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On-line Convex Optimization based Solution for Mapping in VSLAM

A.H. Abdul HafeZ, Shivudu Bhuvanagiti K Madhava Krishnaand C.V. Jawahar

Abstract— This paper presents a novel real-time algorithm  sensitivity of L., to noise and outliers while the former one
to sequentially solve the triangulation problem. The problem s robust. However, the solution in [5] becomes a local so-
addressed is estimation of 3D point coordinates given its |45 py considering the.,, norm as an objective function.
images and the matrices of the respective cameras used in the Later, it was shown that another robustness technique can
imaging process. The algorithm has direct application to real 7 e q_
time systems like visual SLAM. This article demonstrates the Pe introduced to the minimization of the., norm while
application of the proposed algorithm to the mapping problem  retaining the ability to produce a global solution [6].
in visual SLAM. Experiments have been carried out for the A wide variety of multi-view computer vision problems
general triangulation problem as well as the application to can be solved efficiently by minimizing thé., norm

visual SLAM. Results show that the application of the proposed . S
method to mapping in visual SLAM outperforms the state of USING CONVeX optimization framework. These problems may

the art mapping methods. include triangulation, camera re-sectioning, plane tanela
homography construction, estimation of camera motion with
. INTRODUCTION a given rotationgtc. [2], [4]. However, the existing frame-

gvork is suitable only for problems related to building a mode

The triangulation problem in computer vision is defined a ; ) : :
f a given environment. For example, given a video sequence

the estimation of an unknown 3D point given its images fron? " .
different views: the camera pose parameters are assum h a calibrated camera, the 3D model of the scene can be

to be known. Convex optimization techniques produce ah |ciently built. This is usually "_”OW” in. computer vision
optimal solution for this problem by minimizing thé .. community as thebatch processingechniques. However,

norm. This paper deals with the case when the imaqgany computer vision problems need to be processed

and camera information are available sequentially. A new '€ satisiying the real time constraints.

image measurement and the corresponding camera matrix ar(;rhIS paper demonstrates the adaption of tnangulation

assumed to be provided at every time instant. The solutiol?erb!em totreal t|?1e sTu?tl?r?s. TIO t_adap; tt: the rgal time
needs to be recursively integrated with time while keepin%eqUIremen s, We formulate the solution ot the guasi-cenve

the optimality of the solution through convex optimization roblem using bisection "’F'go”th”_‘ as an on-_lme recursive
o i method. The only sequential solution to the minimization of
Convex optimization has been widely accepted as a pow-

erful tool to solve many engineering problems [1]. Its use hat ~ norm has been recently proposed in [7]. On contrary to

b . - . -the method in [7] we do not assume an initial solution of
een extensively explored for solving a family of geometn(i . . . o . .

. . - , . the problem is available. This solution is obtained by ragni
reconstruction problems in computer vision. A wide vanetyt

he full bisection algorithm which is usually time consuigin

of computer vision problems can be reformulated as conv owever, the algorithm proposed in this article keeps track
optimization problems by some algebraic manipulations [Zf ' 9 prop . PS
f the changes in the estimated variables by updating the

Convex optimization, most importantly, does not have tite pi ~, .~ . ; . .
. . . . . —_objective function and runs only one or two iterations of the
fall of local minima assuring to achieve an optimal solution, . : : . o
bisection algorithm. It starts from a uniform distributiarf

In addition, Jacobian estimation through building a lifezd the unknown variable and at each iteration it updates the
model is not required in contrast to iterative minimizationob.ective function @iving an approximated estimgte of the
methods like gradient descent and Newton methods. Th ) gving PP

T . L State variable. These estimates are assumed to converge to
optimization is done here by replacing the norm objective

. . . - .. the accurate solution after a few iterations.
function by theL., normi.e, the maximum re-projection . . - :
! oo . . The real time solution has applications in many problems
error (image point distance) for a set of image points.

Hartley and Schaffalitzky have shown in [3] that most“ke visual SLAM, structure from motion (SFM), virtual

oo - eality, visual servoing. The adaptation to the real timseca
of the multi-view computer vision problems have a globa . . .
- . demonstrated by our algorithm can be applied to a wide
minimum by minimizing theL., norm. Soon after that

Kahl in [4], and Ke and Kanade in [5] have independentl variety of computer vision problems solved by minimizing

shown that thisl., is a quasi-convex function. Thus, it can¥he Loo USINg cgnve>.< opt|m|;at|on framework. . .
- The sequential triangulation algorithm proposed in this
be efficiently solved as aequence of second order cone

programs(SOCP) using the well known bisection algorithm paper is suitable to be used within VSLAM framework due
The solution proposed by Ke and Kanade [5] uses thfg the analogy of VSLAM problem with the SFM problem.

m‘" smallest normL,,, instead ofL... This is due to the n case enough parallax 'S avall_able, the 3D estimate is
sufficiently accurate and available immediately at the sdco

1 International Institute of information Technology, Gaahibi, iteration (When the second _'mage mefasurer.nent 1S acqglred).
Hyderabad-500032, Indiaaf ez@ esearch.iiit.ac.in For far features, a deterministic estimate is also availabl



at the second observation; it can be also used in the EK& Mapping in Visual SLAM Problem

framework. The feature initialization process in [10] is based on a one

The contribution of the paper is an efficient real timegimensional particle filter to represent the depth of a newly
solution to the mapping problem in visual SLAM. Thegpserved feature. The filter is a set of particles (hypotkese
algorithm can run in the real time since the time needed fapat is uniformly distributed along the projection ray oth
running SOCP program is a few milliseconds (5-8 ms) onlyteature. The image measurements collected from the consec-
It produces a deterministic solution as soon as two imagegive frames are used to iteratively update the distribbutio
are available. The accuracy is reflected by re-projectioorer of the depth particles. The feature initialization procéss
which is as small as 1-2 pixels on average. This technique igmpleted by inserting the estimated 3D feature along with
consistent with the EKF framework for visual SLAM wherejig uncertainty in the map. This insertion is done when the
the inverse depth parametrization is used without any del%pth distribution has converged to Gaussian. One may note
for the feature initialization. that the depth range is limited since the number of particles

is determined in advance and cannot be chosen arbitrarily.
Since the number of depth particles affect the performance

IIl. BACKGROUND OF VSLAM AND MAPPING in the real time, it is chosen in such a way to keep the

computations as less as possible.

The simultaneous localization and mapping (SLAM) [8], On the other hand, in [11] the depth hypotheses are drawn
[9] is the problem of building a consistent map of theuniformly in the inverse depth. This take advantages from
environment,i.e. a set of 3D features or landmarks, whilethe fact that the images of these uniform hypotheses in the
simultaneously trying to localize in the map being coninverse depth appear uniformly distributed along the elpipo
structed. Currently, robotics and computer vision reseens  line corresponding to the concern feature in later views.
have attacked the problem with vision as the primary sensirlg fact, Kalman filter is used to update the inverse depth
modality. Consequently, the problem becomes visual SLAMEStimate due to the near linearity and faster convergence to

Visual SLAM problem is more analogous to the wellGaussian distribution. _
known structure from motion (SFM) problem in the com- More recently, Montielet al. have proposed in [16], a
puter vision community. Particularly, successful resultge ~ Unified inverse depth parametrization for monocular SLAM.
obtained by using Bayesian filtering for casual or recursivé€ proposed parametrization is able to handle both initial
SFM based only on the observations up to the currefgation and tracking of near and far features with standard
time. Thus, the visual SLAM problem can be defined aEKF. This parametrization maintains the direction of the 3D
the simultaneous real time estimation of the 3D pose of gature in the camera frame where it was initially observed
moving camera and the structure of the environment. TH"d detected in addition to the camera position as well as
pioneering work on visual SLAM has been presented bghe inverse depth in the.|n|t|al camera frame. F.u.rt.he_rmc.)re,
Davison [10] using the Extended Kalman Filter (EKF). Mordt has been also sho_wn in [16] th.at the feature initializatio
recently, Eade and Drummond [11] presented a monocuI.QP.eS not need'any flllterlng technique, and hence the feature
version of the FastSLAM algorithm [9] that uses particldS introduced directly in the map. However, the advantage of
filter to represent the motion distribution. Earlier attangp i parametrization is restricted to the possibility afedily
use particle filter in visual SLAM were presented in [12],|ntroducmg the feature into the map and use it to.update the
[13]. A robust real-time visual SLAM using scale predictionState Vector. In fact, the depth of the 3D feature is avatlabl

and exemplar based feature description has been recerffyly When enough parallax is available. _
proposed in [14]. In other words, the only improvement of the mentioned

Davison has presented in [10] a visual SLAM algorithmunified parametrization is unifying the initialization and

within a stochastic framework by using EKF, and an efﬁ_the tracking stages of certain features on the account of

cient method for feature tracking and matching based OiHcreasing the size of state vector. We propose in this paper

active search. The uncertainty of the 3D estimates was usgl?t the original 3-vector style of feature parametercrafi

to constrain the search within an elliptical region in thetan still be used in EKF framework where the inverse depth

image. Scalable monocular visual SLAM using FastSLAM® used instead of depth. Since the inverse depth is used,

algorithm [9], [15] was presented in [11]. The FastSLAM't will be possible to handle far features when there is no
algorithm reéresents the motion distribution by a set of"oWledge about depth uncertainty nor enough observation

particles M and one Kalman filter for each particle, eachto reduce it is available.

one of theM features is estimated independently using on
Kalman filter. This takes benefits of the fact that the estmat
of 3D features are conditionally independent from eachrothe Since knowledge about the uncertainty of the depth is
given an estimate of the camera pose. The work presentedt available and there are no sufficient observations to
in [13] was one of the early works that uses patrticle filter ta@estimate it, we propose a deterministic model. The 3D featur
represent the motion hypothesis by a set of particles but tlestimates are initialized using a robust and deterministic
focus of the paper is on robust camera localization. method built within convex optimization framework. In this

E_ Mapping via Convex Optimization



case, an estimate of the depth (inverse depth) can be se- M

guentially available and consistent with the EKF framework _ - //7\
due to the sequential triangulation algorithm proposedhis t - - 7N
paper (Section 111-B). However, the uncertainty of the iraag _ / \
measurement is propagated back to the Cartesian space andp » / \
introduced to the covariance matrix of the state vector. ! E \
\
I1l. MAPPING OF 3D FEATURES IN VSLAM BY -
CONVEX OPTIMIZATION P, ﬁ

A. Triangulation by Convex Optimization P

. . N
The mapping process can be modeled as a quasi-convex

optimization problem with respect to the 3D coordinates ofig. 1. The triangulation problem from multiple views. Givéh camera

the features(X, Y, Z). The model considers thaf images matricesP; along with the image measurements of a 3D pdintfrom the

. . . correspondingV imagesm;, compute the unknown point/.
of a 3D point M with P; cameras are available, where P gV imagesm P P

i = 1,--,N and P; is the i" camera matrix. Since aythors in [4], [5] solve the problem given a set f
the camera matrice®; are estimated as pose distribution,images of the 3D poinfi/. The bisection algorithm iterates
independently of the 3D structure, our mapping Procéssver the measurement valuegimes such that the objective
can be reduced to a simple triangulation problem of thgnction converges to a valug (M) < e. As illustrated in
3D point M given its N' images andV camera matrices. Algorithm 1, the algorithm starts from a known lower and
This problem has been formulated within a quasi-convegigher bound[!,v"] of the unknown optimal solutio; .
optimization framework [4], [17], [5], [18]. To adapt to the The first step is to solve the feasibility problem given in (3)
real time requirements, we formulate the solution of thgg, the lower half of the rangéfyl,fyh]. If it is feasible for
quasi-convex problem using bisection algorithm as an oRpnjs |ower half, update the higher bound feasibility range a
line recursive method. _ A= (¥t +4M)/2. If the problem in (3) is not feasible,

The convex optimization problem is one that minimizeghe optimal solution satisfieg; () > ~. In this case the
an objective functionf,(M) subject to a set of constraints |gwer bound is updated ag = (7! + 4")/2. After certain
fi(M); wherei = 0,---, N, and the functionsf;(M) with  number of iterations, say, and solving a set of feasibility
i=0,---, N are convex. Given the functiofy (M) is quasi-  problems, the range of the feasibility becomés— ! < ¢
convex and the constraint functions are convex functiongng the produced solution is optimal. In fact, thierations,
the problem is a quasi-convex optimization problem and cagsyally  is from 5 to 10, cannot be performed in the real
be efficiently solved by solving a set of convex feasibilitytjme (the video rate).

problems using the bisection algorithm. Kahl proposed ]n [4
to formulate the triangulation problem as Algorithm 1 Off-line Solution to the Quasi-convex Problem

_ R via Bisection Algorithm
- minmax d(riv; — PiM) @ Input: Given N image measurements, the rarjgé, 7"
subjectto A;(M) >0 i=1,---,N. of the optimal valuef; (M), and tolerance > 0.
2: Repeat

Ai(M) is depth o;‘ the pozjnt in imagé The functiond(rm; — .
PiM)? = LALLM here is the Euclidean distance a)y=(y +7")/2 - :

between the image measurement and the projection of b) Solve t_he c%nvex feasibility problem as in (3).
the 3D pointM to the image of the camef@;. This distance c) It feasible,y* =1;

1
can be written in more detail as _ else v = 1.
3 Until v" — 4! <e.

2 1 ! ’ 2 2M ’
di = | m; — — + (| mi — = . 2 _ L _ _
( PZ3M> ( PZ3M> @ B. On-line Bisection algorithm for Mapping
Here, P/ is the j** row of thei'" camera matrixP;. We propose an efficient on-line sequential bisection algo-

This problem can be solved using the bisection algorithfithm that satisfies the real time constraints. In additian,

via a sequence of convex feasibility problems of the form inverse depth representation of the features is given along
with uncertainty computation.

find M Recollecting from the previous section, the origibalch
subject to || [fi1(M)?, fia(M)?] [[<v\i(M)  (3) 3D feature estimate problem is defined as follows. Given a
A(M) > 0 i—=1.... N. set of N image correspondences; and the camera(s) infor-

mation, estimate the 3D poidt/ with minimal re-projection
The convex feasibility problem tries to find out whethererror over these image point correspondences. This problem
the optimal solutionf; (M) is less or more than a given is solved by Kahl in [4]. If some initial optimal solution is
value v. Thus, the quasi-convex function given in Eq. (1)already available from observel image correspondences
can be solved using a sequence of feasibility problems. Tlad their respective camera matrices, the problem definitio



takes the form: Given a set d¥ image correspondences re-projection errord, is greater than the higher bound,

and an optimal estimat#/}; of its corresponding 3D point, then this higher bound is set equal to the re-projectionrerro
estimate the new optimal 3D poimt/3, , when a new dy. Following this the convex feasibility problem in (3) is
image measurementy,, iS acquired. This solution can solved once. This feasibility problem results in an upddte o
still be sequentially updated to be an optimal one when nethe higher boundy” and the lower one/! if the problem is
observations are available. This problem is discussed by Steasible; as well as an estimate of the 3D pdintwith a re-

et al. in [7]. This article attacks the case when there is ngrojection error within the ranggy',7"). Then, new iteration
initial optimal solution available. of convex feasibility problem is considered. This process i

. - - . . repeated whenever new image is acquired providing new
Algorithm 2 On—I.me _Squent|al Splutmn to the QuaSI'measurement. The solution of this problem is observed to
convex Problem via Bisection Algorithm converge within 5-10 frames. Mapping process for another

1 Input: N = 2 image measurements, optimal valuesp feature can be started to be solved within a few frames.
fe(M) € [y',9"] and tolerancee. Initially, the time

parametett is set toNV.

C. Uncertainty Estimation of Mapped Features

2: Repeat
a) Collect the measurements from th&" image. The uncertainty in the 3D feature estimates by solving the
b) If d(ry —PnM) > ~" then, convex feasibility problem can be approximated as Gaussian
Y = d(my — PyM). To have the benefits of the inverse depth parametrization,
c) y= " +")/2. the 3D feature will be introduced into the map as =
d) Solve the convex feasibility problem as in (3). (X, Y, S]T where S = 1/Z is the inverse of the depth.
e) If feasibley" = max;d(rm; — P;M), Recall that the on-line bisection algorithm solves one eanv
else ' = 7. feasibility problem at each time iteration on obtaining new
)y N=N+1 image measurements. In addition, the solution returns one
3 Until 4" — 4! <e arbitrary value for the 3D estimate that satisfies the set of

convex constraints posed by the problem; and belongs to the

The proposed method does not assume any initial optimaD domain ofM determined by the current boun@ﬁ,yh]
solution. In addition, the image correspondencis are Consider that the returned value by the convex feasibility
presented sequentially starting from= 1, till i = N, the program at time is M, wheret = 1,--- , N, the mean of the
time instant when theiy measurement is presented. The3D feature estimate is the usual suth= < Zf’zl M, over
problem here is to sequentially estimate the optimal smfuti the set of all theV scene estimates. Similarly, the covariance
My, as soon as two image measurements are available.nfiatrix @, = ﬁzf’:l[ﬂk — M][M — M)T. One may
is not necessary for this solution to be optimal for the firshote that the mean and covariance can be updated recursively
few frames or iterations. In other words, our task is to findvithout having to store the previous estimates. The mean 3D
a 3D estimatel/;, starting fromi = 2 that converges to the coordinates at time instaitis given as
optimal one)M;* soon after a few image measurements, say
k images are available. . . 3, = thil n lMu

Let us recall our assumption about a moving camera t t
attached to framé™ and has the camera matri at every
time instantt. The camera framé™® is assumed to be the
reference frame. Let us note thatis set as an upper bound 1 R . -
of the objective function in problem (1). Consequently, we @t = 7 {f Qi1 + [My — My|[M; — My } :
can say thatl(rh; — P;M) < v fori=1,---,N. Assume
that the optimal valuey* is bounded between a known This estimate is assumed to converge to Gaussian distibuti
lower thresholdy! and higher one/”. Finally, the sequential within a few iterations of solving the convex feasibility
bisection algorithm works as described in Algorithm 2.  problem.

The algorithm starts as soon as two views = 2 are In fact this uncertainty computation can be applied to
available. At each time instamnt the algorithm solves single the depth (inverse depth) while the uncertainty in thie
convex feasibility problem of the form in (3) as one iteratio and Y coordinates need to be updated with the uncertainty
of the quasi-convex triangulation problem given in (1)measurement spac® in the image measurement and
Whenever new image measurements are available in the More information about uncertainty propagation can be
next time instant, the objective functianax; d(ri; — P; M) found in [19]. The presented paper addresses angp-
and the bounding thresholds are updated based on the nging problemin VSLAM framework and all the necessary
measurements. processing is done as in [16]. Regarding the uncertainty

Recollecting thaty” is the higher bound of the objective covariance matrix, we are working on providing a regrigous
function, i.e. theL., norm, thisy” should be equal or greater method to compute it. Further work also includes developing
than the re-projection errod; = d(m; — P;M) in all the a complete system (feature estimation process, unceesint
considered images. Thus, for th&" observed image, if the and SLAM algorithm).

while the covariance matrix is updated as
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Fig. 2. TheL error (red) in pixels over the iterations of the initializat
process along with the upper (green) and lower (blue) bowfidee error
within the on-line bisection algorithm.

IV. EXPERIMENTAL RESULTS

In this section we show the results that demonstrate the
efficiency of our proposed method. We present two kinds of

results. First, we show preliminary results illustratitng ton-
line triangulation algorithm. Second, the application loé t

algorithm to mapping for VSLAM is shown. The data consid-
ered for experiments is the real video sequence acquirdd wit
hand-held low cost Unibrain IEEE 1394 camera, with & 90

field of view and 320x240 resolution monochrome at 30 fps.
In fact this sequence is available on the web by the authors :
of [16]. In addition, we have used the Matlab code provided |
by them for both comparison of their mapping method with
ours and for plugging our mapping algorithm to the VSLAM

Fig. 4. A picture from the video sequence with near features.

Fig. 5. A picture from the video sequence with distant feagur

framework. In other words, all kind of processing steps are _ _
same as in [16] except the mapping stage. We compare ouith .respect to -the reference frame) to the triangulation
results with [16] which is considered as the best reportedlgorithm assuming that they are correct estimates. IThe

algorithm.

A. Results from On-line Triangulation

error, averaged over all features, along with its boundarie
+' and+" are illustrated in Fig. 2. It is clear that the.,

error converges to small values within the acceptable range

The on-line triangulation algorithm is applied to dataof 4/ and~". The mean and variance of the estimated depth
collected from the mentioned video sequence. The camease shown in Fig. 3. The mean at the top and variance at the
matrices corresponding to the sequence images are callectsottom. One may note that there are no notable variations of
from the localization stage output of the VSLAM framework.the mean after the third iteration.

However, we present these camera matrices (camera p%?e
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Fig. 3. The depth distribution during the feature initialion using the

convex feasibility problem. The mean at the top and varian¢eeabottom.

It is also to be noted that the difference in the values ofratdi across the

frame is of orderl0—3. We see a convergence in mean and the minimal

difference shows that the initial estimate is resonably eateu

Results from Mapping and VSLAM

To illustrate the applicability of our on-line triangulati
method to VSLAM, we have applied it for mapping many
features detected and extracted from the said video sequenc
We have selected features that belong to two differentetass
particularly far features that appear to be at infinity and
near features that provide enough parallax. In addition, we
compare the re-projection error for the two classes of festu
with the mapping method used in [16] which is the only
available VSLAM implementation for use. Figures 4 and 5
show the selected near and far features respectively.

The re-projection error in pixels, averaged over all fea-
tures, for near features is shown in Fig. 6. The average
RMS error is less than three pixel which is rather very
small. Indeed, the mapping of the 3D features is precise and
accurate. Similarly, the re-projection error in pixels far
features is shown in Fig. 8. The average is about five pixels.
This means that the accuracy of the 3D estimates is less for
far features than the one for near features. This is due the
amount of parallax available from near features motion.

A comparison with the mapping results of the method
presented in [16] is potrayed in Figs. 7 and 9 for near and far
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Fig. 6. The RMS re-projection error (averaged over all fezgliin pixels
for a set of near features over the iterations of the ini&ton process.
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Fig. 7.
the RMS re-projection error in pixels for a set of near featupver the
iterations of the initialization process . It is average bffeature.

features respectively. In the case of near feature, our mgpp [7]
method clearly performs better than the method in [16]. Even
for far features the re-projection error is minimal. Theoerr
of our mapping method is presented in red color while the[g]
error from the method presented in [16] is in green color.
V. CONCLUSION [9]
We have presented an efficient sequential algorithm for
solving the triangulation problem with application to map+1q
ping in VSLAM. The algorithm starts from unknown esti-
mate and its output converges to the actual values within
few iterations. It estimates the depth of the image features
for VSLAM system. The proposed method has demonstrated
an improved 3D estimates during the mapping stage &
the visual features on comparison with state of the art
algorithms. The time needed for running SOCP program is a
few milliseconds (5-8 ms) only which makes the algorithni!3!
suitable for real-time applications. The minimal re-pajen
error for near and far features delineates the efficacy of th#4]
algorithm.

_—
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