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Abstract—In this paper, we present a novel boosted robot
vision control algorithm. This method utilizes on-line boosting
to produce a strong vision-based robot control starting from
two weak algorithms. These weak methods are image-based and
position-based visual servoing algorithms. The notion of weak
and strong algorithms have been presented in the context of
robot vision control. Appropriate error functions are defined for
the weak algorithms to evaluate their suitability in the task. The
integrated algorithm has superior performance both in image
and Cartesian spaces. Experiments validate this claim.

I. INTRODUCTION

Visual servo control or what is also called visual servoing
is a widely used vision-based robot control scheme. In visual
servoing, the control loop of the robot is closed using visual
information. Visual information can be either from the 2D
image space or from the 3D Cartesian pose space [1]. A typical
visual servoing algorithm minimizes an error function between
the current pose (position and direction) of the camera and
the desired one [2]. Many visual servoing algorithms have
been proposed in the literature [3], [4], [5]. They differ based
on the objective function used in the minimization process.
Basically, we have 2D/image-based (IBVS) and 3D/position-
based (PBVS) visual servoing algorithms. Chaumette [1] has
shown that each of these two basic classes of algorithms has
weak points (drawbacks) or potential problems.

The weakness of each algorithm is measured either in the
image space such the ability to keep the features visible during
the servoing process [6], or in the Cartesian space such the
ability to keep the arm in its Cartesian/joint space [7]. This
is in addition to the local minima avoidance (convergence
problem) [8], [9]. The image trajectory of image-based visual
servoing algorithm is a straight line. This ensures the visibility
of image features during the whole servoing process using this
algorithm. However, the Cartesian trajectory is a curvature
path and robot may get out of its workspace. In contrast,
the position-based algorithm keeps the robot in the Cartesian
workspace thanks to the straight line camera path produced
using this algorithm. Unfortunately, the image features are not
ensured to be always visible using this algorithm. Owing to
the complementary properties of the weak points in these two
algorithms, hybrid methods have been recently proposed to

integrate the advantages and discard the drawbacks.

Recently, in addition to providing accurate control signal,
research on hybrid visual servoing has focused on addressing
issues like feature visibility, local minima aviodance, faster
convergence, short camera path, continuous control signal, efc.
Many of the hybrid methods address the above mentioned
issues by integrating the 2D and 3D information in the feature
space [8], [9], [10] or in the action space [11], [12], [13], [6].

The 21/2D visual servoing method [9] decoupled the rota-
tion motion from its translational part considering one visible
image point during the servoing process. In this method, the
homography matrix that relates image points in the current and
desired views is decomposed to extract the required rotation
motion. The translation is controlled using the selected visible
image point. However, there is no knowledge about the camera
path in the Cartesian space. The translation and the z axis
rotation are controlled in [8] using the error information, which
is extracted from the decomposition of the homography matrix.
The rotations about x and y axes are controlled using selected
image point, say the origin of the object. Even though, the two
mentioned methods described in [8], [9] are globally stable,
they are sensitive to noise and measurement errors like all
methods based on homography estimation.

An algorithm which switches between image-based and
position-based vision control algorithms is presented by Gans
and Hutchinson [12], [13]. In this hybrid switching method,
the IBVS and PBVS run independently. Based on satisfaction
of some constraints, a logical decision system switches be-
tween them. Since this method switches between IBVS and
PBVS in binary form, local minima may be reached. Another
principle of switching is presented by Chesi er al. [6]. It
switches between elementary camera motions, mainly rotation
and translation extracted by decomposing the homography
matrix between the current and desired views. In these two
switching methods, the control signal suffers from disconti-
nuity when features approach the image border. They need
large amount of time for convergence. Hafez and Jawahar [11]
present a smooth linear combination of different visual servo-
ing algorithms. The combining weights are computed using
an error function of the weakness of the concern algorithm.
Another hybrid method based on potential fields [7] is pro-



posed for path planning in the image space. This method
introduces the visibility and robot joint limits constraints into
the design of the desired trajectories. Essentially, this is a local
path planning method. The local minima are not ensured to
be avoidable when repulsive and attractive fields are equal.

This paper aims at introducing boosting as a machine learn-
ing algorithm to produce an enhanced vision-based control
algorithm. This open a new direction in research on vision-
based robot control and visual servoing. The work here is mo-
tivated by the recent success of boosting algorithm in solving
computer vision problems. For example, boosting has been
used for face recognition [14], visual tracking [15], feature
selection [16], etc. Most of these use Ada-boost or its variants.
Ada-Boost has been carefully analyzed and tested by many
researchers [17]. We use boosting for efficient positioning
task in active vision systems, and demonstrate on robot vision
control problem.

Here, we utilize on-line boosting to enhance the visual
control from the two basic (image-based and position-based)
visual servoing algorithms. Each of these weak algorithms
performs well only over a subspace of the input domain.
Boosting allows the design of a strong algorithm with higher
performance from multiple weak algorithms. In boosting vi-
sual servoing algorithm, two independent weak robot vision
control algorithms (IBVS and PBVS) are boosted to obtain a
strong algorithm. Since the output of each of these algorithms
is velocity control signal, the final output of the boosted
algorithm is the boosted control signal derived from the
independent IBVS and PBVS algorithms. This has the advan-
tage of running the two simple IBVS and PBVS algorithms
instead of running the hybrid visual servoing algorithm that
has more complicated form. The problem is reduced to the
weighted sum of the output of these two weak algorithms.
Weights are computed from the probabilistic error functions
that are defined for each one of the involved independent
weak algorithms. The error function of the IBVS algorithm is
defined in the joint space to prevent the arm from reaching the
limits of its joints. The error function of the PBVS algorithm
is defined in the image space to prevent the object from getting
out of the camera field of view.

The rest of the paper is a background of boosting and visual
servoing in the next section. In the third section, a proba-
bilistic frame work for integration of different visual servoing
algorithms is presented. Next section is utilizing the boosting
algorithm as an implementation of the proposed integration
framework. This includes a statement of the over all algorithm
and the definition of the error functions (weakness metric)
of the two image-based and position-based visual servoing
algorithm. Experimental results and analysis are presented in
the last section.

II. BACKGROUND OF BOOSTING AND VISUAL SERVOING

Boosting is a general method for improving the performance
of a given algorithm by combining multiple weak hypothe-
ses [18]. In other words, boosting transforms a set of weak
algorithms into a strong one. The question about whether a

weak learning algorithm, which performs just slightly better
than random guessing, can be boosted into an arbitrarily
accurate strong learning algorithm has been posed for the first
time by Kearns and Valiant [19]. However, Schapire was the
first to provide a provable polynomial-time boosting algorithm
in [20].

A. Weak and strong algorithms

Weak algorithms: Let the function y = f(x) that maps
R™ — R™ represents the algorithm that takes = as an
input and results the output vector y. A weak vision control
algorithm is defined here as follows: For a subset X € R"
of the function domain, error e is greater than an e¢. Some
algorithms compute the error e using training data as in the
case of classifiers or could be computed using the actual and
desired output as in the case of control algorithms based on
progressive learning.

Strong algorithms: Given a set of N weak algorithms y; =
fi(x), a strong algorithm is computed as a linear combination
of the N weak algorithms y; = f;(x). This can be written as

N N
Y = F(x) :Z%‘fi(fﬂ) :Zaiyi. (D)
i=1 i=1

A strong algorithm should satisfy the constraint that the error
e<e VYreR™

Let the function e; = p;(y,x) represents the weakness in
the performance of the weak algorithm. This error is increased
when the performance of the weak algorithm y; = f;(z) is
less satisfactory. Weight that determines the contribution of
the weak algorithm to the strong one is defined as

1—€i

o = %ln( ). 2)

€;

This way of weight computation reduces the weight value
when the error increases and the performance becomes more
non-satisfactory, in addition to adding an upper bound to the
weight value that is useful to the process convergence.

B. Image-based and position-based visual servoing

In Image-based visual servoing, the task function is defined
with respect to the error e(s) in the image space, where s is
the vector of the current features position and s* is the vector
of the desired one. The velocity screw using IBVS is given
as [3]

éi(s) = JiV; 3)

Vi==XiJ;ei(s), “4)

where J;" is the pseudo-inverse of the Jacobian matrix .J;.

It is easy to show that the feature trajectory in the image
space is a straight line while the camera trajectory in the Carte-
sian space is unpredictable. See Fig. 1. Indeed, from any initial
state, IBVS moves the image points straight toward its desired
positions in the image. This is subject to the availability of a
good estimate of the depth and robust image measurements.
IBVS is proved to be asymptotically locally stable, but the
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Fig. 1. Feature trajectories in the image space in (a), and the camera trajectory
in the Cartesian space in (b) for the image-based visual servoing algorithm.
The desired positions of the image features are marked by +.
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Fig. 2. Feature trajectories in the image space in (a), and the camera trajectory
in the Cartesian space in (b) for the position-based visual servoing algorithm.
The desired positions of the image features are marked by +.

global stability is not ensured since unpredictable image local
minima and Jacobian singularity may occurs at any time.

In position-based visual servoing, the camera velocity is
defined as a function of the error between the current and
desired camera pose. This error is the transformation Tg *
represented as a (6 x 1) vector e,(s) = [t&*, uf]”.

The velocity screw using PBVS is given as [3]

ep(s) = J,V, ®)
Vo ==\, e (6)

where J, is the interaction matrix [21].

While PBVS minimize the error function in the Cartesian
space, the camera trajectory is a straight line, but the feature
trajectory is not predictable and may get out of the camera
field of view. See Fig. 2. However, PBVS method is known
to be globally asymptotically stable and does not suffer from
any local minima or Jacobian singularity. The global stability
is subject to an accurate estimate of the pose.

III. INTEGRATION BASED USING ON-LINE BOOSTING

The visual data can be 2D visual data from the image space
or/and 3D visual data from the Cartesian space. Using only one
kind of data (2D or 3D) leads to the two traditional image-
based or position-based vision control respectively. Boosted
visual control algorithm consider 2D and 3D algorithms as
weak algorithms. A linear combination of these two weak

algorithms produce a strong algorithm with satisfactory per-
formance. Weights which are used in the combination are
computed based on error function associated with each one
of these weak algorithms.

A. The overall boosting-based algorithm

The task is a robot arm positioning task with respect to
a set of features or with respect to an object that contains
a set of features. Equations (4) and (6) present two weak
vision control algorithms that can be used to perform the said
positioning task. The former has an undesired behavior in the
Cartesian space while the later has an undesired behavior in the
image space. On-line boosting produces a strong vision-based
algorithm using the error functions defined in correspondence
to each algorithm.

The general structure of the algorithm was explained in
Sec II. For each of image-based vision control and position-
based vision control algorithms, the error functions explained
in Sections III-B and given by Eq. (12) and Eq. (15) are
evaluated and used to compute the corresponding weights
o; that gives the current importance to each algorithm. The
weights «; are normalized to sum up to one

_ Q;
;= (=) |; .
i (Z i) |16{IBVS,PBVS}

So, the output of the strong algorithm given in Eq. (1) can be
written as

V=F(zx)= > a;Vi(X). 7
i€{IBVS,PBVS}
or
V=wVipm + (1 —w)Vp, (8)

where, ajpys = w and appys =1 — w.
Algorithm 1 describes details of the on-line boosted vision-
based control algorithm.

B. Error function for image-based vision control

The performance of image-based vision control is measured
by the ability of the working point ¢ of the ith arm joint to
avoid the joint limits {¢’,;,,, ¢%,, } Of the robot arm. The joints
configuration q of a robot arm is acceptable when

Viv qi € [q;:nin + 91117 q’fnal‘ - 9(21} . (9)

Here, 93 is a threshold of the ith joint. The error in the perfor-
mance of image-based control algorithm can be measured as a
function of the distance of the working point ¢’ of the ith joint
to its concerned joint limit 6°. Let the parameter {r{}Y , be
the distance of the joint ¢' to its threshold 0/, at time moment
t, where

-0, —q'}

and N is the number of the joints of the arm.
The error function of image-based visual servoing is as

(10)

[ i % )
r = HllIl{q — Qmin — oqv Amaz

Y



Algorithm 1 Details of on-line boosting algorithm for improv-
ing the image-based vision control and position-based vision
control algorithms

I: Input: A list of input data: The pose P,
at time ¢, image measurements X;  where
X = {zn m € {l,...,M}}, and a set of

the two IBVS and PBVS weak algorithms V; = f;(X),
where j € {IBVS,PBVS}}

2: Output: A strong algorithm V = F(X).

3: for till convergence do

4. for j € {IBVS,PBVS} do

5: Compute the output of the weak vision-based control
algorithm V; fj(X). As in Egs. (4) and (6)

6: Compute the error function for IBVS weak algorithm
€t (ibvs) vaqu el, where ¢! is computed as in
Eq. (11)

7: Compute the error function for PBVS weak algorithm
Ci(pbvs) = Zi\f:dl el, where e! is computed as in
Eq. (14)

8: Compute the weights

1 l—e;
aj = 5In(—~+ }
i ") je{IBVS,PBVS}
9:  end for

10:  Normalize the weights «; to ¢&; to sum up to one.
11:  Compute the output of the strong algorithm V =

F(x) =3 cipvs,pavsy @ Vi(X)
12: end for

) 50 100 150
e disance measurements

Fig. 3. (b) The error function of image-based control algorithm.
Here, o, is selected in such that only working points within
a minimum distance to its joint limits will contribute to the
error function.

The total error function of the image-based vision control
algorithm is given as

N

— q
€t(ibvs) = Z Ct-

q=1

12)

This is the error function of the performance of the weak
image-based vision control algorithm. A plot of the error with
respect to the distance to the joint limit is illustrated in Fig. 3.
Substituting in Eq. (2), we get the associated weight to the
image-based vision control algorithm.

C. Error function for position-based vision control

The performance of position-based vision control is mea-
sured by the ability of keeping the point features (u’,v*) vis-
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Fig. 4.

Fig. 5.

External view of the experimental setup.

ible in the camera field of view. The error in the performance
of position-based vision control can be measured as a function
of the distance of the ith point to the nearest image border or
a threshold 6; of the border. Let the parameter {d:}¥ | be the
distance of the th point to the nearest image border at time
t, where

d'= min{uz — Umin, v — Umins Umaz — uz7 Umaz — ,Uz}’ (13)

and N is the number of image points.

The error function of the position-based vision control
algorithm with respect to one image point is given as

1 d?

oo o
Here, o; is selected in such that only image points within a
minimum distance to the image border will contribute to the

error function.
The total error function of position-based algorithm is given

as
Z ¢

This is the error function of the performance of the weak
position-based vision control algorithm. A plot of the error
with respect to the distance to the image border is illustrated
in Fig. 4. Substituting in Eq. (2), we get the associated weight
to the position-based algorithm.

i
€ =

(14)

15)

t(pbus)

IV. EXPERIMENTAL EVALUATION
A. The Experimental Setup

Our experimental setup consists of a Mitsubishi PA-10 robot
arm, with a Point Grey Flea camera mounted on the end-
effector. The camera delivers 60 fps at VGA resolution, and
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Fig. 6. The end-effector trajectories using image-based in red color, position-
based in green color, and boosting-based in blue color. The task is a 180°
about the camera optical axis.

it is connected through a Firewire port to the computer which
controls the arm. Camera intrinsic parameters are coarsely
calibrated. Though the arm has 7 DOF, only 6 of them are
controlled via Cartesian velocity commands in the end-effector
frame. Fig. 5. shows the external view of this experimental
setup.

The target used in our experiments is made of 4 white points
in a 15 cm square, which is tracked with the ViSP software
[22]. Both 2D and 3D visual servoing tasks are defined, and
the proportional control gain is set to 0.2. In the boosting
algorithm, we set a threshold #; = 25.0 pixels to the image
border. Similar threshold ¢, = 30° is used for the joint
parameters. The values of the parameters o; and o, are set
to 50 pixels and 60 degrees respectively.

B. Results from Positioning Tasks

The most of robot vision algorithms work well for those
task that involved simple motion. They have been developed in
response to specific task but they fail to perform some another
specific challenging tasks. Some of these challenging tasks are
stated in [23]. We carried out the experiments for three of these
challenging tasks. The first task is rotation of 90° about the
camera axis, the second one is rotation of 180° about the same
axis, and the last one is features rotation about an axis in the
object plane involved with general motion.

1) Rotation of 180° about the camera optical axis: This
task is more troublesome for the classical image-based and
position-based methods. In image-based, since the rotation
is 180°, the camera retreats back to infinity. The robot arm
obviously gets out its work space. As illustrated in Fig. 7 (a,b),
the process stopped after around 200 iterations. In position-
based, one feature, that is near to the image border, gets
out of the camera field of view. The process stopped after
approximately 80 iterations as it illustrated in Fig. 7 (c,d). As
it is shown in Fig. 7 (e,f), the process completed successfully
using the boosting-based control law.

The end-effector trajectories in the Cartesian space using
of image-based, position-based, and boosting-based algorithms
are illustrated in Fig. 6 (b). Fig. 8 shows the error functions
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Fig. 7. Trajectories in the image space in (a,c,e) and the screw velocity in
(b,d,f) of the 2D image-based, 3D position-based, and boosting-based vision
control algorithm. The task is a 180° about the camera optical axis.
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Fig. 8. The error functions of image-based and position-based weak
algorithms in (a), and the corresponding weights in (b). The task is a 180°
about the camera optical axis.

of each of the image-based and position-based algorithms as
a boosted weak algorithms in Fig. 8 (a). the corresponding
weights in Fig. 8 (b).

2) Feature point rotation/general motion: This task is to
rotate the 3D feature points about an axis perpendicular to the
camera optical axis and lying in the feature plane. Since the
system needs to perform significant rotation and translation
to nullify the task function, this task considered as one of
the most strenuous tasks. More details about this task can be
found in [23]. The image-based control algorithm is known
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to preform poorly to this task [23]. In our experiments the
process failed after a few iterations. Both position-based and
boosting-based perform well toward this task and better than
image-based. There is an advantage of boosting over position-
based at the convergence phase: oscillations are smaller, due
to the integration and merging with image-based. By compar-
ing between the 3D and boosting-based kinematic screws in
Figs. (9 (b,d), one could say that, in boosting, the oscillations
at convergence are lowered by more than 20%.

V. CONCLUSION AND FUTURE WORK

The on-line boosting algorithm has been used to improve
the performance of each one of these two algorithms. It
deals with them as weak algorithms associated with error
functions that describe the weakness in the performance of the
algorithm. These weak algorithms can be linearly combined
to produce a strong algorithm with satisfactory performance.
The constraints of the features’ visibility in the image and the
joint limits of the arm are used to define the error functions
and compute the suitable weights.

It is shown that boosting algorithms can be generalized to
much more than classifications and recognition. It can be used
for vision control application. In the same time, vision control
algorithms are shown to be significantly improved in both,
the performance and implementation aspects. Experiments has
been curried out and showed a significant improvement to the
performance of the classical vision-based control algorithms
in both image and Cartesian (joint) space.
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