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On-line Convex Optimization based Solution for Mapping in VSLAM
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Abstract— This paper presents a novel real-time algorithm
to sequentially solve the triangulation problem. The problem
addressed is estimation of 3D point coordinates given its
images and the matrices of the respective cameras used in the
imaging process. The algorithm has direct application to real
time systems like visual SLAM. This article demonstrates the
application of the proposed algorithm to the mapping problem
in visual SLAM. Experiments have been carried out for the
general triangulation problem as well as the application to
visual SLAM. Results show that the application of the proposed
method to mapping in visual SLAM outperforms the state of
the art mapping methods.

I. INTRODUCTION

The triangulation problem in computer vision is defined as
the estimation of an unknown 3D point given its images from
different views; the camera pose parameters are assumed
to be known. Convex optimization techniques produce an
optimal solution for this problem by minimizing theL∞

norm. This paper deals with the case when the image
and camera information are available sequentially. A new
image measurement and the corresponding camera matrix are
assumed to be provided at every time instant. The solution
needs to be recursively integrated with time while keeping
the optimality of the solution through convex optimization.

Convex optimization has been widely accepted as a pow-
erful tool to solve many engineering problems [1]. Its use has
been extensively explored for solving a family of geometric
reconstruction problems in computer vision. A wide variety
of computer vision problems can be reformulated as convex
optimization problems by some algebraic manipulations [2].
Convex optimization, most importantly, does not have the pit-
fall of local minima assuring to achieve an optimal solution.
In addition, Jacobian estimation through building a linearized
model is not required in contrast to iterative minimization
methods like gradient descent and Newton methods. The
optimization is done here by replacing theL2 norm objective
function by theL∞ norm i.e., the maximum re-projection
error (image point distance) for a set of image points.

Hartley and Schaffalitzky have shown in [3] that most
of the multi-view computer vision problems have a global
minimum by minimizing theL∞ norm. Soon after that
Kahl in [4], and Ke and Kanade in [5] have independently
shown that thisL∞ is a quasi-convex function. Thus, it can
be efficiently solved as asequence of second order cone
programs(SOCP) using the well known bisection algorithm.
The solution proposed by Ke and Kanade [5] uses the
mth smallest normLm instead ofL∞. This is due to the
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sensitivity ofL∞ to noise and outliers while the former one
is robust. However, the solution in [5] becomes a local so-
lution by considering theLm norm as an objective function.
Later, it was shown that another robustness technique can
be introduced to the minimization of theL∞ norm while
retaining the ability to produce a global solution [6].

A wide variety of multi-view computer vision problems
can be solved efficiently by minimizing theL∞ norm
using convex optimization framework. These problems may
include triangulation, camera re-sectioning, plane to plane
homography construction, estimation of camera motion with
a given rotation,etc. [2], [4]. However, the existing frame-
work is suitable only for problems related to building a model
of a given environment. For example, given a video sequence
with a calibrated camera, the 3D model of the scene can be
efficiently built. This is usually known in computer vision
community as thebatch processingtechniques. However,
many computer vision problems need to be processedon-
line satisfying the real time constraints.

This paper demonstrates the adaption of triangulation
problem to real time situations. To adapt to the real time
requirements, we formulate the solution of the quasi-convex
problem using bisection algorithm as an on-line recursive
method. The only sequential solution to the minimization of
L∞ norm has been recently proposed in [7]. On contrary to
the method in [7] we do not assume an initial solution of
the problem is available. This solution is obtained by running
the full bisection algorithm which is usually time consuming.
However, the algorithm proposed in this article keeps track
of the changes in the estimated variables by updating the
objective function and runs only one or two iterations of the
bisection algorithm. It starts from a uniform distributionof
the unknown variable and at each iteration it updates the
objective function giving an approximated estimate of the
state variable. These estimates are assumed to converge to
the accurate solution after a few iterations.

The real time solution has applications in many problems
like visual SLAM, structure from motion (SFM), virtual
reality, visual servoing. The adaptation to the real time case
demonstrated by our algorithm can be applied to a wide
variety of computer vision problems solved by minimizing
the L∞ using convex optimization framework.

The sequential triangulation algorithm proposed in this
paper is suitable to be used within VSLAM framework due
to the analogy of VSLAM problem with the SFM problem.
In case enough parallax is available, the 3D estimate is
sufficiently accurate and available immediately at the second
iteration (when the second image measurement is acquired).
For far features, a deterministic estimate is also available



at the second observation; it can be also used in the EKF
framework.

The contribution of the paper is an efficient real time
solution to the mapping problem in visual SLAM. The
algorithm can run in the real time since the time needed for
running SOCP program is a few milliseconds (5-8 ms) only.
It produces a deterministic solution as soon as two images
are available. The accuracy is reflected by re-projection error
which is as small as 1-2 pixels on average. This technique is
consistent with the EKF framework for visual SLAM where
the inverse depth parametrization is used without any delay
for the feature initialization.

II. BACKGROUND OF VSLAM AND MAPPING

The simultaneous localization and mapping (SLAM) [8],
[9] is the problem of building a consistent map of the
environment,i.e. a set of 3D features or landmarks, while
simultaneously trying to localize in the map being con-
structed. Currently, robotics and computer vision researchers
have attacked the problem with vision as the primary sensing
modality. Consequently, the problem becomes visual SLAM.

Visual SLAM problem is more analogous to the well
known structure from motion (SFM) problem in the com-
puter vision community. Particularly, successful resultswere
obtained by using Bayesian filtering for casual or recursive
SFM based only on the observations up to the current
time. Thus, the visual SLAM problem can be defined as
the simultaneous real time estimation of the 3D pose of a
moving camera and the structure of the environment. The
pioneering work on visual SLAM has been presented by
Davison [10] using the Extended Kalman Filter (EKF). More
recently, Eade and Drummond [11] presented a monocular
version of the FastSLAM algorithm [9] that uses particle
filter to represent the motion distribution. Earlier attempt to
use particle filter in visual SLAM were presented in [12],
[13]. A robust real-time visual SLAM using scale prediction
and exemplar based feature description has been recently
proposed in [14].

Davison has presented in [10] a visual SLAM algorithm
within a stochastic framework by using EKF, and an effi-
cient method for feature tracking and matching based on
active search. The uncertainty of the 3D estimates was used
to constrain the search within an elliptical region in the
image. Scalable monocular visual SLAM using FastSLAM
algorithm [9], [15] was presented in [11]. The FastSLAM
algorithm represents the motion distribution by a set of
particlesM and one Kalman filter for each particle, each
one of theM features is estimated independently using one
Kalman filter. This takes benefits of the fact that the estimates
of 3D features are conditionally independent from each other
given an estimate of the camera pose. The work presented
in [13] was one of the early works that uses particle filter to
represent the motion hypothesis by a set of particles but the
focus of the paper is on robust camera localization.

A. Mapping in Visual SLAM Problem

The feature initialization process in [10] is based on a one
dimensional particle filter to represent the depth of a newly
observed feature. The filter is a set of particles (hypotheses)
that is uniformly distributed along the projection ray of the
feature. The image measurements collected from the consec-
utive frames are used to iteratively update the distribution
of the depth particles. The feature initialization processis
completed by inserting the estimated 3D feature along with
its uncertainty in the map. This insertion is done when the
depth distribution has converged to Gaussian. One may note
that the depth range is limited since the number of particles
is determined in advance and cannot be chosen arbitrarily.
Since the number of depth particles affect the performance
in the real time, it is chosen in such a way to keep the
computations as less as possible.

On the other hand, in [11] the depth hypotheses are drawn
uniformly in the inverse depth. This take advantages from
the fact that the images of these uniform hypotheses in the
inverse depth appear uniformly distributed along the epipolar
line corresponding to the concern feature in later views.
In fact, Kalman filter is used to update the inverse depth
estimate due to the near linearity and faster convergence to
Gaussian distribution.

More recently, Montielet al. have proposed in [16], a
unified inverse depth parametrization for monocular SLAM.
The proposed parametrization is able to handle both initial-
ization and tracking of near and far features with standard
EKF. This parametrization maintains the direction of the 3D
feature in the camera frame where it was initially observed
and detected in addition to the camera position as well as
the inverse depth in the initial camera frame. Furthermore,
it has been also shown in [16] that the feature initialization
does not need any filtering technique, and hence the feature
is introduced directly in the map. However, the advantage of
this parametrization is restricted to the possibility of directly
introducing the feature into the map and use it to update the
state vector. In fact, the depth of the 3D feature is available
only when enough parallax is available.

In other words, the only improvement of the mentioned
unified parametrization is unifying the initialization and
the tracking stages of certain features on the account of
increasing the size of state vector. We propose in this paper
that the original 3-vector style of feature parameterization
can still be used in EKF framework where the inverse depth
is used instead of depth. Since the inverse depth is used,
it will be possible to handle far features when there is no
knowledge about depth uncertainty nor enough observation
to reduce it is available.

B. Mapping via Convex Optimization

Since knowledge about the uncertainty of the depth is
not available and there are no sufficient observations to
estimate it, we propose a deterministic model. The 3D feature
estimates are initialized using a robust and deterministic
method built within convex optimization framework. In this



case, an estimate of the depth (inverse depth) can be se-
quentially available and consistent with the EKF framework
due to the sequential triangulation algorithm proposed in this
paper (Section III-B). However, the uncertainty of the image
measurement is propagated back to the Cartesian space and
introduced to the covariance matrix of the state vector.

III. MAPPING OF 3D FEATURES IN VSLAM BY
CONVEX OPTIMIZATION

A. Triangulation by Convex Optimization

The mapping process can be modeled as a quasi-convex
optimization problem with respect to the 3D coordinates of
the features(X,Y,Z). The model considers thatN images
of a 3D point M with Pi cameras are available, where
i = 1, · · · , N and Pi is the ith camera matrix. Since
the camera matricesPi are estimated as pose distribution,
independently of the 3D structure, our mapping process
can be reduced to a simple triangulation problem of the
3D point M given its N images andN camera matrices.
This problem has been formulated within a quasi-convex
optimization framework [4], [17], [5], [18]. To adapt to the
real time requirements, we formulate the solution of the
quasi-convex problem using bisection algorithm as an on-
line recursive method.

The convex optimization problem is one that minimizes
an objective functionf0(M) subject to a set of constraints
fi(M); wherei = 0, · · · , N , and the functionsfi(M) with
i = 0, · · · , N are convex. Given the functionf0(M) is quasi-
convex and the constraint functions are convex functions,
the problem is a quasi-convex optimization problem and can
be efficiently solved by solving a set of convex feasibility
problems using the bisection algorithm. Kahl proposed in [4]
to formulate the triangulation problem as

min maxi d(m̂i − PiM) (1)

subject to λi(M) > 0 i = 1, · · · , N.

λi(M) is depth of the point in imagei. The functiond(m̂i−

PiM)2 = f1(M)2+f2(M)2

λi(M)2 here is the Euclidean distance
between the image measurementm̂i and the projection of
the 3D pointM to the image of the cameraPi. This distance
can be written in more detail as

d2
i =

(

m̂1
i −

P 1
i M

P 3
i M

)2

+

(

m̂2
i −

P 2
i M

P 3
i M

)2

. (2)

Here,P j
i is the jth row of the ith camera matrixPi.

This problem can be solved using the bisection algorithm
via a sequence of convex feasibility problems of the form

find M

subject to ‖
[

fi1(M)2, fi2(M)2
]

‖≤ γλi(M) (3)

λi(M) > 0 i = 1, · · · , N.

The convex feasibility problem tries to find out whether
the optimal solutionf∗

0 (M) is less or more than a given
value γ. Thus, the quasi-convex function given in Eq. (1)
can be solved using a sequence of feasibility problems. The

Fig. 1. The triangulation problem from multiple views. GivenN camera
matricesPi along with the image measurements of a 3D pointM from the
correspondingN imagesmi, compute the unknown pointM .

authors in [4], [5] solve the problem given a set ofN
images of the 3D pointM . The bisection algorithm iterates
over the measurement valuesk times such that the objective
function converges to a valuef∗

0 (M) ≤ ǫ. As illustrated in
Algorithm 1, the algorithm starts from a known lower and
higher bound

[

γl, γh
]

of the unknown optimal solutionf∗

0 .
The first step is to solve the feasibility problem given in (3)
for the lower half of the range

[

γl, γh
]

. If it is feasible for
this lower half, update the higher bound feasibility range as
γh = (γl + γh)/2. If the problem in (3) is not feasible,
the optimal solution satisfiesf∗

0 (x) > γ. In this case the
lower bound is updated asγl = (γl + γh)/2. After certain
number of iterations, sayk, and solving a set ofk feasibility
problems, the range of the feasibility becomesγh − γl ≤ ǫ
and the produced solution is optimal. In fact, thek iterations,
usually k is from 5 to 10, cannot be performed in the real
time (the video rate).

Algorithm 1 Off-line Solution to the Quasi-convex Problem
via Bisection Algorithm

1: Input: GivenN image measurements, the range
[

γl, γh
]

of the optimal valuef∗

0 (M), and toleranceǫ > 0.
2: Repeat

a) γ = (γl + γh)/2.
b) Solve the convex feasibility problem as in (3).
c) If feasible,γh = γ;

else, γl = γ.

3: Until γh − γl ≤ ǫ.

B. On-line Bisection algorithm for Mapping

We propose an efficient on-line sequential bisection algo-
rithm that satisfies the real time constraints. In addition,an
inverse depth representation of the features is given along
with uncertainty computation.

Recollecting from the previous section, the originalbatch
3D feature estimate problem is defined as follows. Given a
set ofN image correspondenceŝmi and the camera(s) infor-
mation, estimate the 3D pointM with minimal re-projection
error over these image point correspondences. This problem
is solved by Kahl in [4]. If some initial optimal solution is
already available from observedN image correspondences
and their respective camera matrices, the problem definition



takes the form: Given a set ofN image correspondences
and an optimal estimateM∗

N of its corresponding 3D point,
estimate the new optimal 3D pointM∗

N+1 when a new
image measurement̂mN+1 is acquired. This solution can
still be sequentially updated to be an optimal one when new
observations are available. This problem is discussed by Seo
et al. in [7]. This article attacks the case when there is no
initial optimal solution available.

Algorithm 2 On-line Sequential Solution to the Quasi-
convex Problem via Bisection Algorithm

1: Input : N = 2 image measurements, optimal value
f∗

0 (M) ∈
[

γl, γh
]

and toleranceǫ. Initially, the time
parametert is set toN .

2: Repeat
a) Collect the measurements from theN th image.
b) If d(m̂N − PNM) ≥ γh then,

γh = d(m̂N − PNM).
c) γ = (γl + γh)/2.
d) Solve the convex feasibility problem as in (3).
e) If feasible,γh = maxi d(m̂i − PiM),

else, γl = γ.
f) N = N + 1

3: Until γh − γl ≤ ǫ

The proposed method does not assume any initial optimal
solution. In addition, the image correspondencesm̂i are
presented sequentially starting fromi = 1, till i = N , the
time instant when thêmN measurement is presented. The
problem here is to sequentially estimate the optimal solution
M∗

N as soon as two image measurements are available. It
is not necessary for this solution to be optimal for the first
few frames or iterations. In other words, our task is to find
a 3D estimateMi, starting fromi = 2 that converges to the
optimal oneM∗

i soon after a few image measurements, say
k images are available.

Let us recall our assumption about a moving camera
attached to frameF t and has the camera matrixPt at every
time instantt. The camera frameF 0 is assumed to be the
reference frame. Let us note thatγ is set as an upper bound
of the objective function in problem (1). Consequently, we
can say thatd(m̂i − PiM) < γ for i = 1, · · · , N . Assume
that the optimal valueγ∗ is bounded between a known
lower thresholdγl and higher oneγh. Finally, the sequential
bisection algorithm works as described in Algorithm 2.

The algorithm starts as soon as two viewsN = 2 are
available. At each time instantt, the algorithm solves single
convex feasibility problem of the form in (3) as one iteration
of the quasi-convex triangulation problem given in (1).
Whenever new image measurements are available in the
next time instant, the objective functionmaxi d(m̂i −PiM)
and the bounding thresholds are updated based on the new
measurements.

Recollecting thatγh is the higher bound of the objective
function, i.e. theL∞ norm, thisγh should be equal or greater
than the re-projection errordi = d(m̂i − PiM) in all the
considered images. Thus, for theN th observed image, if the

re-projection errordN is greater than the higher boundγh,
then this higher bound is set equal to the re-projection error
dN . Following this the convex feasibility problem in (3) is
solved once. This feasibility problem results in an update of
the higher boundγh and the lower oneγl if the problem is
feasible; as well as an estimate of the 3D pointM with a re-
projection error within the range(γl, γh). Then, new iteration
of convex feasibility problem is considered. This process is
repeated whenever new image is acquired providing new
measurement. The solution of this problem is observed to
converge within 5-10 frames. Mapping process for another
3D feature can be started to be solved within a few frames.

C. Uncertainty Estimation of Mapped Features

The uncertainty in the 3D feature estimates by solving the
convex feasibility problem can be approximated as Gaussian.
To have the benefits of the inverse depth parametrization,
the 3D feature will be introduced into the map aŝM =
[X, Y, S]T where S = 1/Z is the inverse of the depth.
Recall that the on-line bisection algorithm solves one convex
feasibility problem at each time iteration on obtaining new
image measurements. In addition, the solution returns one
arbitrary value for the 3D estimate that satisfies the set of
convex constraints posed by the problem; and belongs to the
3D domain ofM determined by the current bounds

[

γl, γh
]

.
Consider that the returned value by the convex feasibility

program at timet is M̂t wheret = 1, · · · , N , the mean of the
3D feature estimate is the usual sum̄M = 1

N

∑N

t=1 M̂t over
the set of all theN scene estimates. Similarly, the covariance
matrix Q

M̂
= 1

N+1

∑N

t=1[M̂ − M̄ ][M̂ − M̄ ]T . One may
note that the mean and covariance can be updated recursively
without having to store the previous estimates. The mean 3D
coordinates at time instantt is given as

M̄t =
t − 1

t
M̄t−1 +

1

t
M̂t,

while the covariance matrix is updated as

Qt =
1

t + 1

{

t Qt−1 + [M̂t − M̄t][M̂t − M̄t]
T
}

.

This estimate is assumed to converge to Gaussian distribution
within a few iterations of solving the convex feasibility
problem.

In fact this uncertainty computation can be applied to
the depth (inverse depth) while the uncertainty in theX
and Y coordinates need to be updated with the uncertainty
measurement spaceR in the image measurementx and
y. More information about uncertainty propagation can be
found in [19]. The presented paper addresses onlymap-
ping problemin VSLAM framework and all the necessary
processing is done as in [16]. Regarding the uncertainty
covariance matrix, we are working on providing a regrigous
method to compute it. Further work also includes developing
a complete system (feature estimation process, uncertainties
and SLAM algorithm).



Fig. 2. TheL∞ error (red) in pixels over the iterations of the initialization
process along with the upper (green) and lower (blue) boundsof the error
within the on-line bisection algorithm.

IV. EXPERIMENTAL RESULTS

In this section we show the results that demonstrate the
efficiency of our proposed method. We present two kinds of
results. First, we show preliminary results illustrating the on-
line triangulation algorithm. Second, the application of the
algorithm to mapping for VSLAM is shown. The data consid-
ered for experiments is the real video sequence acquired with
hand-held low cost Unibrain IEEE 1394 camera, with a 90◦

field of view and 320x240 resolution monochrome at 30 fps.
In fact this sequence is available on the web by the authors
of [16]. In addition, we have used the Matlab code provided
by them for both comparison of their mapping method with
ours and for plugging our mapping algorithm to the VSLAM
framework. In other words, all kind of processing steps are
same as in [16] except the mapping stage. We compare our
results with [16] which is considered as the best reported
algorithm.

A. Results from On-line Triangulation

The on-line triangulation algorithm is applied to data
collected from the mentioned video sequence. The camera
matrices corresponding to the sequence images are collected
from the localization stage output of the VSLAM framework.
However, we present these camera matrices (camera pose

Fig. 3. The depth distribution during the feature initialization using the
convex feasibility problem. The mean at the top and variance atthe bottom.
It is also to be noted that the difference in the values of ordinate across the
frame is of order10−3. We see a convergence in mean and the minimal
difference shows that the initial estimate is resonably accurate.

Fig. 4. A picture from the video sequence with near features.

Fig. 5. A picture from the video sequence with distant features.

with respect to the reference frame) to the triangulation
algorithm assuming that they are correct estimates. TheL∞

error, averaged over all features, along with its boundaries
γl and γh are illustrated in Fig. 2. It is clear that theL∞

error converges to small values within the acceptable range
of γl andγh. The mean and variance of the estimated depth
are shown in Fig. 3. The mean at the top and variance at the
bottom. One may note that there are no notable variations of
the mean after the third iteration.

B. Results from Mapping and VSLAM

To illustrate the applicability of our on-line triangulation
method to VSLAM, we have applied it for mapping many
features detected and extracted from the said video sequence.
We have selected features that belong to two different classes,
particularly far features that appear to be at infinity and
near features that provide enough parallax. In addition, we
compare the re-projection error for the two classes of features
with the mapping method used in [16] which is the only
available VSLAM implementation for use. Figures 4 and 5
show the selected near and far features respectively.

The re-projection error in pixels, averaged over all fea-
tures, for near features is shown in Fig. 6. The average
RMS error is less than three pixel which is rather very
small. Indeed, the mapping of the 3D features is precise and
accurate. Similarly, the re-projection error in pixels forfar
features is shown in Fig. 8. The average is about five pixels.
This means that the accuracy of the 3D estimates is less for
far features than the one for near features. This is due the
amount of parallax available from near features motion.

A comparison with the mapping results of the method
presented in [16] is potrayed in Figs. 7 and 9 for near and far



Fig. 6. The RMS re-projection error (averaged over all features) in pixels
for a set of near features over the iterations of the initialization process.

Fig. 7. A comparison with work in [16], our method in red color, of
the RMS re-projection error in pixels for a set of near features over the
iterations of the initialization process . It is average of all feature.

features respectively. In the case of near feature, our mapping
method clearly performs better than the method in [16]. Even
for far features the re-projection error is minimal. The error
of our mapping method is presented in red color while the
error from the method presented in [16] is in green color.

V. CONCLUSION

We have presented an efficient sequential algorithm for
solving the triangulation problem with application to map-
ping in VSLAM. The algorithm starts from unknown esti-
mate and its output converges to the actual values within a
few iterations. It estimates the depth of the image features
for VSLAM system. The proposed method has demonstrated
an improved 3D estimates during the mapping stage of
the visual features on comparison with state of the art
algorithms. The time needed for running SOCP program is a
few milliseconds (5-8 ms) only which makes the algorithm
suitable for real-time applications. The minimal re-projection
error for near and far features delineates the efficacy of the
algorithm.
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