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Abstract. Many vision problems map to the minimization of an energy
function over a discrete MRF. Fast performance is needed if the energy
minimization is one step in a control loop. In this paper, we present
the incremental α-expansion algorithm for high-performance multilabel
MRF optimization on the GPU. Our algorithm utilizes the grid struc-
ture of the MRFs for good parallelism on the GPU. We improve the basic
push-relabel implementation of graph cuts using the atomic operations
of the GPU and by processing blocks stochastically. We also reuse the
flow using reparametrization of the graph from cycle to cycle and itera-
tion to iteration for fast performance. We show results on various vision
problems on standard datasets. Our approach takes 950 milliseconds on
the GPU for stereo correspondence on Tsukuba image with 16 labels
compared to 5.4 seconds on the CPU.

1 Introduction

Low-level vision problems like stereo correspondence, restoration, segmentation,
etc., are usually modeled as a label assignment problem. A label from a given set
is assigned to each pixel or block in an image. These problems are often modeled
in a Markov random-field (MRF) framework. Geman and Geman [17] formulated
the maximum a-posteriori (MAP) estimation of the MRF as an energy min-
imization problem. Minimization of these energy functions is computationally
expensive. Several algorithms have been proposed to improve the computational
performance [9, 4, 1, 2]. However, real time performance on regular images is still
a challenge on the traditional hardware. Several vision applications like robot
navigation, surveillance, etc., require the processing to be completed at close to
video frame-rates.

Solving computationally expensive problems on parallel architectures is an-
other way to improve the efficiency. However, not all algorithms are easily scal-
able to parallel hardware models. The contemporary graphics processing units
(GPUs) are emerging as popular high performance platforms because of their
huge processing power at reasonable costs. The Compute Unified Device Archi-
tecture (CUDA) [19] from Nvidia provides a general-purpose parallel program-
ming interface to the modern GPUs. The emerging standard of OpenCL also



promises to provide portable interfaces to the GPUs and other parallel process-
ing hardware. The grid structure of the MRFs arising in vision problems makes
the GPU an ideal platform for energy minimization problems. However, syn-
chronization and memory bandwidth are bottlenecks for implementing them on
the GPUs.

In this paper, we explore MRF optimization on the GPU. In particular, we
propose a method to efficiently use the GPU and their atomic capability for high
performance. We present the incremental α-expansion algorithm for multilabel
MRFs. Our method retains the grid structure of the graph, common to low-level
vision problems. We also propose a method to map dynamic energy minimization
algorithms [4] to the GPU architecture. We recycle and reuse the flow from
the previous MRF instances. A novel framework is also proposed based on the
observation that the most of the variables in the MRF get the final labels quickly.
Reuse of the flow from one cycle to the next as well as from one iteration to the
next in the first cycle, and shifting the graph constructions to the parallel GPU
hardware are the innovative ideas that produce high performance. We achieve a
speedup of 5-6 times on different multi-labeling problems on standard datasets.

We tested our algorithm on different problems such as stereo correspondence,
image restoration, and photomontage. Stereo correspondence results are shown
on Tsukuba, Venus and Teddy images. Image restoration results are shown on
Penguin and House images and photomontage on Panorama and Family images.
All the datasets are taken from the Middlebury MRF page [14]. The energy
functions used are the same as used by them. Our approach takes 950 millisec-
onds on the GPU for stereo correspondence on Tsukuba image with 16 labels
compared to 5.4 seconds on the CPU.

1.1 Literature Review

Some of the key algorithms which are used to minimize energy functions de-
fined over MRF include α-expansion and αβ-swap [3], max-product loopy belief
propagation [20] and tree-reweighted message passing [12]. α-expansion involves
constructing a graph over which maxflow/mincut algorithms are applied repeat-
edly. The Ford-Fulkerson’s algorithm [21] to solve maxflow/mincut problem is
popular and several fast implementations are available today [3, 10]. Push-relabel
method [7] is more parallelizable and was implemented on the Connection Ma-
chines by Goldberg et al. [5].

Recently efforts have been made to solve the optimization algorithms on
the parallel architecture. Push-relabel algorithms have been implemented on the
GPU recenly [13, 8]. They demonstrate solution of bilabel problems on the GPU.
Liang et al. [15] designed a new parallel hardware to solve belief propagation
algorithm efficiently. Delong and Boykov [18] gave a scalable graph-cut algorithm
for N-D grids which attains non-linear speedup with respect to the number
of processors on commodity multi-core platforms. Schmidt et al. [23] present
an efficient graph cuts algorithm for planar graphs motivated by the work of
Borradaile and Klein [22].



2 MRF Energy Minimization on the GPUs

Many vision problems are naturally formulated as energy minimization prob-
lems. These discontinuity preserving functions have two terms, data term and
smoothness term. The general form of the function is:

E(f) =
∑

Dp(fp) +
∑

Vp,q(fp, fq)

where Dp(fp), the data term, measures the cost of assigning a label fp ∈ L

to pixel p ∈ P and V(p,q)(fp, fq), the smoothness term, measures the cost of
assigning the labels fp and fq to the adjacent pixels p and q.

The MRF is modeled as a graph with a grid structure with fixed connectivity.
We use the α-expansion algorithm to minimize the energy, which is posed as
a series of two-label graph cuts. We use a flagged graph cuts using the push-
relabel algorithm for these. We also reuse the flows to initialize the current MRF
instance from the previous iterations and cycles. Two basic steps of updation
and reparameterization are also parallelized on the GPUs.

2.1 α-Expansion Algorithm

The α-expansion [3] is a popular move-making energy minimization algorithm
(Algorithm 1). Steps 2 to 4 form a cycle and the step 3 is an iteration within a
cycle. The algorithm starts from an intial labelling and makes a series of moves,
which involve label change of the random variables, until there is no decrease in
the energy. After each iteration of α-expansion, the random variable in the MRF
retains either its current label or takes a new label α. One cycle of α-expansion
algorithm involves iterating over all the labels.

Algorithm 1 α-EXPANSION

1: Intialize the MRF with an arbitrary labelling f .
2: for each label α ∈ L do

3: Find f
′

=arg min E(f
′

) among f ′ within one α-expansion of f , current labelling
4: end for

5: if E(f
′

) < E(f) then

6: goto step 2
7: end if

8: return f

Given a current labelling f , there are exponential number of moves possi-
ble in Step 3. Graph cuts algorithm efficiently computes next configuration f

′

in polynomial time. It involves constructing a graph based on the current la-
beling and the label α. Vertices with label α do not take part in the iteration
but all others attempt to relabel themselves with α. There are two ways to
construct the graph involved. Kolmogorov et al. [10] construct the graph with-
out any auxiliary vertices, while Boykov et al. [3] introduce auxiliary vertices.
The α-expansion method involves constructing graph in each iteration. This is
a time consuming step. It takes 1.2 seconds on the Tsukuba image for stereo
correspondence problem with 16 labels on the CPU.



2.2 Flagged Graph Cuts on the GPU

The push-relabel algorithm finds the maximum flow in a directed graph. Each
vertex u in the graph has two quantities associated with it: height value h(u) and
excess flow e(u). The algorithm involves two basic operations: Push and Relabel.
It has been implemented on the ealier version of CUDA, with and without the
atomic capability [13, 8]. We extend prior work to handle α-expansion [13].

Push Operation: The push operation can be applied at a vertex u if e(u)
> 0 and its height h(u) is equal to h(v)+1 for at least one neighbor v ∈ Gr, the
residual graph. Algorithm 2 explains the implementation of the push operation
on the GPU.

Algorithm 2 KERNEL2 PUSH

Input: A residual graph, Gr(V, E).

1: Load height h(u) from the global memory to the shared memory of the block.
2: Synchronize the threads of the block to ensure the completion of load.
3: if u is in the current graph then

4: Push excess flow to eligible neighbors atomically without violating constraints.
5: Update edge-weights of (u, v) and (v, u) atomically in the residual graph Gr.
6: Update excess flows e(u) and e(v) atomically in the residual graph Gr.
7: end if

Relabel Operation: Local relabel operation is applied at a vertex u if it
has positive excess flow but no push is possible to any neighbor due to height
mismatch. The height of u is in-creased in the relabeling step by setting it to one
more than the minimum height of its neighboring nodes in the residual graph Gr.
Algorithm 3 explaines the implementation of local relabel performed on GPUs.

Algorithm 3 KERNEL3 RELABEL

Input: A residual graph, Gr(V, E).
1: Load height h(u) from the global memory to the shared memory of the block.
2: Synchronize the threads of the block to ensure the completion of load.
3: if u is in the current graph then

4: Update the activity bit of each vertex in the residual graph Gr.
5: Compute the minimum height of the neighbors of u in the residual graph Gr.
6: Write the new height to the global memory h(u).
7: end if

Push-relabel algorithm finds the maxflow/mincut on an edge-capacitated
graph. Graph construction is central to any energy minimization method based
on the graph cuts. Our graph-construction exploits the grid-structures of the
MRFs defined over images. We adapt the graph construction of Kolmogorov et

al. [10], which maintains the grid structure. α-expansion repeatedly finds the
mincut based on the current graph, the current labelling of the pixels, and the
label α. Thus the structure of the graph changes for each iteration using α. We
use a flagged graph-cuts method, which helps in retaining the grid structure



of the graph. We keep a flag bit with each vertex in the graph, which is set if
the vertex is part of the current graph. Each vertex participates in the compu-
tationonly only if the flag is set (Step 3 of Algorithm 2 and 3). This way, we
maitain the grid structure and restrict the overall computation. The graph is
constructed based on the energy functions which can change over iterations for
some problems. To reduce the overall computation time, the evaluation of the
energy functions and the graph construction are performed on the GPU. Our
energy function and graph construction are same as in [14]. Table ?? compares
the times for bilabel segmentation on some standard datasets on the GPU and
the CPU.

Image Graph Cuts Graph Construction Total
GPU CPU [11] GPU CPU [11] GPU CPU [11]

Flower 37 188 0.15 60 37.15 248
Sponge 44 142 0.15 61 44.15 203
Person 61 140 0.15 60 61.15 201

Table 1. Comparison of running times(in milliseconds) for one graph cut on GTX 280
with that of Boykov on the CPU on different images.

2.3 Stochastic Cut

Most of the pixels get their final label after a few iterations on different datasets.
This relates to the fact that the MRF constitutes both simple and difficult
variables [16]. The simple variables settle and get their final label within few
iterations of the graph cuts algorithm. Only few vertices exchange flows with
their neighbours later. Processing vertices which are unlikely to exchange any
flow with their neighbours results in inefficient utilization of the resources.

We determine blocks of vertices that are active at different stages of the graph
cuts algorithm. An active block has at-least one pixel that has exchanged flow in
the previous step. The activity is determined based on the change in the edge-
weights and is marked for each block. Based on the active bit, the kernel executes
the other parts of the algorithm. Figure 1(a) shows the number of active blocks
as the computation progresses. This behaviour of the MRF is data dependent.
In the case of the Tsukuba image for stereo correspondence problem, we see that
the number of active blocks decreases significantly within a few iterations of the
graph cuts. However, in the case of the Penguin image for restoration problem,
the number of active blocks remains almost same throughout the computation.
We delay the processing of a block based on its activity bit by a fixed amount. A
block is processed in every iteration if it is active, otherwise the block is processed
only after 10 iterations. This delaying has no effect on the final convergence as
Goldberg et al. [7] proves that the convergence of the push-relabel algorithm is
independent of the order of processing of the push and relabel operation for each
vertex. However, to maintain the preflow condition at all time, we can apply the
above approach only to the push operation. Algorithm 4 explains the working of
the push-relabel algorithm with stochastic cuts on the GPUs. Figure 1(b) shows
the time taken by each iteration averaged over all cycles.



Algorithm 4 KERNEL4 STOCHASTIC

Input: A residual graph, Gr(V, E).
1: Check the active bit of the block.
2: Perform Flagged Graph Cuts every iteration on all the above blocks and every 10th

iteration on the inactive blocks.
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Fig. 1. (a) Number of active blocks vs. iteration number and (b) average time vs.
iteration number on different datasets.

2.4 Increamental α-expansion on the GPU

Energy minimization algorithms try to reach the global minima of the energy
functions. They will converge faster if initialized close to optimum point. Ini-
tialization can have a huge impact on the computation time. Reusing the flow
has been the method to initialize better. Kohli and Torr [4] describe a reparam-
eterization of the graph to initialize it for later frames in dynamic graph cuts.
Komodakis et al. [2] extends this concept to multilabeling problems. Alahari et

al. [1] give a simpler model for the same using dynamic α-expansion.
We adapt these methods to get an incremental α-expansion algorithm. We

make three modifications to speed the overall process.

– First, we adapt the re-parameterization given by Kohli and Torr to the
push-relabel algorithm. The final graph of the push-relabel method and the
final residual graph of the Ford-Fulkersons method are the same. We can
apply similar reparametrization steps to the leftover flow for the push-relabel
algorithm. The graph is updated using reparameterization from one step to
another instead of being constructed from scratch.

– Second, we adapt the cycle-to-cycle relation used by Komodakis et al. and
Alahari et al. to α-expansion. For this, we store the graph at the start of each
iteration for future use. The final excess flows at the end of each iteration of
a cycle is also stored for use with the same iteration of the next cycle. The
edge weights for an iteration in the next cycle are compared with the stored



edge weights from the previous cycle. Reparametrization is applied to the
stored excess flow from the previous iteration, based on their difference. The
reparametrized graph is used for the graph cuts in Step 3 of Algorithm 1,
leading to faster convergence. Cycle-to-cycle reuse of flow typically results
in a speed up of 3 to 4 times in practice.

– Third innovation is the incremental step for the later iterations of first cycle,
which has no stored value for reparametrization. Nodes with label i do not
take part in the iteration i of each cycle; all other nodes do. The graph
remains nearly the same from iteration i to iteration (i + 1), with a few
nodes with label (i + 1) dropping out and those with label i coming in.
We reparametrize the final excess flows from iteration i using the difference
between the graphs at the start of iterations i and (i + 1) for the first cycle.
In our experience, the iteration-to-iteration reuse of flow for the first cycle
reduces the running time of the first cycle by 10-20%.

Figure 2 and Algorithm 5 explain our approach for the incremental α-expansion.
The incremental α-expansion algorithm needs to store L graphs Gj , 1≤j≤L, one

Algorithm 5 KERNEL5 INCREMENTAL

Input: A residual graph, Gr(V, E).
1: Initialize the graph
2: for the first cycle:
3: Construct graph G1

1for α = 1, save in prev

4: Perform 1-expansion for label 1 using flagged graph cuts
5: Save final excess flow graph in eflow

6: for labels l from 2 to L do

7: Construct graph Gl
1 for current label l

8: Reparametrize eflow based on difference with prev

9: Perform l-expansion for label l using flagged graph cuts
10: Save final excess flow graph in eflow

11: end for

12: for latex cycles i, iterations j

13: Construct graph Gj

i

14: Reparameterize based on Gj

i and Gj

(i−1)

15: Perform l-expansion for label l using flagged graph cuts

for each iteration. It also stores L excess flows at the end of each iteration of a
cycle. The first cycle needs one additional graph to be stored.

3 Experimental Results

We conducted experiments on a single Nvidia GTX 280 graphics adapter with
1024MB memory on-board (30 multiprocessors, 240 steam processors) connected
to an Quad Core Intel processor (Q6600 @ 2:4GHz) with 4GB RAM running
Fedora Core 9. We tested our algorithm on different standard problems such as
stereo correspondence, image restoration, and photomontage on various images.
Stereo correspondence results are shown on Tsukuba, Venus and Teddy images.



 

   

   

   

 

 

 

Fig. 2. Incremental α-expansion. Arrows indicate reparameterization based on the dif-
ferences in graph constructed. Gj

i is the graph for iteration j of cycle i.

Image restoration results are shown on Penguin image and photomontage on the
Panorama image. All the datasets are taken from the Middlebury MRF page [14].
The energy functions used are the same as used by them.

Figures 3(a), 3(b) shows the results of our approach on Tsukuba, Teddy im-
ages respectively for stereo correspondence. The results of restoration problem
on Penguin image is shown in Figure 3(c) and of photomontage problem on
Panorama image in Figure 3(d). Timings are shown on Middlebury code on the
CPU, Fast-PD and dynamic α-expansion on the CPU, our basic implementation
without flow reuse, and the complete incremental α-expansion. Our incremen-
tal α-expansion on the GPUs is 5-8 times faster than the α-expansion on the
CPU using Middlebury code [14]. Impact of flow-reuse can also be seen from the
graphs in Figure 4. Stereo correspondence on Tsukuba image with 16 labels takes
772 milliseconds on the GPU compared to 5.4 seconds on the CPU. Dynamic
α-expansion [1] and Fast-PD [2] takes 3.23 seconds for the same. Figure 3(e)
compares the total times for convergence for different levels of optimization dis-
cussed above on various datasets. Recently, Liang et al. [15] proposed belief
propagation based optimization algorithm on the GPU to solve the energy min-
imization problems, which achieved 4 times speedup compared to the sequential
algorithms. Our proposed algorithm achieves better performance than them.

4 Conclusion

In this paper, we presented the incremental α-expansion algorithm for high-
performance multilabel MRF optimization on GPU. We efficiently utilize the
resources available on the current GPUs. We are able to get a speedup of 5-8
times on standard datasets on various problems. Our system brings a near-real
time processing of MRF to the reach of most users as the GPUs are now very
popular.
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(b) Stereo: Teddy Image with 60 labels
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(c) Restoration: Penguin Image with
256 labels
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Fig. 3. Timings on different datasets from Middlebury MRF page [14]. (a)-(d) include
only α-expansion timings.
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