query object [2, 7, 20, 25]. While
many schemes exist in the literature, most of them are
designed to work with a fixed similarity metric. These
do not suit our environment since the similarity metric
depends on the weights of the features, which contin-
ually change with fresh queries and user-feedbacks.

4. Scalability: Typical multimedia collections are not
small by any standards. Web-based systems for search
and retrieval are huge – spanning to millions of ob-
jects [27]. In contrast, most of the existing techniques
have been demonstrated only for much smaller collec-
tions involving thousands of objects.

5. Interactive response: Practical systems must be op-
timized for efficiency to the point where multimedia
retrieval sessions become interactive for a user. The
response time must be suitable for web-based search
engines, where it would be frustrating for users to wait
for more than a few seconds at most.

6. Modular extensible design: In addition to incor-
porating the above requirements, the resulting system
must be easily extensible to new unforeseen require-
ments. This leaves us in favor of systems that are sim-
ple to understand, design, implement and modify. In
contrast, most existing techniques, while being mathe-
matically robust, are complex and hard to “break into
pieces” – a quality essential for extensibility.

In this paper, we build a complete system, FISH – Fast
Image Search in Huge databases. We focus on image col-
lections, although the techniques we discuss are also appli-
cable to general multimedia data collections. We perform
an extensive experimental study to validate these claims on
both real and synthetic datasets. Our results show that the
developed system easily scales to millions of images while
maintaining interactive response time.

The remainder of the paper is organized as follows: In Sec-
tion 2, we review the state-of-the-art image retrieval meth-
ods. We then present FISH, our proposed system and de-
scribe its implementation aspects in Section 3. Our chosen
indexing scheme in described in Section 4. In Section 5, we
discuss the feedback-based learning mechanism (both short
and long term) in FISH. Section 6 presents a series of ex-
periments and discusses their results validating our claims
of efficiency and accuracy. Finally, in Section 7, we conclude
with a few comments on future directions.

2. RELATED WORK
Real-world image retrieval systems must effectively ad-

dress all of the criteria enumerated in Section 1, including
scalability, interactive response time, etc. Most of the listed
criteria have, in isolation, been addressed in the past. How-
ever, the combination of all the listed criteria has so far not
been achieved in a single system. In this section we briefly
review the research efforts closest to our method in vari-
ous aspects of the system pipeline including representation,
learning, indexing, and user-interface.

Representation of visual content of the images has received
considerable attention throughout the history of image re-
trieval [15, 16, 17]. Methods have explored features rang-
ing from simple global color histograms to color layouts and
structures, from point based shape matching to domain cen-
tric structural information and from moment based textures
to wavelet transforms, all the way to robust highly descrip-
tive point-based features such as SIFT. The choice of rep-
resentation is effected by multiple factors like the special
characteristics of the domain of deployment [1], sensitivity
to computation overheads (like SIFT), seamless merger of
learning, etc.

The retrieval of images in response to a query should
match the user’s intent. The machine centric representa-
tions, though efficient for extraction, comparison and index-
ing, are no match for human perception. This requires the
systems to incorporate methods to absorb and use seman-
tic input from some external guide, optimally the human
user, and improve retrieval. This human input is primarily
acquired in the form of his feedback on the relevance and
irrelevance of the images in the set returned to him in re-
sponse to his query. Various aspects of this human input
have been extensively analyzed in literature [28]. They can
be broadly split into two types. One comprises of direct fea-
ture importance modification based methods which either
try to modify the similarity metric by biasing it towards the
more relevant features or else modify the representation it-
self to tune the retrieval [10]. The other category prefers
to improve the feature based classification of images [19].
These approaches primarily improve the performance for the
present query only, better known as Intra-query or Short
Term Learning approaches.

Though most of the approaches discard the expensive and
invaluable feedback from the user after every query session,
some researchers have explored learning from one query to
benefit the subsequent ones. This category of techniques
is known as Inter-query or Long Term Learning methods.
Most of these approaches rely immensely on information
processing of logs of user feedback for a considerable history
of use. Some try to use these behavior logs for estimating
the importance of features and try to predict those for sub-
sequent queries [19]. Others use techniques like SVD, LSI,
Neural Networks etc. [8, 14]. Some of these transform to
a space where the data elements are related conceptually
rather than on features and perform retrieval there. Still
others improve using the logs for improving the classifica-
tion of samples into similarly relevant clusters [26].

The over dependence of some of these approaches on huge
amounts of user logs and while the iterative computational
expense of others, overshadows their effectiveness as real
time online systems and reduces the usability. Most of them
also generally scale up poorly with the volume of data and
users, making them further inapt for the real world.



Scalability to huge datasets is a key in real world systems.
The problem of retrieving the exact k nearest neighbors from
a large dataset is prohibitively time consuming. Thus there
is a need to best approximate the actual k neighbors. A
large body of work explores index structures for supporting
similarity search in large datasets. These involve approaches
like k-d trees [2], R-tree [7], SS-trees [25] and their variations.
An important aspect to keep in mind when choosing an in-
dexing scheme is that most of the popular learning driven
retrieval approaches effect the comparison metric in some
way. This necessitates that the indexing scheme should be
adaptive to changing similarity metrics while the above so-
lutions assume a fixed metric at the time of indexing. They
tune the indexing according to the metric to approximate the
k nearest neighbors and are thus unsuitable in our scheme
of things. There has been some recent work in the area
of efficient search with changing metrics [5, 13]. These ap-
proaches primarily use a branch and bound methodology
for their purpose, which can degrade to exhaustive retrieval
over the entire dataset. Some recent proposals explore the
use of B+ trees [11, 27] for efficient indexing. These schemes
though effective fail to take into account the inherent nature
of the data to form clusters based on a few out of the entire
set of features. The data is generally clustered tightly over
this small subset of dominant dimensions. This pattern of
relative dominance corresponds to a concept in the image,
so there can be many of them in an image. This multiplic-
ity can be handled with some modifications to the scheme
proposed in this work.

User interaction with the system being the key element
in terms of his feedback on the retrieved images, the usabil-
ity of the interface becomes a very important consideration
from the perspective of developing a complete solution. The
interaction stretches from the querying mechanism through
the display of retrieved results to the method of feedback col-
lection. For keeping the querying interface simple, Query by
Example (QBE) and sketching methods should be preferred
over methods requiring low level specification in terms of
features and their weights [3, 21, 24]. Feedback should also
be simplified to optimize learning by increasing the number
of user iterations.

In this paper, we propose some new techniques and adapt
some proposed in literature seamlessly into our proposed
FISH framework. Our proposal uses a set of standard visual
descriptors with a highly adaptive indexing scheme which
supports the inherent organization of data into similarity
clusters. We also adopt a set of popular relevance feed-
back approaches from literature. We propose a highly suited
scheme for inexpensive inter-query learning. We validate all
our claims on a huge real image dataset using FISH, devel-
oped with a usable and effective user interface.

3. THE FISH SYSTEM OVERVIEW
In this section we describe FISH, our system for Fast Im-

age Search in Huge databases. This system effectively ad-
dresses the major research issues plaguing content-based im-
age retrieval systems like accuracy and efficiency and their
trade-off on huge real-life data collections.

In Section 3.1, we describe the overall architecture of the
system, followed in later subsections by details of the mod-
ules. We describe our representation in Section 3.2, query
input and retrieval in Section 3.3 followed by feedback in-
terface and it’s absorption in Section 3.4.

3.1 Architecture
The overall architecture of the FISH system is shown in

Figure 1. Through the user-interface, which is a web-front
end, users (shown on the left in Figure 1) provide query
images to the system.
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Figure 1: FISH System Architecture

The system processes each query image into an internal
representation and searches for similar images in a large
database. The search for similar images is made faster by
the use of an appropriate index structure. The retrieved
similar images are shown back to the user.

The user then has a chance to give feedback to the system
as to whether the retrieved images are indeed similar to
the query image. The system uses this feedback to provide
better results in the next iteration. These iterations are
continued on user’s interest.

The ability of the system to provide better results by
learning the intent of the user within a session is referred
to as short-term learning. In the FISH system, this learned
knowledge is represented succinctly and stored in the “long-
term memory” for providing better results in later queries.

3.2 Features used to Represent Images
Each image in the system is represented as a vector of nu-

meric feature values X1, X2, . . . , XD. The space of possible
vectors constitutes a multi-dimensional space in which each
image is a point.

The general features used in any image retrieval system
are color, texture and shape descriptors. Color descriptors
though weak in description, allow flexibility in use through
variations ranging from the global histogram to the color
layout descriptors. Texture is generally highly dependent
on the homogeneity and regularity of the patterns in pixels.
Shape is difficult to extract and represent.

In FISH we have predominantly used color descriptors for
our features. We have experimentally selected a weighted
combination of third order color moments and some selected
MPEG-7 descriptors [17]. We have chosen to use mean,
variance and skew color moments which capture the orders
of variations of colors in the image. To incorporate texture
information we have included three components from the
Texture Browsing Descriptor(TBD) in MPEG-7 Standard.
We have also included the Color Layout Descriptor and the
Color Structure Descriptor from MPEG-7.

The Color Layout Descriptor(CLD) [12] captures the lay-
out of the colors in the image by incorporating a DCT trans-
form based representation. The color layout descriptor op-
erates in the YCbCr space by breaking up the image into



8× 8 or 64 blocks. Then it computes the dominant color for
each of these blocks. To gain computational efficiency, we
use the average color for this. This forms a 8 × 8 pixel rep-
resentative image. Next, we compute the DCT transform of
this representative image and compute the 8 × 8 DCT coef-
ficients for each of the three channels separately. We then
perform a quantization of these three matrices one for every
channel and select a few of most representative coefficients
from the three channels in a zig-zag scan order to make our
feature vector. Based on MPEG-7 standards we use the top
6 coefficients from the Y channel and 3 from the other two.
We use a weighted combination of these coefficients based
on scan order.

The Color Structure Descriptor(CSD) [18] is a 32-bin quan-
tized representation. It slides an 8×8 window over the entire
image and computes an occurrence histogram for the colors
in the image. This captures the spatial layout of the col-
ors in the image. The result is a spatially augmented color
histogram of the image.

We use a combination these descriptors for our experi-
ments. The dataset of images is indexed on these features.
Feature extraction and indexing on dataset images is done
offline while user-queries are processed online in real-time.

3.3 Obtaining and Processing the Query
The front end is a web-interface designed with a strong

emphasis on ease of use. The design minimizes the efforts
the user has to make while interacting with the system. The
interface includes all the user-friendly features present in
most commercial image search engines. We have minimized
the amount of customization parameters the user has to set
to use the system.

The user may provide the input query image either by se-
lecting one of the displayed images or by providing a URL
to an image. We have strictly avoided low-level methods of
querying present in similar systems described in the litera-
ture, like the user specifying features and weights, etc. [3].

Once the query image is given, it is processed to extract
features (described in Section 3.2) to allow comparison with
images in the database. The system then searches the in-
dexed database of images and returns a set of similar images,
ranked by similarity. We use a weighted Mahalanobis metric
to measure the (dis)similarity between data points. We esti-
mate the covariance matrix using the initial set of database
images. It serves as a good approximation of the actual,
even in the presence of dynamic dataset modifications.

The image results are displayed through the web interface
to the user in the order of decreasing similarity. The results
are displayed in sets of images over multiple pages of results.
Each of these displayed images has the provision of being
queried for if the user wishes so.

3.4 Obtaining and Processing User Feedback
After the result set of similar images is shown to the user,

the web-interface is used to retrieve relevance feedback from
the user. The user is only required to click the images out
of those displayed on the current page to mark them rele-
vant. There are no complications such as the user having
to rank the results based on similarity. This makes it non-
cumbersome for a lay user to interact with the system.

Once the feedback is given, the system absorbs this feed-
back by learning, the mechanism of which is discussed in
more detail in Section 5. Briefly, the system modifies the

weights of features and returns a re-searched set of ranked
images based on the semantics estimated from the current
feedback iteration. Thus the feedback iteratively tunes the
retrieval to match the semantic intent of the user. The
learned weights are also used to update stored parameters
to obtain more accurate results for future queries.

4. INDEXING
In this section we discuss the use of index structures to

quicken the retrieval of similar images. In Section 4.1 we
discuss the selection of an index structure for the FISH sys-
tem. Next, in Section 4.2 we briefly describe its details and
then improve upon it in Section 4.3.

4.1 Index Structure Selection
Image retrieval systems need to retrieve images from a

dataset one by one and compare them with the query image
for similarity. In principle this process can be quickened
with the help of a nearest-neighbor index structure that can
retrieve images in the neighborhood of a query image.

However, most existing indexing schemes require a fixed
similarity metric with which the index is built [2, 7, 25].
Such schemes do not suit our environment since the simi-
larity metric depends on the weights of data features, which
continually change with fresh queries and user-feedbacks.

A few indexing schemes are available for changing simi-
larity metrics [5, 13]. However, most of these enumerate a
large number of candidate images from the dataset before
determining the most similar ones. The reason for this is
that they treat all features (dimensions) uniformly. Real-
life datasets have inherent clusters in them which result in
a highly skewed bias towards specific features.

The lack of a suitable indexing scheme is in fact the major
problem faced by most of the current image retrieval meth-
ods, due to which, they have slow response times.

In FISH, we use an indexing scheme proposed earlier by
us in [11]. It takes advantage of the inherent characteris-
tic of multimedia data to form clusters, shown as a highly
skewed bias towards specific features. While other changing
metric schemes fail to accommodate this skewed variance
the indexing scheme in [11] flourishes in the environment.

4.2 Details of the Index Structure
The index structure in [11] utilizes a B+ tree for each

feature/dimension to store the corresponding feature values.
Assume a query feature vector q is given and we are required
to compute its k nearest neighbors. The indexing scheme
then works as follows:

Each B+ tree is used to find the position where q would
be inserted in it. The data points in the neighborhood of
q are then retrieved. The data points retrieved from all
the B+ trees are merged into a single set and the near-
est t data points (t ≥ k) from q are chosen based on the
weighted distance metric. In this procedure, the B+ trees
are enumerated in the order of decreasing relevance of the
corresponding features. By doing so, the most similar data
points would likely get enumerated early.

This simple approach reduces the search space drastically
by using approximate t-NN samples. [11] shows that the
desired k-NN samples lie among the t retrieved samples with
very high probability. Therefore, the approximation trade-
off is favored. The experiments on input weight vectors by
the authors show commendable performance improvement



over varying dataset sizes and feature lengths in comparison
to many commonly used indexing schemes such as SS-trees,
R-trees, k-d trees, SQL and flat files. In fact, they are shown
to be an order of magnitude better in response time.

4.3 Further Optimization
In this paper, we further propose that even an exhaus-

tive retrieval from all the feature dimensions is not required.
We propose and experimentally validate that using only the
most important few dimensions, a retrieval accuracy at par
with the use of all of them can be achieved. The number of
dimensions to be used for a particular query iteration is not
fixed. We propose an adaptive scheme for dimensionality
reduction which provides tremendous gain in efficiency.

Our formulation uses the feature weights for the present
query to estimate the optimal number of dimensions. This
problem in our case is posed in a pretty simple manner. Un-
like scenarios where inherent manifolds need to be estimated
using computationally expensive techniques, our learning
scheme provides us a weight vector which favors the more
relevant features. This allows us to estimate the reduced
number of dimensions to be used with a simple change mon-
itoring method.

In our proposed dimensionality reduction approach, we
traverse the dimensions in non-increasing order of weights
and merge the samples suggested by each dimension into
a master-list. For every new dimension we first check if
merging the samples suggested by this dimension results in
any change in the master list. If not, then we stop the
traversal and return the current list as the final result set.

This simple scheme saves a lot of computations especially
in later iterations when the learning guided metric is heavily
biased towards a few good features. Experimental results in
favor of this optimization are presented in Section 7.

5. LEARNING
Even the most complex features which can be extracted

from images are far from satisfactory when it comes to se-
mantic retrieval capabilities. This necessitates external in-
put of semantics into the retrieval loop. As the human user
is the best interpreter of visual content, Huang [23] proposed
the use of feedback from the user on the relevance of images
displayed to him in response to his query. They proposed a
series of optimized methods for tuning the retrieval to the
user’s intent iteratively, generally studied under the class of
intra-query or Short Term Learning(STL) methods.

In this section we discuss the approaches we have incorpo-
rated for learning in FISH. We discuss intra-query or short
term learning in Section 5.1 and then our proposed approach
for inter-query or long term learning in Section 5.2.

5.1 Short Term Learning
Researchers have extensively explored the possibilities of

effectively utilizing the semantic input from the user in the
form of relevance of the result images to the query [28]. They
try to infer the semantic intent of the user from the combi-
nation of the relevant and irrelevant images. They then use
this learned information to tune the the retrieval iteratively
to the user’s intent.

Numerous techniques exist for absorbing this feedback
each with it’s own flavor [10]. In the FISH system, we have
implemented a representative subset of these techniques,
from which the user can choose one during operation. These

include: (1) Delta Mean, (2) Inverse Sigma, and (3) Discrim-
inative Variance Most of these techniques operate by biasing
the distance metric in favor of relevant dimensions. We have
selected these techniques from amongst many others primar-
ily keeping in mind the feasibility of real time performance.

We shall now briefly mention the inherent characteristics
of these methods. We, in general, use the following notation:
μj,p and μj,n represent the means of the positive and the
negative samples for the jth feature and σj,p and σj,n their
variances. The xi

js denote the corresponding features for
the ith sample. And np and nn denote the relevant and the
irrelevant subsets of R, the retrieved set of images.

STL Methods.
Delta Mean: If the positive (p) and negative (n) sets are
well-separated it returns a high score for the feature. It fails
if the unimodal constraint on the distribution in the p and
n sets is violated as generally happens over the n set.

sj =
|μj,p − μj,n|
σj,p + σj,n

Inverse Sigma: Here only the p set is constrained and the
peaking of the p distribution is valued. It fails to utilize the
n set. Here
sj = 1

σj,p

Discriminative Variance: This also constrains both the p
and n sets but adds a discriminative edge to InverseSigma
above. Here
sj =

σj,n

σj,p

Any choice of the feature importance based approaches es-
timates the relative importance of the features in represent-
ing the query semantics and uses it to bias the dissimilarity
metric. The score sj is used for incrementally augmenting
the weight, wj , for the corresponding feature and thus tune
the retrieval to the user’s intent as,

wt
j = γ wt−1

j + β sj (1)

where wjs represent the weights for the jth feature after the

(t − 1)th and the tth iterations. The parameters γ and β
control the learning rate. Here sj can be estimated using
any of the above methods.

Processing the relevance feedback from the user with these
returns a vector of weights which characterize the relative
importance of the features. These weights can now be used
for tuning the retrieval by ordering the dimensions for re-
trieval so as to better reflect the user’s intent on the query.

This learning acquired based on the user feedback is an in-
valuable user validated semantic interpretation of the visual
content in those images. However, till date only a handful of
approaches exist which do not discard the learning after ev-
ery query. Most of the learning systems use the intra-query
learning for benefiting the retrieval for the present query
and start from scratch for the next one. As a result they
fail to capitalize on the expensive and informative relevance
feedback from the user.

5.2 Long Term Learning
While short term learning or intra-query learning from

feedback has been extensively researched yet its inter-query
counterpart in “Long Term Learning(LTL)” has for some
reason received little attention.



Initially people talked about query memorization [22]. Lit-
erature mainly discusses the use of huge feedback logs and
information processing techniques to infer semantics and im-
prove retrieval with passing queries [4, 6, 9, 26]. Most of
these approaches are critically dependent on aspects that
make them practically infeasible for large online systems.
Some are overly dependent on huge amounts of feedback
logs [9], while some are concerned with memorization-based
iteratively-improving groupings among images by extending
the feedback to images beyond the marked ones [26]. Still
others use techniques which become infeasible owing to their
computational expense [4, 6, 8, 14]. Few have tried to in-
fer incrementally improving feature weights for improving
retrieval but most of them have had limited success [19].

We propose a novel incremental framework for long term
learning which seamlessly merges with the rest of the FISH
system. In our approach we effectively capitalize on the se-
mantic information about the relevant images acquired at
the end of every query session following iterative refinement
of weights. We use this semantic interpretation for incre-
mentally updating the semantics of visual content for all
the relevant samples in the database. So the image seman-
tics are estimated as relative importance weights for the fea-
tures similar to the weights for the current query as learned
in short term learning iterations.

cij = cij + wj ρ
1

di
(2)

Here i and j denote the image and feature respectively. cij

represents the relative importance of the jth feature in the
ith image. It reflects the long term learning acquired by the
system over all previous queries. The parameter ρ controls
the learning rate. 1

di
denotes a biasing and convergence

factor which makes the change for the ith sample happen
in inverse proportion of this sample’s dissimilarity with the
query.

This formulation is a weighted increment to the learning
accumulated till the end of the present query. The weighing
factor stabilizes the learning by using the amount of time
(number of query sessions) spent in acquiring it. This incre-
mental modification of ci for the ith image converges over
sessions to the concept in that image.

These image centric weights when incorporated in the
similarity metric further tune the retrieval towards images
which are closer semantic matches to the query. The formu-
lation for the dissimilarity gets modified to

di = f(xi, q, w, ci) (3)

A crucial aspect of real world systems is their seamless
performance on dynamic datasets, primarily data additions.
The critical issue in such a dynamic scenario is the manner
in which learning can be transferred to the new samples and
the number of sessions they need before they start showing
up as relevant in the top few images. For a query image,
which is not in the database, the weights obtained through
STL are used as the initialization of LTL.

This proposed approach for long term learning seamlessly
merges into the FISH retrieval framework with a minimal
overhead of parallel on-line computation, independent of the
retrieval. The idea of relative feature relevance based tuning
of the retrieval to the query semantics makes it optimal for
scalability. We showcase the benefits of using this long term
learning across queries in Section 7.

6. PERFORMANCE STUDY
In this section we present our performance model for val-

idating our claims of the FISH system. Our experiments
fall into four categories, namely, (1) System, (2) Relevance
feedback, (3) Long Term Learning, and (4) Optimizations.

The system related experiments validate the performance
claims in terms of scalability and response times. Next we
discuss a series of experiments which showcase the accu-
racy of our system as a result of effective and efficient use
of relevance feedback from the human user. We show our
improvements in performance using precision as the main
performance metric. We also use a relatively new approach
of rank reduction to express the fine improvement in system
response across feedback iterations.

Following it we present a series of results showcasing the
effectiveness of the proposed framework for inter-query or
long term learning through precision gain. In the last part,
we present some results on the optimizations we have incor-
porated in the system to improve performance. We experi-
mentally validate our claim on dimensionality reduction by
restricting the comparisons only to the top few dimensions
rather than exhaustively across all the features.

We have used two types of datasets for our experiments.
For the first of these datasets, we collected around 12000 real
images by mixing the Corel dataset, images crawled from
Flickr with research permissions, Caltech datasets and some
other freely available small collections. This set is manually
annotated. The data set is a mixed set of 58 concepts like
flowers, trains on tracks, horses in the fields, cars, buildings,
mountains, surfers in sea, ships at sea, meadows, airplanes,
guns, cycles, buses and animals.

The selection of samples does not showcase any inherent
visual discrimination among classes. We used this annotated
set for all our accuracy validation experiments. For our sys-
tem related experiments we populated a huge dataset of 1
Million feature vectors. Approximately 400, 000 are above
features extracted from real images collected from the above
sources while the rest were synthesized.

The experiments involving response times and scalability
were performed on a machine powered by Intel Xeon 1.6 Ghz
processor and 8 GB RAM, running on Fedora Core 5 64-bit
operating platform.

7. EXPERIMENTAL RESULTS

Performance - Scalability and Speed.
Scaling of the database in terms of the number of samples,
feature dimensions and user sessions all add a computational
cost. This expectedly leads to slow response for the query.
Through our experiments, we show that our index structure
efficiently adapts to the scale-up without much change in
response time characteristics. The change in response to an
increase in the number of samples in the database is very
gradual and low (as shown in Figure 2). The response time
in this graph has been averaged over a sets of 1000 queries
picked randomly from the dataset images ensuring they are
distributed across most of the classes to avoid any biased
estimates. Each set was used to estimate average response
after insertion of every 25000 samples till all the 1 Million
samples were inserted.

The next experiment, we portray the behavior of the sys-
tem in a dynamic setting where the database is continuously
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Figure 2: Graph shows the response time for queries
with dynamic scaling of the database.
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Figure 3: Graph shows the sample insertion time as
required for the dynamically scaling database.

changing. We simulate the environment by inserting every
query into the database. The plot in Figure 3 of insertion
time Vs the total sample count till that query showcases
the efficient absorption of the new image into the indexing
structure. This experiment effectively shows that the time
to insert new images into the index structure is very small.
The sharp change in insertion time is observed at the time
which can be mapped to splits in the B+ tree leaves.

Short Term Learning.
Here, we first present the results of the experiment we con-
ducted measuring the average accuracy of the results re-
turned in response to a random set of 1000 queries. In
each iteration the top 48 equivalent to first 3 pages of re-
sult images received feedback. We plot the results in terms
of precision Vs iterations in Figure 4. As the approaches
for relevance feedback are similar in their basic nature we
show results based on discriminative variance method only.
Figure 4 showcases the improvement in accuracy with subse-
quent feedback iterations over the same query. As is evident
from the sharp rise of the accuracy over the initial few it-
erations, the system readily absorbs the relevance feedback
from the user and iteratively tunes the retrieval to the user’s
intent. The rise slows down over the later iterations and fi-
nally nearly flattens out showing convergence of retrieval
precision.

The basis of all our claims on performance and effective-
ness is the belief that the data is clustered along only a few
features for any given category of images. This is best ex-
pressed by the weight bias learned by the system towards a
few of the features. We conducted an experiment observing
the feature weights over iterations. We show the results in
Figures 5 and 6 for only a couple of randomly picked sam-
ples due to space constraints. The plots clearly show that
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Figure 4: Graphs shows the Precision improvement
with user feedback iterations or short term learning.

the initially-unbiased weights curve reaches a highly skewed
bias in favor of a few features in the first few iterations itself.

 0  10  20  30  40  50

W
eig

ht
s

Features

Iter1
Iter2
Iter3
Iter4
Iter5

Figure 5: Plot shows how a few of the features be-
come much more important than the rest with feed-
back iterations.
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Figure 6: Another example of feature weight con-
vergence

Next, we present an experimental result which showcases
the improvement in retrieval accuracy with feedback itera-
tions in terms of the ranks of the relevant samples. This
method captures the improvement in retrieval performance
at a finer rank rearrangement level than the standard pre-
cision Vs iteration plot. In this approach we propose to
compute the total summed up ranks of the top N relevant
samples in the ranked retrieval set where the first sample
is the most similar one and is ranked 1. We keep this N
as 10 for our experiment. The guiding principle behind this
method is the belief that in the ideal case all the top N
samples will be members of the query category. As a re-
sult there is a lower bound to which the total ranks should
ideally converge iteratively.

In Figure 7, we plot the values after down-shifting the
entire y-axis by the lower bound. As portrayed by the plot
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Figure 7: Plot shows how the Total Rank of the
Top 10 relevant samples converges towards the ideal
state with feedback iterations.
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Figure 8: Plot shows how the precision for the first
iteration itself improves with long term learning.

the total rank plot averaged over a set of queries converges to
nearly zero on the y-axis. This clearly show the effectiveness
of the learning approaches we have adopted in our system.
The smooth reduction shows effective incremental learning.

The chains of images showcase the retrieval performance
on the working system for a randomly selected query. The
first sub-chain corresponds to the first iteration where there
are relevant and quite a few irrelevant samples, Figure 9. As
can be seen in the subsequent chains (representing subse-
quent feedback iterations) the number of irrelevant samples
continuously falls. This visually showcases that in spite of
the variations of the low level descriptors for the images of
‘trains on tracks’ the learning enables the system to effec-
tively interpret the concept and retrieve iteratively improv-
ing results, through short term learning.

Long Term Learning.
In this series of experiments, we first showcase the improve-
ment in retrieval accuracy of the system across query ses-
sions (users). We plot the precision of the first iteration
averaged over a random set of 1000 queries populated like
in short term learning above. In each iteration the top 48 re-
sults received feedback. The simulation ran for 5 iterations
for each query for 25 user sessions for each. The accuracy for
the next session benefits from the learning acquired in the
previous ones through the inter-query or long term learning
method (see Figure 8).

When we perform weight-driven long term learning the
idea is to identify the features that are relevant to the present
query and use their importance to update their importance
to their parent sample image. If mapped back to the image
pixels these weights will have higher values for the relevant
features – like in the case of a histogram where the highest

Figure 11: Comparison of Precision across Iterations
for exhaustive and optimal number of features

Figure 12: Response Times across Iterations in-
creasing number of features

weighted bin assumes maximum significance to the image.
We can visually evaluate the performance of the system by
analyzing the pattern in learning. We map the weight vector
back to image pixels by making the pixels corresponding to
the highest weight, the brightest. The result is a grayscale
image where the brighter regions in the image are the most
relevant in that image based on the current level of under-
standing of the image’s semantics by the system. This bias
should ideally improve with sessions/users making the rele-
vant regions brighter while the rest darker leading to a naive
region of interest extraction based on long term memory. We
have included a few of the sample dataset images with their
grayscale images in Figure 10.

Performance Optimizations.
We gain tremendous efficiency with a light trade-off in ac-
curacy by performing an approximate k−NN retrieval. We
achieve this by retrieving only a small set of samples inde-
pendently from each of the feature dimensions and merging
them to get the final set. We claim that even an exhaustive
search spanning all the features is excess. Given the fact
that we do a similarity search the loss in terms of accuracy
is negligible in view of the tremendous reduction in response
time. We present two graphs here validating our claims.

Figure 11 plots the precision Vs iteration curves using
increasing number of features. The other graph in Figure 12,
presents the response time Vs iteration curves for the same
scenario. As can be seen from Figure 11 the accuracy with
very few of the most important features nearly matches that
achieved by using all the features while at the same time



Figure 9: Set of ranked results returned by the System in the 1st, 2nd and 3rd iterations (Irrelevant results
highlighted).

Figure 10: The samples show the progressively improving understanding of image content through Long
Term Learning, with passing user sessions.



the gain in response time is tremendous as can be seen in
Figure 12. This tremendous gain in response time for a
possible yet negligible loss in accuracy showcases our claims
on the proposed method for dimensionality reduction.

The results of the extensive experiments analyzed above
validates our claims on the capabilities of our proposed frame-
work for Fast Image Search from Huge databases.

8. CONCLUSIONS
We have developed and presented a complete end to end

system for interactive image retrieval. Our framework seam-
lessly scales to huge databases. It uses relevance feedback
for improving intra and inter query retrieval. Our inter-
face optimizes the interaction by minimizing the load on the
user. We have experimentally validated all our claims on
performance while reiterating the belief that though feature
dependent, the retrieval improves commendably with short
and long term learning. FISH has been designed and devel-
oped on the principles of modularity allowing for effortless
modifications. In future we would like to enable FISH to
also handle multiple concepts in images.
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