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Abstract—The traditional wavelet based denoising techniques
use wavelets which are independent of the image under con-
sideration and the level of noise present in the image. As
these techniques which are based on thresholding of wavelet
coefficients, rely mainly on the energy compaction and the
sparseness of the wavelet representation used, the choice of
wavelet is an important consideration. In this paper, for the
first time we have proposed a method for designing biorthogonal
wavelets for denoising applications from the image at hand using
a separable kernel. The denoising performance of this image
adapted wavelet is compared primarily against the available
biorthogonal wavelets in terms of MSE, PSNR and visual quality,
using BayesShrink method which is the current state-of-the-
art technique in the class of pointwise approaches for image
denoising. We have achieved a average improvement of 35%
in MSE, over the available biorthogonal wavelets for the low
input SNR values (0 to 18db); that is where the actual need for
adaptation arises. The results show the efficacy of the approach
and the need for adaptive wavelet bases in image denoising.

I. INTRODUCTION

Digital images are often degraded by noise in their acquisi-
tion and/or transmission phase. The goal of a image denoising
algorithm is to recover the clean image from its noisy version
by removing noise and retaining as much as possible the
image information. The wavelet transform because of its
multiresolution and sparse representations, has been shown to
be a powerful tool to achieve these goals. The motivation is
that small wavelet coefficients are more likely due to noise
and the large coefficients due to the image features.

The interest in wavelet based denoising evolved from the
seminal work on signal denoising via wavelet thresholding
or shrinkage of Donoho and Johnstone in the additive white
gaussian noise setting [1], [2]. These authors have proposed
two thresholding strategies in which each wavelet coefficient
is compared against a threshold; if the coefficient is smaller
than the threshold, it is set to zero, otherwise it is kept (hard
thresholding) or modified (soft thresholding) [3]. Initially, they
have given a mechanism for finding a universal threshold value
known as VisuShrink and showed it to be near-optimal in the
minimax sense [1].

However, for denoising images, Visushrink is found to
yield an overly smoothed estimate, as it is derived under the
constraint that with high probability the estimate should be at
least as smooth as the image. To overcome this problem, the
same authors have proposed a new method called SUREShrink
which uses a hybrid of the universal threshold and the SURE

threshold, derived from minimizing Stein’s unbiased risk esti-
mate [4], and has been shown to perform well. Later on, there
has been a fair amount of research on threshold value selection
for image denoising. One of the most popular was proposed
by Chang et al., who derived their threshold in a Bayesian
framework, assuming a generalized Gaussian distribution for
the wavelet coefficients and is called BayesShrink [5]. This
method has a better MSE performance than SUREShrink .

In the more recent literature, people have considered the
intra and interscale dependencies among the wavelet coeffi-
cients and have shown to achieve better denoising performance
compared to the pointwise approach. In addition, increasing
the redundancy of the wavelet transform has substantially
improved the denoising performance. In these views the three
main techniques are the BiShrink proposed by Sendur et al.
[6], ProbShrink proposed by Pizurica et al. [7] and BLS-
GSM proposed by Portilla et al. [8]. However, inspite of the
improved performances with the use of scale dependencies
and redundancy of the wavelet transform, we have used the
point-wise techniques and non-redundant wavelet transforms
for our comparison because of their simplicity and speed.

Our work aims at designing a image matched wavelet which
can be used in denoising applications. The motivation for
this is that, unlike the Fourier methods, wavelet transforms
do not have a unique basis and hence it is natural to seek a
wavelet that is best in a particular context. We have explored
this fact for the image denoising problem. Over the last
decade, there has been a fair amount of research on designing
matched wavelets for a particular context [9], [10], [11]. But
no work has been reported for the image denoising application
in particular. The work done so far in the wavelet based
denoising has targeted towards finding the best threshold but
not towards finding the best wavelet. We, in this paper have
concentrated on the latter problem and our results show the
need for adaptive wavelets in image denoising.

In image denoising application, it is desirable that the
wavelet adapts to the image and not to the noise. We present
a technique to design wavelet from noisy image which adapts
only to the clean image using statistical properties of noise.
These properties help in designing a wavelet which can effec-
tively deal with the noise present in the image, by improving
the differential information between the image and noise in the
wavelet domain. We have compared denoising performance of
our designed biorthogonal wavelets with that of existing set



of biorthogonal wavelets using BayesShrink method which is
the current state-of-the-art technique in the class of pointwise
approaches.

This paper is organized as follows. In Section II, we present
our basic work of designing bi-orthogonal wavelets for image
denoising applications. In Section III, the overall process of
image denoising using our matched wavelets is presented.
Experimental results on several images and discussions are
given in Section IV and finally Section V deals with the
conclusions and future work.

II. DESIGN OF IMAGE MATCHED WAVELETS

In this section we will describe the algorithm for designing
matched wavelets for image denoising. The image matched
wavelets are designed using the separable kernel. i.e two sets
of 1D matched wavelets are designed, one for row ordering of
the image, say ag, (arranging all rows side by side) which
contains variation in the horizontal direction only and the
other for column ordering of the image, say ao, (arranging
all columns one below the other and then taking its transpose)
which contains variation in the vertical direction only. Now
the design technique for finding 1D matched wavelets for
denoising is presented. We use this technique two times, once
with ag, as input and obtain the four corresponding filters
(hoz, hiz, foz, fiz) and next with ag, as input and obtain the
four corresponding filters (hoy, Ry, foy, f1y)-

Our criterion for matching is based on maximizing the
projection of clean image characteristics in to the scaling
subspace rather than the wavelet subspace, using the noise
characteristics. Using this matching criteria, we can guarantee
that the noise in the coarsest approximation subspace will be
less. And, as the thresholding techniques usually leave the
coarsest approximation without thresholding, it means that our
matching criteria is decreasing the amount of residual noise
in the denoising process. A similar approach was proposed by
Gupta et al. [11] and their designed wavelets have shown to be
having profound application in signal and image compression.
However, their wavelets would not work for the denoising
applications as they are matched directly to the input image
which is the noisy image in denoising applications i.e their
technique would maximize the projection of noisy image
features into the scaling subspace and not the clean image
features. Now we present various stages of our algorithm.

A. Design of 1D Matched Biorthogonal Bases for image
denoising
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Fig. 1. Two channel 1D maximally decimated PR filter bank

Fig.1 shows a 1D two-channel maximally decimated filter
bank. We use this filter bank for designing 1D matched

wavelets using ao, and ag, and then by using separable kernel
we obtain the image matched wavelets which are suitable for
denoising.

We first design the analysis highpass filters in each case and
use the bi-orthogonal relations to design the remaining filters.
Here, we shall talk in terms of 1D signals as we are designing
1D matched wavelets.

Design of Analysis High Pass Filter: Using the estimated
noise variance, we shall design this filter such that our
matching criterion is satisfied. Consider the scenario, where
the signal is corrupted with white gaussian noise and we want
to remove noise using signal adapted wavelet technique. Let
x(t) be the pure signal and n(t) be WGN with independent and
identical distribution (i.i.d) with zero mean and o2 variance.
The noisy signal a(t) is given by,

a(t) = =(t) + n(t) (M

The sampled value of the signal a(t) is applied as a input to
the 2-channel filter bank structure shown in Fig.1

ao(k) = (k) + n(k) 2)

Let a(t) be the signal reconstructed using only the detail
coefficients d_1(k) and N be the length of the filters in Fig
1. Now the analysis filter which maximizes the error energy
between a(t) and a(t) is obtained using the following equation
which is given by Gupta et al. [11].

N—-1 L/2-1
S h@)[ Y ak+plagk+1)] =0 (3
p=0 k=0

For 1=0,1,... j-1j+1,...,N-1.

where j is the index of middle coefficient of hq (k).

The wavelet designed using the above equation is matched
to both signal and noise, where as our goal is to design the
filter which is matched only to the signal. To achieve our goal
the equation (3) is modified as below

N-1 L/2—1
Z hl(p)[ Z x(2k + p)x(2k + r)} =0 4)
p=0 k=0

For r=0,1,... j-1,j+1,...,N-1.

where j is the index of middle coefficient of hq (k).

Solving the above equation for h; directly, will need the
knowledge of pure signal which we don’t know. So we need
to modify equation (4) further so that it can be solved directly.

Now, consider the bracketed term in the equation (3)

L/2—1
flor) =7 kz_o ao(2k + p)ao(2k + 1) 5)
For p=0,1,...,N-1 and r=0,1,... ,N-1
Using equation (2) we can write,

L/2-1

flor) =1 > [@(2k+p)+n(2k+p)][z(2k+r)+n(2k+7)]
k=0

(6)
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Since we assumed that noise is i.i.d and uncorrelated to
signal we have,

Design of Remaining Filters in the Matched Biorthogonal
Filter Bank: Now the remaining three filters in Fig.1 are
obtained using hj(n) and the biorthogonal relations. That is,

Compute fo(n) using

fo(n) = (=1)" " hy (M (15)

—n)

where M is any odd delay.
Now ho(n) can be calculated using the following two
perfect reconstruction conditions and the vanishing moments

o L/21 imposed on f1(n)
7 > w2k + p)n(2k +1)] =0 (7
k=0 Zho Voln—2m)=68(m) VYmeZ  (16)
L/2—1
= [n(2k + p)x(2k +71)] =0 (8) i
L kZ:O > ho(n)h(n) = (17)
n=0
Putting these values in the equation (6), we have Now let’s say we have imposed p vanishing moments on f1(n)
5 L/2—1 L/2—1 then,
flp,r) == Z x(2k+p)x(2k+r)+— Z n(2k+p)n(2k+r) N-1
L= part mi(k)= S nFfin) =0 fork=0,1,....p (I8)
(9) ~ -y )
Now as auto-correlation function of white Gaussian noise L
is zero for any non-zero lag, which is transfered to ho(n) as
N—1
L/2—1 L/2—1 k
2 2 ) (—n)"ho(n) =0 fork=0,1,...)p (19)
I Z n(2k+p)n(2k+r) = 7 Z n?(2k+r) sifp=r 1;)
k= k=
0 0 Equations (16), (17) and (19) can be solved simultaneously to
=0 ; otherwise (10) get ho(n) of p vanishing moments.
Now, f1(n) can be easily found out from equation
Let
9 L/2—1 , filn) = (=1)"ho(M —n) (20)
= L kz—o n*(2k +7) an Thus, all the four filters of the matched biorthogonal filter

Substituting equation (10) and equation (11) in equation (9),
we have

L/2—1
f(p,r)zE kZ:O 2k 4+ p)z(2k + 1) +T-8[p—1] (12)
Thus
L/2 1
7 Z 2k +p)z(2k +7) = f(p,r) =T -d[p—r] (13)

Substituting above equation and equation (5) in to equation
(4), we have

N—1 L/2-1
Z hl(p)[[ Z ao(2k + p)ag(2k +7)] =T -8[p—7]| =0
p=0 k=0
(14)
For 1=0,1,... j-1,j+1,...,N-1.

where j is the index of middle coefficient of hq (k).

where I' is given by equation (11) and can be calculated by
assuming a white Gaussian noise with zero mean and known
variance.

bank are derived as explained above.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Now we use the standard wavelet based image denoising al-
gorithm to compare the performance of our matched wavelets
with that of fixed biorthogonal wavelets. It includes calculation
of forward wavelet transform for the input noisy image and
later thresholding of these coefficients with a properly de-
signed threshold and then calculation of reverse wavelet trans-
form of the thresholded coefficents to get the denoised image.
The forward and reverse wavelet transforms can be calculated
using the eight one dimensional filters (hoy, P12z, fox, f12) and
(hoy, h1y, foy, f1y) which can be designed using the method
described in previous section and the non-redundant separable
wavelet system shown in Fig 2. The thresholding strategy used
for our comparison is the BayesShrink proposed by Chang et
al [5].

The denoising performance of our matched wavelet is
compared against existing biorthogonal wavelets for a repre-
sentative set of standard 8-bit grayscale images such as lena,
barbara, baboon, and goldhill, for various noise-levels. In
our simulations, we have used 4 level wavelet decomposition
obtained by decomposing the LL subband of Fig 2 further and
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Fig. 2. First level decomposition and reconstruction using separable kernel and matched filters; The bars on filters denote time reversal

Fig. 3.

the coarsest approximation coefficients are left unthresholded.
Although the thresholding technique, we have used in our sim-
ulations [5] was originally designed for orthonormal wavelets,
selection of such a threshold is justified as our main motive
is to compare the performances of matched wavelets versus
fixed biorthogonal wavelets. The results of visual comparison
for the lena image are shown in Fig 3 , MSE comparisons
for the lena image are shown in Figs 4 and 5, and PSNR
comparisons for the representative set are tabulated in Table
I

As we can see from Figs 4 and 5, proposed technique per-
forms on an average 35% percent better denoising as compared
to non-adaptive biorthogonal wavelets at lower SNR (0-18db)
and at higher SNR (>18db), percentage improvement in MSE
with respect to non-adaptive wavelet transform decreases. This
is a very good improvement in the low SNR cases and that
is where the idea of matching is very much required. This is
also evident from PSNR comparisons in Table I.

At higher SNR, the energy of the noise is very less com-
pared to that of signal. So the wavelet coefficients due to noise
are very small and are spread out along all scales as the noise
assumed is random, where as coefficients due to signal are very
high and most of them exist only for few scales. In this way
it is very easy to distinguish signal and noise in wavelet space

From left to right: Original Lena , Noisy Lena (sigma = 30) , Denoised using bior3.5, Denoised using matched wavelets

by using thresholding technique. Thus, the use of matched
biorthogonal wavelets did not yield superior performance to
non-adaptive biorthogonal wavelets in this range.

However, at lower SNR, the energy of the noise is compa-
rable to the signal. Here, if the correlation between the used
wavelet and the image is more, the wavelet representation
of the image will be more compact and the distinguishing
information between the wavelet coefficients of the signal and
noise will be more strong which will help to remove noise in
the wavelet space. Thus in this range our adaptive biorthogonal
wavelets are performing better than the non-adaptive ones.

IV. CONCLUSION

In this paper, we have exploited the fact that wavelet
bases are not unique, in designing the best biorthogonal
bases for image denoising. We have designed image adaptive
biorthogonal wavelet bases from the constraint that most of the
energy of clean image should go in to scaling subspace rather
than the wavelet subspace. The results showed that adapted
biorthogonal wavelets performed much better denoising than
the available biorthogonal wavelets for the low input SNR
values. However the performance improvement decreased for
the high SNR values as explained above. We suggest this
approach when noise energy dominates signal energy (low



TABLE 1
PSNR COMPARISON OF MATCHED WAVELET AND FIXED BIORTHOGONAL WAVELETS

o 5 10 15 20 25 30 50 100 5 10 15 20 25 30 50 100
input PSNR || 34.14 | 28.13 | 24.60 | 22.10 | 20.16 | 18.57 | 14.16 | 8.12 34.14 | 28.13 | 24.60 | 22.10 | 20.16 | 18.57 | 14.16 8.12
Wavelet Lena 512 X 512 Goldhill 512 X 512
Bior3.5 3577 | 30.61 | 27.31 | 2492 | 23.03 | 2147 | 17.10 | 11.09 || 35.22 | 30.27 | 27.09 | 24.74 | 2294 | 21.35 | 17.03 | 11.13
Bior2.2 36.22 | 31.65 | 28.81 | 26.52 | 2492 | 2336 | 19.32 | 13.34 || 3538 | 31.02 | 28.27 | 26.28 | 24.61 | 23.19 | 19.15 | 13.38
Bior2.6 36.26 | 31.75 | 28.87 | 26.69 | 25.07 | 23.54 | 19.31 | 13.63 3546 | 31.08 | 2842 | 2631 | 2471 | 23.34 | 19.24 | 13.57
Matched 31.15 | 29.69 | 28.25 | 26.74 | 25.57 | 24.57 | 21.73 | 16.80 || 30.75 | 28.46 | 27.05 | 26.67 | 25.01 | 24.13 | 21.54 | 16.68
Wavelet Baboon 512 X 512 Barbara 512 X 512
Bior3.5 32.66 | 28.36 | 25.82 | 23.87 | 22.22 | 20.87 | 16.77 | 11.01 34.81 | 2947 | 26.53 | 2436 | 22.59 | 21.14 | 16.92 | 11.02
Bior2.2 32.57 | 2847 | 26.18 | 24.46 | 23.05 | 21.85 | 18.39 | 13.12 || 35.19 | 29.93 | 27.20 | 25.30 | 23.80 | 22.46 | 18.72 | 13.09
Bior2.6 32.83 | 28.62 | 26.25 | 24.55 | 23.10 | 21.92 | 1847 | 13.10 || 35.28 | 30.01 | 27.33 | 2543 | 2395 | 22.53 | 18.84 | 13.28
Matched 27.43 | 26.01 | 25.68 | 24.72 | 2421 | 22.83 | 20.99 | 15.15 3034 | 27.62 | 26.02 | 25.81 24.2 235 | 20.02 | 16.15
Comparison with bior 2.2,2.4,2.6,2.8 wavelets Comparison with Bior : 3.1, 3.3, 3.5, 3.7, 3.9 wavelets
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Fig. 4. Showing % improvement in MSE over bior2.* series wavelets for ~ Fig. 5. Showing % improvement in MSE over bior3.* series wavelets for
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SNR), because that is where the actual need for adaptation

[8] J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli, “Image de-

arises. Although our focus in this paper is on the adaptive
biorthogonal wavelets, the adaptation can also be tried for or-
thonormal wavelets for yielding better denoising performance
than the existing orthonormal wavelets.
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