
Efficient Semantic Indexing for Image Retrieval

Chandrika Pulla, Suman Karthik, C. V. Jawahar
CVIT, International Institute of Information Technology

Hyderabad-500 032, INDIA

Abstract

Semantic analysis of a document collection can be
viewed as an unsupervised clustering of the constituent
words and documents around hidden or latent con-
cepts. This has shown to improve the performance of
visual bag of words in image retrieval. However, the
enhancement in performance depends heavily on the
right choice of number of semantic concepts. Most of
the semantic indexing schemes are also computation-
ally costly. In this paper, we propose a bipartite graph
model (BGM) for image retrieval. BGM is a scalable
datastructure that aids semantic indexing in an effi-
cient manner. It can also be incrementally updated.
BGM usestf-idf values for building a semantic bipartite
graph. We also introduce a graph partitioning algo-
rithm that works on the BGM to retrieve semantically
relevant images from a database. We demonstrate the
properties as well as performance of our semantic in-
dexing scheme through a series of experiments.

1. Introduction

In content based image retrieval systems, similar im-
ages are found by matching features of the query im-
age with those in the database images. Most of the
current image retrieval systems use visual bag of words
model for efficient and effective retrieval [13]. Bag of
words model encodes the similarity between descriptors
by quantization of a very high dimensional space (using
algorithms like k-means) to build a compact codebook.
Images are then represented with the help of a set of vi-
sual words (members of the clusters). This approach,
thus, relies only on the (quantized) low level features of
the image. Thus it has an inherent problem of semantic
gap.

To futher improve the retrieval performance, se-
mantic indexing techniques like Latent Semantic Anal-
ysis (LSA), Probabilistic Latent Semantic Analysis
(pLSA) [4] and Latent Dirichlet Allocation (LDA) [1]

were designed. Semantic analysis can be viewed as
an unsupervised clustering of the constituent words and
documents around hidden or latent concepts. Seman-
tic indexing techniques have been extended to various
computer vision problems in the past [2, 7, 10, 12].
Both LSA and pLSA were originally developed for text
retrieval [4] and later extended for visual data [2]. In
LSA, the term document matrix, which encodes the
frequency of the words in the document, is decom-
posed using singular value decomposition. The largest
k Eigen values from the decomposed matrices are used
to form a reduced matrix, which defines the dimension-
ality of the latent space.

pLSA is a generative model of the data with strong
statistical foundation, where each document is repre-
sented by its word frequency. And the similarity be-
tween the documents is compared in a semantic space
which is more reliable than original representation. Un-
fortunately, the performance depends on the number of
semantic concepts one assumes. (See Figure 3). For
most practical databases (like internet image collec-
tions), guessing the number of concepts is practically
impossible. Also pLSA is computationally intensive.
Most of the current databases are large in size and there-
fore the semantic indexing for such large database is not
practically feasible.

Semantic indexing for dynamic databases where new
images are constantly added to the image collection
poses a considerable challenge, primarily due to its re-
source intensive matrix computations. An incremental
variant of pLSA proposed by Wuet al. [14] tried to im-
prove the computational efficiency. However they failed
to address the issue of storage complexity. Even their
performance depends on the right choice of number of
concepts. (See the comparative study in Section 3).

In this paper, we propose a Bipartite Graph Model
(BGM) for semantic indexing. BGM converts the vec-
tor space model into a bipartite graph which can be in-
crementally updated withjust in timesemantic index-
ing. BGM have been used successfully in unsuper-
vised learning tasks like data clustering [15]. We fur-

ther propose a graph partitioning scheme that traverses
the BGM to retrieve relevant images at runtime. We
compare the retrieval performance of BGM, pLSA and
Incremental pLSA using the holiday dataset [5]. Our
method is computationally efficient, and robust to the
parameters of the model.

2. Bipartite Graph Model

OurBipartite Graph Model(BGM) indexes the term
document data in a scalable and incremental manner.
The basic idea of bipartite graph model is to convert the
term document matrix into a bipartite graph of terms
and documents (See Figure 1). In BGM, the edges are
weighted with term frequencies of words in the doc-
uments and each term is also associated with an in-
verse document frequency value. These values deter-
mine the importance of a word to a particular docu-
ment. G = (W, D, E) is the bipartite graph such that
W = {w1, w2 . . . , wn}, D = {d1, d2 . . . , dm} and
E = {ed1

w1
, ed2

w7
. . . , edm

wn

}. Here the weight associated
with w1 = IDF (w1) and that ofed1

w1
= TF (w1, d1).

Thus the BGM encodes the co-occurrence data in the
term document matrix without the need to project the
database into a latent topic space.

As shown in Figure 1, the documents (images) are
connected to words (quantized neighbourhood descrip-
tors). An image may contain many words. A word may
be present in many images. Similarity of two images
can be measured in terms of the number of words they
share. If images A and B as well as A and C are similar,
then B and C are also similar. This gets reflected in the
paths which traverse the graph from image to word and
then back to images.

2.1 A Graph Partition Scheme

A vertex partitioning ofG = (W, D, E) denoted
by (V1, V2) is defined as a partition of the vertex set
D, such that vertex setV1 contains vertices which are
relevant to the query, andV2 contains all other nodes.
Our method is fundamentally a damped label propaga-
tion, which is a modification of the method suggested
by Raghavanet al. in [9] (and also [6]). Our graph par-
titioning algorithm adapts their method by performing
a single source label propagation, instead of multi-node
propagation. This gives us the flexibility to gauge the
label propagation through each node. When a query is
given, the query node attaches itself to the nodes in the
setW which are directly related to the query, with the
relationship previously known. The node initially con-
tains a fixed number of labels, which are partitionable.
The node then distributes the labels based on the edge

weight between the node and its neighbours, such that
the received amount of labels is directly proportional to
the edge weight. The query node is disconnected from
the graph. The neighbours then propagate the labels to
their neighbours. If the node is a document node, the
distribution of the labels among its edges is determined
according to the quantity which is proportional to the
flow capacity calculated by the normalized Term Fre-
quency (TF) value. If the node is a word node, then a
penalty, which is proportional to the Inverse document
Frequency(IDF) value of the word, is taken from the
amount of label it receives and the rest is distributed
like the document node based on the flow capacity of
its edges. Hence higher the edge weights the more la-
bel is propagated to the relevant node. At each node the
label is compared with acutoff value which is the least
amount of the label needed for a node to forward the
label. Hence the label is propagated to relevant docu-
ments and terms until a cutoff value is reached at which
point label is no longer propagated. The nodes receiving
the most label are the most relevant documents. Thus,
it divides the nodes in the bipartite graph into relevant
and non-relevant sets similar to a graph cut algorithm.

Algorithm 1 Graph Partitioning Algorithm for Bipartite
Graph

defGP(G, N, labels)
Update amount of labels that have passed through
nodeN

Label[N] += labels

if NodeN is of type Wordthen
labels = labels * IDF(N)

end if
if Amount of labels transferable from N< cutoff
then

exit
end if
for eachnode in neighbourhood ofN do

GP(G, node, labels ∗ TF (N, node))
end for

A new document can be inserted in a Bipartite Graph
Model by creating a new document node and creating
edges to the relevant words based on their term fre-
quency (TF) values and updating the IDF values of the
relevant word nodes. The complexity of insertions and
deletions of documents is linear to the number of words
within a document.

To summarize, most of the existing techniques like
pLSA generally categorize the entities in a datasets into
multiple groups and interaction between them are stored
in a matrix. The values in the matrices represent the
strength of interaction between them and elements in

Figure 1. Graphical representation of Bi-
partite Graph Model. The image in the
database is represented as a collection of
visual words. The edges connect the vi-
sual words to the images in which they
are present.

the same category are considered independent of each
other. As the data size increases and interactions be-
come sparser and we need to retrain the pLSA model
when ever new data come, which is computationally
expensive and time consuming. A natural progression
of the method is to represent the interactions as graphs.
The normalized strength of interaction between two en-
tities being the weight of the edge connecting the two.

3. Experiments

We first present the retrieval performance of BGM,
and compare it with a direct retrieval without any se-
mantic indexing. For this, we use Zurich Building Im-
age Database [11] consisting of 1005 images of 201
buildings. We extracted SIFT vectors from the images
and quantize the feature space using Kmeans with a vo-
cabulary size of 1000. Then we build a simple index-
ing scheme, where the similarity between documents is
compared using cosine metric between the documents
(vectors) from the term document matrix. BGM is con-
structed as explained in section 2. The Mean Aver-
age Precision(mAP) retrieval performance for simple
retrieval is 0.26, whereas for BGM it is 0.54 mAP. As
can be seen from Figure 2, BGM is able to retrieve im-
ages that simple retrieval can not.

We now, compare the retrieval performance of pLSA
with the retrieval performance of BGM. For this exper-
iment we have used holiday dataset[5], it contains 500
image groups, each representing a different scene or ob-
ject. The first image of each group is the query image
and the correct retrieval is the other images of the same
group, in total the dataset contains 1491 images. We

Figure 2. The result of retrieval on Zurich
building data for simple indexing and
BGM, first image is query image.

made extensive use of local detectors like Laplacian of
Gaussian(log) and the SIFT descriptors[3]. Initially all
the images from the dataset were downsampled to re-
duce number of interest points, after which feature de-
tection and SIFT feature extraction was done. Once
the features were extracted the cumulative feature space
was vector quantized using K-means. With the aid of
this quantization the images were converted into docu-
ments or collection of visual words.
For pLSA, we first construct a term document matrix
A of the orderM × N whereM is the vocabulary
size andN is the number of documents. Here, each
image is represented as a histogram of visual words.
An unobservable latent topicZk is introduced between
the documents and the words. ThusP (wi, dj) =
P (di)

∑
k P (zk|dj)P (wj |zk). We learn the unobserv-

able probability distributionP (zk|dj) and P (wi|zk)
from the data using the Expectation Maximization Al-
gorithm. For retrieval the Euclidean distance of the doc-
uments over topic probabilities was used to retrieve the
10 most similar images.

For BGM term document matrix was constructed
and normalized. Then all the terms in the matrix were
updated with their inverse document frequency values.
This term-document matrix was then converted into a
bipartite graph between the set of terms and documents
as described by the BGM model. For each of the 500
query images the graph partitioning algorithm was used
over this graph to retrieve the 10 most similar images.

Retrieval results for the both BGM and pLSA were
aggregated and the evaluation code provided for the hol-
iday dataset was used to calculate the Mean Average
Precision(mAP) in both cases in Table 1.

We now demonstrate the retrieval performance of

Model mAP time space
Probabilistic LSA 0.642 547s 3267Mb
Incremental PLSA 0.567 56s 3356Mb
BGM 0.594 42s 57Mb

Table 1. Mean Average Precision for both
BGM, pLSA and IpLSA for the holiday
dataset, along with time taken to perform
semantic indexing and memory space
used during indexing.

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 100 200 300 400 500 600

m
A

P

No. of Concepts

mAp Vs Concepts

Figure 3. The retrieval performance of
PLSA varying the number of Concepts.

pLSA with respect to number of concepts. For this we
used Holiday database [5]. As we can see from the
figure 3 the retrieval performance is minimal if there
is mismatch between the concepts assumed for training
and the actual concepts in the database.

Typical image retrieval systems are generally built
on static databases whereas, in real world the data
keep changing i.e., the images are added or removed
frequently. pLSA cannot handle streaming/constantly
changing data as the model has to be retrained on both
new and old data which is computationally expensive.
To handle this Incremental pLSA [14] was proposed
in which when ever a new image is added, the proba-
bility of a latent topic given the documentP (z|d) and
the probability of words given topicP (w|z) are up-
dated based on Generalized Expectation Maximization
[8, 14]. The Table 1 shows the comparison of BGM
with IPLSA using the evaluation code provided for the
holiday dataset for calculating the Mean Average Pre-
cision(mAP) in both cases. The mAP results show that
BGM performs better than IpLSA. As well as the mem-
ory usage of pLSA and IpLSA for creating the semantic
indexes(training) much higher than BGM as their space
complexity is of the orderO(TNz) whereNz is the
number of nonzero elements in the document term ma-

trix andT is the number of topics.

4. Conclusion

In this paper, we propose a Bipartite Graph Model
for semantic indexing. Our model is effective, and com-
putationally efficient. Experimental results on many
standard data sets demonstrate the utility of the method.
Since the method does a just in time semantic analysis,
it is scalable and efficient. It is also robust to parameters
associated with the model.

-

References

[1] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation.J. Mach. Learn. Res., 3:993–1022, 2003.

[2] A. Bosch, A. Zisserman, and X. Muoz. Scene classifi-
cation via plsa. InCIVR, pages 307–312, 2003.

[3] G. Dorkó and C. Schmid. Object class recognition using
discriminative local features. Technical report, INRIA -
Rhone-Alpes, 2005.

[4] T. Hofmann. Probabilistic Latent Semantic Indexing. In
SIGIR, pages 50–57, 1999.

[5] H. Jegou, M. Douze, and C. Schmid. Hamming em-
bedding and weak geometric consistency for large scale
image search. InECCV, pages 304–317, 2008.

[6] A. N. Langville and C. D. Meyer.Google’s PageRank
and Beyond: The Science of Search Engine Rankings.
2006.

[7] C. Liangliang and L. Fei-Fei. Spatially coherent latent
topic model for concurrent segmentation and classifica-
tion of objects and scenes. InICCV, pages 1–8, 2007.

[8] R. M. Neal and G. E. Hinton. A view of the em algo-
rithm that justifies incremental, sparse, and other vari-
ants. pages 355–368, 1999.

[9] U. Raghavan, R. Albert, and S. Kumara. Near linear
time algorithm to detect community structures in large-
scale networks.Physical Review E, 76:36106, 2007.

[10] B. C. Russell, A. A. Efros, J. Sivic, W. T. Freeman, and
A. Zisserman. Using multiple segmentations to discover
objects and their extent in image collections. InCVPR,
2006.

[11] H. Shao, T. Svobodal, T. Tuytelaars, and L. V. Gool.
Hpat indexing for fast object/scene recognition based
on local appearance. InCIVR, pages 307–312, 2003.

[12] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and
W. T. Freeman. Discovering object categories in image
collections. InICCV, 2005.

[13] J. Sivic and A. Zisserman. Video Google: A text re-
trieval approach to object matching in videos. InICCV,
pages 1470–1477, 2003.

[14] H. Wu, Y. Wang, and X. Cheng. Incremental proba-
bilistic latent semantic analysis for automatic question
recommendation. InRecSys, pages 99–106, 2008.

[15] H. Zha, X. He, C. Ding, H. Simon, and M. Gu. Bipartite
graph partitioning and data clustering. InCIKM, pages
25–32, 2001.

