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Abstract. In this paper, we propose a convex optimization based approach for
piecewise planar reconstruction. We show that the task of reconstructing a piece-
wise planar environment can be set in anL∞ based Homographic framework
that iteratively computes scene plane and camera pose parameters. Instead of
image points, the algorithm optimizes over inter-image homographies. The resul-
tant objective functions are minimized using Second Order Cone Programming
algorithms. Apart from showing the convergence of the algorithm, we also empir-
ically verify its robustness to error in initialization through various experiments
on synthetic and real data. We intend this algorithm to be in between initializa-
tion approaches like decomposition methods and iterative non-linear minimiza-
tion methods like Bundle Adjustment.

1 Introduction and Related Work

In this paper, we describe a convex optimization based approach for piecewise planar re-
construction by optimizing inter-image homographies. This work is motivated by both
the recent success of convex optimization based methods in various geometric prob-
lems like triangulation, resectioning [1, 2], and the available sophistication in robust
estimation of homographies across views [2].

Convex optimization methods have achieved recent success in the estimation of
various geometric quantities like homography, pose, 3D point cloud (triangulation) [1,
2] etc., and are even shown to be reasonably robust to noise [2]. There are even works
on outlier estimation and removal using convex optimization [3] . On the other hand,
there also has been progress on robust estimation of homographies from multiple views
of a scene plane [2]. However, even though homographies can also be expressed as a
function of the camera pose, and can be decomposed using SVD in a similar manner
to fundamental matrices [4, 5], piecewise planar reconstruction as a 3D reconstruction
pipeline has not received much attention.

To this extent, we intend to develop an algorithm that can be auseful “bridge” be-
tween SVD based initialization methods mentioned above andnon-linear optimization
methods like Bundle Adjustment (BA). We focus on the iterative reconstruction pro-
cess, that alternates between optimizing a six parameter camera pose vector for each
view, and a four element plane parameter vector for each scene plane, by optimizing
over the resulting inter-image homographies.

We make the following contributions in this work. First, we introduce objective
functions for producing optimal estimates of pose and planeparameters, along the lines



of [2]. Then, we show how a Branch and Bound (BnB) algorithm may be formulated
for the computation of optimal rotation between views [4].

Some of the recently proposed frameworks onL∞ based quasi-convex cost func-
tions problems form the motivation for our work [1, 6], whilesome closely related
works include projective Bundle Adjustment (pBA) [7] and BAwith constraints [8].
However, we differ from these works in the kinds of objectivefunctions minimized
(quasiconvex as opposed to non-linear) and in the quantities we optimize (homogra-
phies as opposed to 3D points). Recent study of bi-linear problems also has relevance to
our work [9] since plane and pose parameters are combined together in a bi-linear form
in the expansion of a homography (Equation 1). However, the formulation proposed
in [9] requires that the entire set of plane and pose parameters need to be optimized
together. Also, estimation of rotation parameters becomesinfeasible in such a scenario.
Thus we do not resort to a formulation along the lines of [9].

The rest of this paper is organized in the following manner. Section 2 sets the prob-
lem of pose estimation in a homographic framework and motivates the need for the use
of optimization. Section 3 presents our solution and algorithm details. Experimental
analysis on synthetic and real-world sequences are done in Section 4 and finally, we
conclude with a discussion on future directions and applications in Sections 5.

2 SVD based Initializations

Let there bem planes in the world, characterized by the parameters
[

n1, d1, . . . , nm, dm
]

.
The jth plane is characterized by the parameters(nj , dj), wherenj represents the nor-
mal of the plane anddj represents the perpendicular distance from world origin. Let
there be two cameras with external parameters[I | 0] and[R | t]. For simplicity, let us
assume that the internal parameters of the cameras are set toidentity (K = I). Thus the
homography induced by the jth plane between the two views [10] is given by

Hj =

[

R −
tnjT

dj

]

(1)

Decomposition algorithms for obtaining camera pose and plane normals from ho-
mography matrix using Equation 1 are well known [11, 5]. However, since, the process
of pose computation from correspondences through the homography matrix involves
two SVDs, a theoretical sensitivity analysis of such algorithms is difficult and approx-
imate [12]. Thus it is more advantageous to do an empirical study of the error in the
estimation of plane and pose parameters, given noise in image correspondences.

Figures(1a-1c), depict the poor performance of one of the SVD based decomposi-
tion algorithms [5]. The experiments consisted of adding increasing amounts of noise to
a previously determined set of normalized image correspondences. Homographies ob-
tained after a standard RANSAC routine were then decomposedto obtain estimates of
the plane and pose parameters. Variances are plotted against error in pixel coordinates,
with a maximum variance of 5 pixels which corresponds to approximately 1% of the
image size. As can be seen, translation and normal estimations are adversely affected
by image noise. The errors for the other algorithm [11], weresimilar.



The variances in Figures(1a) plot the error in estimation ofrotation parameters when
noise is introduced into the system. As is seen, the maximum variation of rotation pa-
rameters in the Euler angle space is 6 degrees, for as high as one percent image noise.
Comparison with the translation and normal errors, which are as high as 40 degrees
in the polar space Figures(1b-1c), show that the decomposition algorithm produces
much more robust estimates of rotation than either translation or normal parameters.
This explains the greater need for better estimates of translation and normal parameters
compared to that of rotation parameters that are much close to the actual values.

Fig. 1: (a,b,c) Plot theL2 andL∞ errors in the rotation angles, translation direction and nor-
mal direction respectively. Also are plotted the maximum error ranges for these quantities. The
translation and normal direction errors are computed as Euclidean distances in polar space.

3 Optimization Framework

In this section, we describe our algorithm. First, we start with the simple case when
rotation is assumed known, and the rest of the parameters areoptimized (Section 3.1).
The reason for this is the non-convexity of the orthonormality constraints of the rotation
matrix. Since algorithms for estimating the rotation already exist [4], and since we
have shown rotation parameters to be robustly recovered from SVD decompositions as
compared to other parameters (Figure 1a), we treat rotationseparately (Section 3.3).
Finally, in order to bring all the SVD decomposition estimates into a single coordinate
system, we describe a convex function in Section 3.2.

3.1 Formulation of the Objective Function

We wish to find plane and pose parameters that best fits Equation 1 which is non-
linear in terms of quantities(R, t, nj , dj) that need to be computed. However, observe
that when either the plane or the pose parameters are known, Equation 1 is linear in
the remaining unknowns. This simple fact is used to define an objective function that
measures the geometric distance between the homography computed from plane/pose
parameters and the homography estimated from point correspondences. If the homog-
raphy matrix with varying pose parameters and fixed plane parameters is defined as

Hrtj =
[

R −
tnj

c

T

d
j
c

]

for the jth plane then the corresponding objective function is

F(R,t) =

8
∑

i=1

H
j
i

H
j
9

−
Hrt

j
i

Hrt
j
9

(2)



Similarly, when the plane parameters are allowed to vary fixing pose parameters the

homography function isHndj =
[

d
j
Rc − tcn

j⊤
]

and the objective function

F(n,d) =
8

∑

i=1

H
j
i

H
j
9

−
Hnd

j
i

Hnd
j
9

(3)

(Rc, tc, n
j
c, d

j
c) are fixed and the optimization runs over free variables denoted by bold

letters. There are two important observations to make at this point. Firstly, equations (2, 3)
are both linear fractional: both the numerator and denominator are affine in terms of the
unknowns. Secondly, it is possible to optimize all parameters by alternatively minimiz-
ing Equation 2 and Equation 3 till convergence.

The proposed algorithm is a two step process. An initial estimate of the parameters
is acquired using SVD-based decomposition in the first. However, estimates from SVD
decomposition in the first step do not all have the same scale factor. Such estimates
need to be threaded together and brought down to a common universal scale before car-
rying out the optimization. This is done by minimizing the difference between various
estimates of a single quantity as described in Section 3.2.

Subsequently, in the second step, this estimate is improvedin an optimization frame-
work. However, minimizing Equation 2 without enforcing theconstraints inherent to a
rotation matrix will not lead to a physically valid rotationmatrix. Equation 2 fails to
be a linear fractional with rotation constraints enforced complicating its minimization.
Hence, rotation is handled separately as explained in Section 3.3 and Equation 2 is
minimized by varying only the translation as in Step 7 of Algorithm 1.

The optimization takes advantage of the fact that the objective functions are quasi-
convex and employs convex optimization techniques at minimizing them. Variablesti

and(nj , dj) are minimized in alternating iterations. Optimization ofti takes into ac-
count information from all visible planes. Similarly, optimization for(nj , dj) is done
with information from all views in which the plane is visible. This two step process
ensures the quasiconvexity of the objective functions. Thecomplete method is summa-
rized in Algorithm 1.

Algorithm 1 Complete Algorithm Summarized.

1: Input: HomographieskHj for j = 1, . . . , J andk = 1, . . . , K of planeΠj between the
camera viewskP and reference view0P = [I |0].

2: SVD-based decomposition: DecomposekHj to getkRj ,
ktj
kdj

, knj .

3: Initialization:kR = medianj {kRj} andt = medianj{ktj}.
4: Set to universal scale: Assume each actual camera translation to be a unit vector in the direc-

tion of
kt

dj
, i.e.,‖kt‖ = 1. Let kGj = [kR −

ktnT
j

kdj
] andkGs

j = (g1, g2, . . . , g9)
T .

5: Iterative Minimization:
6: ΣkΣj

˘

kHs
j − kGs

j

¯

≤ δ

7: Update(kt): (kt) = arg minkt maxJ
j=1

q

Σi[
jhi
jh9

−
jgi
jg9

]2∀k = 1, . . . , K.

8: Update(nj , dj): (nj , dj) = arg minnj ,dj
maxK

k=1

q

Σi[
khi
kh9

−
kgi
kg9

]2∀j = 1, . . . , J .



3.2 Universal Scale

Each decomposition by the algorithms of Faugeras [11] and Zhang [5] produces esti-
mates of{R, t, n} assumingd (perpendicular distance of plane from origin) to be unity.
Thus estimates vary by a scale factor and need to be tied down to a single universal
scale which in the presence of noise has to be computed using optimization.

Let the solutions of translation obtained by decomposing homographyHj
i be t

j
i .

Ideally, the actual translation isti = t
j
id

j . Since various estimates of the same quantity

must be consistent, we find anx =
[

t1, t2, . . . , tk, d1, d2, . . . , dm
]⊤

for which an error

|f(x)|∞ is minimum.f(x) is a vector with elements of the set{ti−t
j
id

j | i ∈ [1, k] , j ∈
[1, m]} stacked up. Optimal estimates are found by performing the minimizationx∗ =
arg minx |f(x)|∞.

The considered error function is convex [13], made from the pointwise maximum
of the convex function(ti − t

j
id

j). An unconstrained optimization in this case could
lead to the trivial solution of all zeros forx which is undesirable. To avoid this we
fix perpendicular distance of anyone of the planes (say,d1) to unity. This also sets the
overall scale of the minimization process.

3.3 Retrieving Rotation

Constraints inherent to rotations and normals like orthonormality constraints of the ro-
tation matrix are non-convex and do fit into a convex framework. Such constraints have
been handled in the literature [4, 14] using under estimators and over estimators of the
non-convex function with a Branch and Bound algorithm. We, thus, handle rotation
separately rather than in the above optimization. We use image coordinates of planes
available on the lines of [4] to solve for rotationRi of theith view. The objective func-
tion to be minimized is

F(Ri,ti) ≡ Find(Ri, ti) s.t. ∠(Hj
i x

j
1, (Ri − ti

njT

dj
)xj

1) < ǫmin (4)

which can be alternatively posed as

F(Ri,ti) ≡ Find(Ri, ti) s.t. ∠(Hj
i x

j
1,Ri(I − ti

njT

dj
)xj

1) < ǫmin (5)

wherex
j
1 are points from the jth plane in the first view. Arguments of bounds and in

general the branching strategy of [4] can now be incorporated into the current frame-
work. The analysis that estimates of rotation from SVD-based methods are more robust
than that of translations and normals as noted in Section 2 practically helps the idea of
handling rotation separately at a later stage. Figure 3c shows the performance of the
objective function described above in the presence of varying noise. TheL2 norm in
angular space (roll-pitch-yaw) is plotted against increasing amounts of noise in image
pixels.



4 Experimental Analysis

In order to test the proposed algorithm, we have designed experiments using SeDuMi [16]
on both synthetic and real-world data. Synthetic data is obtained by generating points
on planes and projecting them onto camera matrices. Real world data sets tested include
the Oxford Model House, Corridor, and UNC datasets. In all these cases, the real world
is assumed to be segmented into planes apriorii.e. interest points and hence correspon-
dences computed are assumed to be clustered into planes. However, there are automatic
algorithms to achieve such a classification [15].

4.1 Synthetic Data

GenerationRandom points are generated on the XY-plane which is then re-positioned
at a random location. Two random camera matrices are generated and the world points
of many such planes are projected using them to generate image points. Gaussian noise
of varying standard deviation is added to these image pointsto create synthetic corre-
spondence data. Homographies are then computed using the RANSAC after normaliza-
tion [10] which can alternatively be generated by [1]. The generated Homographies are
decomposed using Faugeras’ and Zhang’s algorithms [11, 5] to generate data for both
initialization and comparison. Algorithm 1 is then run withthis data, to produce our
estimate and is compared with the SVD-based algorithms and Bundle Adjustment in
the 6-parameter pose space by plotting the euclidean distance between estimated and
ground truth values.
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Fig. 2: Plot ofL2 andL∞ norms of the distance in pose space between estimated and ground
truth quantities from Algorithm 1 against increase in variance of Gaussian error in point corre-
spondences. Comparison with the two SVD based methods is shown.

Effect of noiseFigures (2a,2b) show the effect of increasing image noise onthe accu-
racy of estimation. Two observations can be made for both translations and normals.
First, the average error in the estimation of both parameters is less than 5 degrees even
for a 1% error in the image coordinates, which is a considerable amount of error. This
justifies the robustness of our algorithm to image noise. Thesecond observation is that
the mean errors (averaged for 100 trials) in all these cases are located close to the min-
imum errors represented by the lower end of the error bar. We can conclude that most



of the estimations center around the mean, with only a few deviating towards the higher
end. Another interesting observation is that even the resilience to noise is apparent till
about 3 pixel error after which the maximum error in both cases seems to increase. This
can be attributed to the fact that after a point the algorithmpossibly settles into a lo-
cal minima because of the inaccurate initialization. However, this is still better than the
results of SVD-based methods in Figures 1b, 1c.

Comparison with Bundle AdjustmentWe empirically compare our algorithm with stan-
dard iterative non-linear optimization technique of Bundle Adjustment (BA) [17], which
uses Levenberg-Marquardt internally. BA is initialized bythe output of the SVD-based
approaches similar to ours. This initialization is used to minimize the following error
over the normals and the translations

(R, t, nj, dj) = arg min
kR,kt,nj ,dj

∑

k

∑

j

∑

i

[
hi

h9
−

xT Aix

xT A9x
]2 (6)

where,x = (1Rs, . . . , KRs, 1tT , . . . , KtT , nT
1 , . . . , nT

J , d1, . . . , dJ) andAi is a matrix
s.t.xT Aix = gi andx is x with the initial SVD estimates ofkR, kt, nj , dj substituted.
The improvement in translations is shown in Fig (3a) and thatof normals in Fig (3b).
They are shown for varying levels of variance each of which has been tested for 100
trials. They clearly show our algorithm performing better than BA.
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Fig. 3: (a-b)Plot ofL2 norm of the distance in pose space between estimated and ground truth
quantities from Algorithm 1 and Bundle adjustment against increase in variance of Gaussian
error in point correspondences.(c) Error in recovery of rotation parameters using the objective
function of Section 3.3

Effect of planes and viewsFigures (4a,4c,4b,4d) show the effect of the number of
planes and views on the performance of the algorithm. Contrary to intuition, increasing
the number of planes does not seem to have much effect on the accuracy of the estimates
of translation parameters. On the other hand, increasing the number of views increases
the parameter size, and the accuracy of translation estimates dwindles since the number
of planes and hence, measurements is kept constant. In the case of normals, however,
increasing the number of views results in a marked improvement in the accuracy of
their estimates.
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Fig. 4: The above figures plot the effect of planes and views onthe accuracy in estimation of the
translation and normal parameters. First two figures plot the effect on translations and last two
plot the effect on normals. For the experiment with increasing planes, the number of views was
kept constant at 10, and that for views, the number of planes was set to be 3.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5: Sample images of scenes reconstructed using our approach. (House(a), Corridor(b),
synthetic(c-d), UNC((e-f))). (g-h) illustrates the accuracy of our reconstruction, the ground truth
and reconstructed models are overlapping. (i-j) Texture mapped UNC reconstructions



(a) (b) (c) (d)

Fig. 6: Plots of theL∞ error between plane and pose parameters with respect to the ground truth,
for the House and Corridor sequence.L2 error shows similar plots. Y-axis of plots (a),(b),(c) and
(d) is the angular error in radians, X-axis of (a) and (c) is the number of views, where as X-axis
of (b) and (d) is the number of planes. In the plots (a),(b),(c) and (d), dotted curve represents the
Faugeras initialization and other curve represents our approach

4.2 Real Data

In order to test on data from the real-world, we chose two Oxford data sets and the
UNC data set. The House, and Corridor data sets (Figures (5a,5b)) are accompanied
by correspondences and estimates of the camera matrices, while the UNC data set only
comprises camera matrices.

Figures 6a-6b show the comparison between our estimation and that of the decom-
position of Faugeras for the Oxford data sets. TheL2 andL∞ errors between the esti-
mated and ground truth quantities are plotted. In order to compare normals, we took the
best estimate of normals from the available decompositions. As can be seen from the
plots, estimates of translation from our algorithm are far better than the corresponding
algorithm by Faugeras. We found that Zhang’s algorithm produces estimates similar to
that of Faugeras’ algorithm in most cases. The same situation is repeated in the Corridor
sequence (Figures 6c-6d), where translation is very accurately obtained. An explanation
of why certain plane parameters are “perturbed” by a higher error is that some of the ho-
mographies are erroneous and the error in a particularly badhomography is distributed
across planes. Finally, the UNC data set (Figures 5i,5j) show the visual accuracy of our
reconstruction.

5 Discussion and Conclusion

We proposed a framework that reconstructs piecewise planarscenes in much the same
way as Bundle Adjustment for point sets. The algorithm incorporates both multiple
planes and views and does not constrain all the planes to be visible in any single view.
This makes it a useful bridge between initialization approaches and non-linear mini-
mization methods

The existing framework is not without its drawbacks. Currently, though the objec-
tive functions show robustness to noise, it does not work very well in the presence of
outliers. Existing literature in convex optimization thathandles outliers may be used
for this purpose [3]. Similarly, uncertainty of correspondences can also be handled with
techniques like [18]. Secondly, constraintsbetweenplanes like orthogonality may help
in stabilizing the overall reconstruction [8]. One other issue related to this algorithm



is its practical applicability. Recent results reported in[6, 19] are very relevant to our
work and may be used to improve the run time of our algorithm, making it suitable
for faster computation required by videos. We believe that our current contribution lays
down a useful framework for practically viable optimization over planes, and wish to
investigate further into its use for large scale optimization.
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