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Abstract. This paper introduces an efficient privacy-preserving protocol for dis-
tributed K-means clustering over an arbitrary partitioned data, shared among N
parties. Clustering is one of the fundamental algorithms used in the field of data
mining. Advances in data acquisition methodologies have resulted in collection
and storage of vast quantities of user’s personal data. For mutual benefit, orga-
nizations tend to share their data for analytical purposes, thus raising privacy
concerns for the users. Over the years, numerous attempts have been made to in-
troduce privacy and security at the expense of massive additional communication
costs. The approaches suggested in the literature make use of the cryptographic
protocols such as Secure Multiparty Computation (SMC) and/or homomorphic
encryption schemes like Paillier’s encryption. Methods using such schemes have
proven communication overheads. And in practice are found to be slower by a
factor of more than 106. In light of the practical limitations posed by privacy
using the traditional approaches, we explore a paradigm shift to side-step the ex-
pensive protocols of SMC. In this work, we use the paradigm of secret sharing,
which allows the data to be divided into multiple shares and processed separately
at different servers. Using the paradigm of secret sharing, allows us to design a
provably-secure, cloud computing based solution which has negligible commu-
nication overhead compared to SMC and is hence over a million times faster than
similar SMC based protocols.
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1 Introduction

K-means clustering [1] [2] is one of the most widely used techniques for statistical data
analysis. Researchers use cluster analysis to partition the general population of con-
sumers into market segments and to better understand the relationships between differ-
ent groups of consumers/potential customers. However the collected data may contain
sensitive or private information, thus heightening the privacy concerns [3] [4]. The pri-
vacy and secrecy considerations can prohibit the organizations from sharing their sen-
sitive data with each other. The solution should not just be provably secure i.e. it leaks
no additional useful information, but should also minimize the additional overheads
in terms of communication and computation costs required to introduce privacy. Ad-
dressing the problem requires many practical challenges to overcome before a possible
wide-scale deployment. Solutions were sketched to extract knowledge by making the
participating parties to compute common functions, without having to actually reveal
their individual data to any other party [5] [6].Vaidya et al. [7] summarize the state of
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art methods available for privacy preserving data mining. More detailed reviews of the
previous work can be found in Verykios et al. [8].

Previous solutions can be primarily categorized as, i) those using Data Perturbation
techniques, and ii) those employing Secure Multiparty Computation (SMC). The first
category of approaches introduces noise and data transformations to achieve partial
privacy [9] [10] [11]. The clustering is then done of the noisy version of the data, re-
sulting in approximately correct clusters [5] [12]. Such approaches compromise privacy
for practicality, however the key advantage is the negligible communication overhead
needed by such approaches.

The second category of approaches aims to achieve complete privacy. This is done
using the well known cryptographic protocol of SMC [13]. SMC facilitates a group of
people, each with its own private data, to perform some common computation task on
the aggregate of their data. SMC ensures that, in the process, no personal information
of data is revealed to any one [14]. However, the SMC based protocols are found to
be extremely computationally expensive [13]. In other words, an operation which re-
quires a single round of communication in a non-secure implementation, would require
hundreds of thousands of rounds of communication (depending on the domain size) to
achieve the same operation in a secure implementation using SMC. For data mining ap-
plications, the sheer volume of the data involved makes the protocol infeasible in terms
of the communication cost. For example, Vaidya et al. [15], İnan et al. [16] and Wright
et al. [17] use SMC as a subroutine to propose privacy preserving clustering. However,
the huge computational costs makes these solution of limted practical interest.

Another set of proposed approaches uses the semantically secure additive or mul-
tiplicative homomorphic encryption schemes [18] [19]. In such a protocol, one party
encrypts its data using its public key, and share the encrypted data with the other party
for computation. Interactive protocols are then designed to carry out the clustering al-
gorithm [20] [10]. The overheads of encryption and the communication costs needed
to carry out clustering limits the scope of such algorithms. Interaction can be reduced
with the usage of a doubly homomorphic scheme [21]. However, the only known dou-
bly homomorphic scheme is the one recently proposed by Craig Gentry [22] and would
most likely lead to a computationally intensive theoretical solution.

In this work, we achieve the security at the level of SMC while keeping the com-
munication costs to a level similar to that of the first category. We achieve this using
the paradigm of the Secret Sharing[23] [24] over a mesh of processing servers. Our
solution is first of its type, and is both efficient and mathematically simple. In the pro-
cess we also side-step the communication bottlenecks posed by the usage of SMC and
asymmetric encryption schemes. Our proposed solution is not only computationally ef-
ficient but also secure independent of whether or not P �= NP. We however do assume
the servers to be non-colluding and having the ability to generate random numbers.

We address the scenario of N parties, sharing an arbitrary partitioned data [17], wish-
ing to privately collaborate for doing cluster analysis on their aggregated data. In our
setting, the attribute names form the public information. Each of the entity is either
completely owned by one of the users, or the attributes are shared among the N users,
where the share of some users can also be φ. If a record is ‘completely’ owned by any-
one, then its existence remains hidden from other users. If any of the attributes for an
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Fig. 1. Sample Mesh of servers. Each of the N users shatters their private data (Sec: 2) and sends
over the shares to the pre-selected R servers for computation. The final result is obtained by
merging (Sec: 2) the outputs of the computational servers. In above example, N is 2 and R is 3.

entity are with more than one user, then a weighted average of the attribute values is
considered for the computational purpose. Entities are indexed using a mutually agreed
upon indexing scheme. The indexing scheme addresses the two concerns of i) hiding the
entity’s identity from the servers, and ii) a common index for accessing the vertically
partitioned data. We now look at the architecture of our proposed solution.

We propose a ‘cloud computing’ based solution that utilizes the services of R, (R >
2), non-colluding servers. Each of the N users, is required to compute the R secret
shares of its private data using a shatter function (see the algorithm, defined in Sec: 2).
Each share is then sent over to a specific server for processing. Note that the shatter
function ensures that the computed secret shares on its own reveal no information about
the original private data. The cloud of employed servers, now runs the K-means algo-
rithm using just the secret shares. The protocol ensures that none of the users/servers
have sufficient information to reconstruct the original data, thus ensuring privacy. As
shown, later in the paper, the shatter function that we choose allows efficient compu-
tations using just the shares. That is, unlike SMC, the number of rounds of commu-
nication to implement an operation on secret shares is equivalent to that required in a
non-secure implementation of the same operation. The advantage of this is that it sig-
nificantly reduces the communication costs over the similar SMC based protocols, thus
making privacy preserving clustering practical. Figure 1 shows a pictorial description
of the proposed architecture, while the algorithm is discussed in detail in Sec: 3.

2 The Building Blocks of Security

We use the paradigm of Secret Sharing (SS) to achieve privacy and efficiency. Secret
Sharing (SS) [25] [26] [23] refers to the methods for distributing a secret among a
group of servers, each of which is allocated a share of the secret. The secret can be
reconstructed only when the shares are combined together; on their own, they have no
meaningful information. In our problem setting, we ask each of the collaborating users
to compute the secret shares of their private data, and send them over to the processing



Efficient Privacy Preserving K-Means Clustering 157

servers. The processing servers then privately collaborate (without reconstructing the
actual data) to run the K-means algorithm over the secret shares. Note that, not all SS
methods allows computation on the secret shares. In order to achieve this, we adopt the
Chinese Remainder Theorem (CRT) based secret sharing schemes [23] [27].

However, in the SS schemes of Asmuth et al. [23], and Goldreich et al. [27], the
size (the number of bits) to represent each share is greater than the size of the original
data. In other words, for R servers, using these schemes results in a minimum of R
fold storage increase. Data expansion is important since it results in cost overheads in
terms of storage and interaction among the servers. It becomes even more critical for
applications such as data mining that deals with voluminous data.

Understanding the similar limitations, Upmanyu et al. [24] recently proposed an
efficient method to do privacy preserving surveillance on videos (voluminous data).
In this work, we extend their method and propose secure protocols to privately carry
our collaborative clustering. The data to be clustered using K-means can be thought of
as points in a D dimensional Cartesian space. The data is bounded, i.e. it has a fixed
range, and its scale invariant, i.e. even if we scale the axis, the cluster assignment will
still be the same. These two are the required desirable properties of the data, that are
sufficient for one to adopt the secret sharing scheme as proposed by Upmanyu et al.
in [24]. We therefore, adopt their Shatter (to compute the secret shares) and Merge (to
reconstruct the secret) functions for the Cartesian data and design a communication and
computationally efficient solution to achieve privacy preserving K-means clustering.

Our proposed solution can be summarized as a three step protocol, 1) each user
computes the secret shares of his private data, 2) shares are then sent over to a cloud of
servers and clustering is privately carried out over the shares, and 3) the users recon-
structs the cluster assignment and the cluster centers using the Merge function. Before
we jump into describing the K-means protocol in Sec: 3, for the sake of completeness
we briefly describe the Shatter and Merge functions as defined in [24]. We also pro-
vide an outline of the analysis of the computational and communication overheads and
the privacy achieved in each of the sub-steps of the protocol. For those interested, the
detailed analysis can be done in a manner similar to in [24]. The Shatter and Merge
functions as defined in [24] are as follows:

Shatter Function φ(x) - Compute and store the secret shares of the private data : is
defined as the one that splits the data x into R parts, x1, x2, ..., xR, such that each share,
xi, by itself does not reveal any information about x. The participating users pre-decide
a set of R primes P1, · · · , PR and a scale factor S. The Shatter function is defined as:

xi = φ(x, Pi) = (x · S + η) mod Pi, (1)

where xi is ith secret share, and η is an independent random number for each secret x,
such that 0 ≤ η ≤ S/2. The secret share xi is stored with the ith server and on its own
gives little meaningful information of x.

In our scenario, each user can shatter his data (each attribute of a record is shattered
independently, η is random for each attribute) and sends over the shares to the specific
servers for storage. The size of each share is given by log(Pi) per attribute.
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Merge Function μ() - Reconstruct the secret : given, xi = φ(x, Pi) for different prime
Pis, the secret x can be recovered using CRT [28] by solving a system of congruence.
The merge function μ() is defined as:

x = μ(xi, Pi) =
CRT (xi, Pi)

S
(2)

CRT recovers (x · S + η), which is appropriately scaled down (integer division by
the scale factor) to get the actual value of x. Note that η, which was randomly chosen
for each attribute value is not used for recovering the secret. The CRT hence forms our
recovery transformation μ(). In our scenario, μ() is used for reconstructing the cluster
centers as computed by the clustering algorithm.

3 The Proposed Algorithm

Following notations are used for describing the protocol. Let L be the number of en-
tities, each made up of D attributes. K be the number of clusters required, and Ci,
1 ≤ i ≤ K , denotes the cluster locations. The data is arbitrary partitioned among N
users. R (R > 2) is the number of computation servers employed. Each server is asso-
ciated with a unique prime Pi, therefore the number of primes is also R. Each entity is
represented in a D dimensional space. The common distance metrics; such a Euclidean,
Manhattan or Minkowski; are used for finding the distances. To explain the algorithm
we will consider a Euclidean space. As the final output of the privacy-preserving K-
means (PPKM) algorithm, each user learns the cluster assignment of the entities owned
by them, i.e. which of their entities belong to each clusters. If agreed upon, the location
of the K-clusters is also revealed to the users.

The complete protocol can be divided into two phases. The first phase deals with
i) choosing the appropriate primes and the scale factor, ii) shattering the data, and iii)
secure aggregation of the data at the servers. The second phase of the protocol deals
with the clustering algorithm on the aggregate of the shattered data available with the R
computational servers. The basic algorithm follows directly from the standard K-means
algorithm [29], which consists of three steps, i) Initialization, ii) Lloyd Step, and iii)
Stopping Criterion. The complete protocol is as follows:

3.1 Phase One: Secure Storage

The first step is the selection of an appropriate residue number system (RNS) [24] for
secure storage. We extend the analytical method [24] to compute the parameters re-
quired for ensuring the security and privacy in our problem setting. For a value of R we
select P1, · · · , PR, such that their product, P , is larger than any intermediate value we
have to represent in our algorithm. This range can be easily computed from the range
of values we expect in the computations. Scaling the axis and translating the origin of
an Euclidean space does not change the final cluster assignment. Hence we represent
negative numbers with an implicit sign [30], i.e. −x ≡ 2M − x. Floating point data is
taken care of by appropriately scaling the dataset to retain a certain decimal precision.
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Let [−U, U ] be the range of numbers we expect in the computations on secret shares.

We choose Pj’s such that P =

R∏

j=1

Pj ≥ 2U . Typically, one could just choose the smallest

of the R consecutive primes satisfying the above property. For complete obfuscation of
the data, the scaling factor chosen should be higher than the largest prime [24]. We now
analytically choose the optimal set of parameters for our problem setting.

Parameter Selection: Let [−M, M ] be the attributes domain. Then the points can be
represented in a D − dimensional Euclidean space, R

D
2M . Let W1 be the square of

the maximum possible Euclidean distance between two points, i.e. the distance between
the two extreme points, thus we get W1 = 4M2D. Also let W2 be the maximum
sum of the coordinates we can get for a cluster (needed for computing the cluster’s
mean). This is easily computable as W2 = 2ML (entire database belong to a single
cluster). Let W be the upper range of number we expect in K-means, therefore we
have W = max(W1, W2). Let us now assume, S to be the required scale factor to
get complete privacy. The input data is scaled using this factor. This can be viewed as
scaling the axis of the Euclidean space by S, i.e. a point x in the old coordinate system
is mapped to S ·x in the new scaled space. Therefore, we get U = max(W1 ·S2, W2 ·S).
The primes now need to be chosen such that:

S ≥ max
j

Pj , and P ≥ 2U. (3)

Simplifying the above, we find that if:

S ≈ (2W )
1

R−2 (4)

then the individual servers will have little meaningful information [24].
Each of the N-parties uses the shatter function (Eqn: 1), to compute secret shares

of their respective data. The shares are then sent over to the servers for processing.
Note that we make no assumptions on how the attributes of various data points are
partitioned among the N -parties. If D is the (virtual) database arbitrarily shared among
the N parties. Each server j basically then stores the shatter of D w.r.t. Pj .

Privacy: Each server stores only the shattered share of the data. As long as the servers
do not collude, little meaningful information of the entities is learned by any of the
servers. This follows directly from the security of the shattering scheme [24]. In this
entire phase the only information learned is of how the data is actually being partitioned
among the users, i.e., for each entity which all attributes are being held by which user.
However we note that, in practice this information gain is not significant, and known a
prior [15]. The indexing scheme employed ensures that the identity of the entity remains
unknown to the servers.

3.2 Phase Two: Secure K-Means

At the end of the phase one, each computation server stores the secret shares (w.r.t.
prime Pj) of the database D. Since the scaling factor S was kept positive, the distance
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comparison in the original space will be equivalent to distance comparison in the new
scaled space. Thus, the cluster assignment of the entities in the scaled space would
be identical to what we would have expected in the original space. The final cluster
locations are obtained from the cluster centers that are learned in the transformed space
after appropriately scaling down and removing the introduced randomness.

Our algorithm will follow the same iterative structure as that of the standard K-
means algorithm [29]. The objective is to cluster the data (available as secret shares),
without leaking any information to any of the servers. RNS being doubly homomorphic,
the operations of addition and multiplication can be independently carried out at each
server. However division and comparison (both used in K-means) are difficult to do
privately in the RNS. We overcome these difficulties by designing communicationlly
efficient, privacy preserving protocols for them over one round of communication.

We now give a step by step description of the protocol used for phase two. Note
here, that the N users are oblivious of algorithm and the data involved in phase two.
The contribution of this paper is not to improve upon the K-means algorithm as such
but to propose an efficient protocol to privately carry out the clustering.

Step one: Initialization Let C1, C2, · · · , CK be the K cluster centers, where each
Ck is a D dimensional vector. The clusters are initialized as the K entities from the
database D chosen in a pseudo-random fashion. Since, we want to keep the actual clus-
ter locations also private, we thus store only their secret share components. i.e. for a
cluster location Ck, 1 ≤ k ≤ K , the computational server j, 1 ≤ j ≤ R, stores the
vector Ckj , where, Ckj is the secret share of Ck w.r.t. Pj .

The servers commonly choose the indices of K entities as the initial cluster centers.
The secret shares of the chosen K entities, present with the servers, are used as the
secret shares of the initial cluster centers Ck . That is, at server j, Ckj initialized to the
secret share of the chosen entity. The pseudo-code of the algorithm is given in Algo: 1.

Privacy: Servers do not learn any additional information of the data. The initialization
is done, directly using the secret shares. This is done independently at each server, thus
resulting in zero computation and communication overheads over TTP.

Algorithm 1. PPKM: Initialization
1: for each cluster, k = 1 to K do
2: Choose a random entity index l, l ≤ L
3: We want to initialize Ck = X l, where X l be the D dimensional vector of entity l.
4: for each server, j = 1 to R do
5: Let X lj be the data corresponding to entity l available with the server. We know X lj

is shatter of X l with mod Pj , and was stored with the server during phase one.
6: Initialize, Ckj to X lj , where Ckj is the shatter share of Ck with mod Pj .
7: end for
8: end for

Step two: Lloyd Step In an attempt to minimize the objective function, each iteration
reclassifies and recomputes the new cluster locations. The algorithm terminates when it
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detects ‘no change’ (defined by the termination criterion) in the cluster locations. Every
iteration can be represented as a sequence of three steps as described below.

i) Finding Closest Cluster Centers: As stated before, since the scaling factor was set
to a positive number, finding the closest point is equivalent to finding the one with the
minimum of the distances squared in the scaled space. Thus, for every data entity X l,
1 ≤ l ≤ L, we find the square of the Euclidean distance to each of the cluster centers
Ck. The distance square between two D dimensional vectors X and Y , is defined as

D∑

d=1

(X2
d + Y 2

d + 2.Xd.Yd) (5)

which is a set of additions and multiplications. Now, RNS being doubly homomorphic,
the above equation can be directly computed using the secret shares. Hence, every server
can independently compute the respective secret shares of the distances between the L
data points and the K cluster locations. For every data point X l, let T l be the K length
vector, whose share Tlk denotes the distance square between data point X l and cluster
center Ck. The task is to, without actually reconstructing, compute Tlk from the shatter
shares of X l and to assign the point X l to a closest cluster k.

Tlk is represented in the RNS such that Tlkj denotes the secret share of Tlk (w.r.t.
Pj) available at server j. Now, each of the server j can use the Eqn: 5 to compute the
share (Tlkj) using its locally available secret shares of X lj and Ckj .

Next, for each data point l, we need to find the cluster k such that Tlk is minimum.
This would require reconstructing and comparing Tlk’s. However, to maintain privacy,
the actual distances, Tlk’s should be kept private. We overcome this dilemma by apply-
ing a clever permutation and randomization scheme. T lk is secured by applying another
layer of randomization on the secret shares before sending them over for comparison
to another untrusted server (thresholder). Finding the minimum of the K numbers is an
O(K) algorithm, i.e. the current minimum has to be compared against the next poten-
tial candidate. We next describe the protocol to find the minimum of two numbers, Z1

and Z2. This can then be repeated K − 1 times to find the minimum of K numbers.

Finding the minimum: (Z1 − Z2) ≤ 0 implies Z1 ≤ Z2 else otherwise. In-order
to check for this, at each server, we can compute the difference Z1j − Z2j and send
over the difference shares to an untrusted server for reconstruction and comparison.
However, this naive approach reveals to the thresholder the distance between the two
data points. We secure this by randomizing the secret shares of the differences before
sending it over for comparison. We can even keep the random number itself unknown
to any of the servers by the following protocol.

Each of the R servers chooses a random number ri and sends over ri mod Pj to
server j. Thus, each server j, has

∑i=R
i=1 ri % Pj or r % Pj , where r =

∑R
1 ri (Algo 2:

steps 5-12). The servers uses this to randomize its share of difference. The randomized
difference shares are then sent over to an un-trusted server who reconstructs the ran-
domized difference and returns the comparison against zero for finding the minimum
of the two. The smaller number is then compared against the next potential candidate.
After a series of K − 1 comparisons a data point is confidently and privately assigned
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Algorithm 2. Find Minimum of K Numbers Protocol
1: Let Z1, Z2, ... ZK be the K numbers we want to find minimum of
2: R is the number of computational servers, each knowing Zkj , for 1 ≤ k ≤ K and 1 ≤ j ≤

R, where Zkj is the shatter share of Zk with mod Pj . Note that the actual value of Zk is kept
secret from all the servers.

3: Initialize minIndex = 1
4: for every index, k = 2 to K do
5: for every server, j = 1 to R do
6: Select a positive random number rj and share the modulo of rj with every other server

(step 7).
7: for every other server: i = 1 to R do
8: Send rji = rj mod Pi to the server i.
9: end for

10: end for
11: for every server, j = 1 to R do
12: Let r′j be the summation of the R random numbers received at each server j.
13: Compute the difference of the secret shares of ZminIndex and Zk. Randomize the

difference by multiplying with r′j .
14: The randomized difference share is sent over to the thresholder.
15: end for
16: Thresholder applies the merge function to obtain R′.(ZminIndex − Zk), where R′ is the

summation of R positive random numbers rj . The randomized difference is compared
with 0 and the result sent back to the servers.

17: if Threshold Result > 0 then
18: minIndex = k
19: end if
20: For next iteration, the role of the thresholder is switched to another pseudo-randomly

chosen server.
21: end for
22: Return min index

to a nearest cluster center. Note that the communication costs can further be reduced by
choosing the random numbers offline, i.e. when the systems are idle. Each server main-
tains the list of the secret shares of the random numbers, r’s used in the final protocol.

Correctness: Consider a point X , for which we want to find which is closer Y or
Z. Let the points be shattered with scale S and randomization a, b and c respectively.
Thus, we have:

(X1, X2, · · · , XD) → (S · X1 + a1, · · · , S · XD + aD) (6)

(Y1, Y2, · · · , YD) → (S · Y1 + b1, · · · , S · YD + bD) (7)

(Z1, Z2, · · · , ZD) → (S · Z1 + c1, · · · , S · ZD + cD) (8)

Let us assume Y is closer than Z , then following holds:

∑
(Xi − Yi)2 ≤

∑
(Xi − Zi)2 (9)
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Using the secret shares, the corresponding distances in the scaled space are computed
as:

Dist1 =
∑

(S(Xi − Yi) + (ai − bi))2 (10)

Dist2 =
∑

(S(Xi − Zi) + (ai − ci))2 (11)

Given that Eqn: 9 holds, the protocol is correct if Dist1 ≤ Dist2. From the constraints
given in Sec: 3.1, we know 0 ≤ ai, bi, ci ≤ S/2, thus we get −S/2 ≤ (ai − bi) ≤ S/2.

∑
(S(Xi − Yi − 1/2))2 ≤ Dist1 ≤

∑
(S(Xi − Yi + 1/2))2 (12)

∑
(S(Xi − Zi − 1/2))2 ≤ Dist2 ≤

∑
(S(Xi − Zi + 1/2))2 (13)

Thus, the protocol satisfies correctness if Eqn: 14 is true whenever Eqn: 9 is true.

∑
(S(Xi − Yi + 1/2))2 ≤

∑
(S(Xi − Zi − 1/2))2 (14)

This will hold if the Cartesian System is designed so as to nullify the effect of the
additional ±1/2 in Eqn: 14. This is achieved by having the step-size in the Cartesian
system as 2, i.e. the data is scaled by 2 before choosing the parameters (Sec: 3.1).

Privacy: The protocol is secure against both the GCD and factorization based attacks.
The servers are made to jointly choose the randomization, which is different for every
threshold operation. This ensures security against the factorization based attacks. The
role of the thresholder is also switched among the R servers in an random order, thus
ensuring security against the GCD based attacks.

ii) Updating Cluster Locations: Once each of the L data points has been assigned
to one of the K clusters, the next step is to recompute the cluster locations. For every
cluster k, the cluster center is updated to the center of mass of the newly assigned
points to the cluster. Thus, the new coordinate of the cluster k is a (weighted) mean of
the corresponding coordinates of the nk points assigned to the cluster k. Let nk be the
number of data points assigned to cluster k. For any cluster k, each server stores the
secret shares of the data points. Each server j, can thus independently compute the sum
(Sumkdj) using the secret shares of the nk data points. The updated cluster location
is then obtained by dividing the sum of co-ordinates by nk. However as we know that
the generic division is not defined in the RNS, therefore we cannot directly divide the
sum’s shares. Furthermore, so as to maintain complete privacy, we will like to keep
the updated cluster locations unknown from all the servers. Therefore, an interactive
protocol, similar to the one used for thresholding is employed for the job. We now
describe the privacy-preserving division protocol (PPDP).

PPDP: Consider a number X , secret shares of which are stored at the R servers. The
task is to privately divide X by n, such that the secret X and the quotient q = �X

n 	 is
kept private from all of the servers. At the end of the protocol, all that the server j gets
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is the secret share of q w.r.t. Pj . PPDP is achieved through a single round of interaction,
and the secret data, X , is secured using a permutation and a randomization method.

Just as in previous protocol (Algo: 2, steps 5-12), the R servers jointly computes
two random numbers r and r′, such that server j knows only the shares of them. Each
server now randomizes its share of X according to Eqn: 15, before sending it over to
an un-trusted server. As in the previous protocol, this server is switched among the R
servers in a pseudo-permutation fashion. The randomized shares are then reconstructed
using the merge function to compute X ′ (Eqn: 15).

Division is then performed to compute the randomized quotient q′, as given by
Eqn: 17, where q is the actual quotient that we wish to compute (Eqn: 16). We next
compute the secret shares of q′ and sends them over to the specific servers for de-
randomization. Each server computes its share of quotient, qj , from q′j using Eqn: 18.
The secret share of the cluster center is then updated to the computed share of the quo-
tient. The pseudo-code of the protocol is given in algorithm 3.

Algorithm 3. Privacy Preserving Division Protocol (PPDP)
1: R computational servers, stores i) Xj = shatter of X with mod Pj , ii) n
2: Randomly select r, r′, in the manner similar to as described in steps(5-12) of algorithm 2.
3: Let at each server j, rj , r′j be the shatter shares of the two chosen random numbers r and r′.
4: for each server, j = 1 to R do
5: Compute X ′

j = rj · (Xj + r′j · n) mod Pj

6: Send X ′
j to the thresholder (switched among servers in a pseudo random order).

7: end for
8: Thresholder uses the merge function to compute X ′

9: Compute q′ = �X′
n
�

10: Send over the q′j to server j, where q′ is the shatter share of q′ with mod Pj .
11: for each server, j = 1 to R do
12: De-randomize the received quotient to get qj = (q′j ∗ r−1

j − r′j) mod Pj

13: end for
14: Now, qj is the required shatter share of the quotient, q, with prime Pj .

X → X ′ = r · (X + r′ · n) (15)

q =
X

n
(16)

q′ =
X ′

n
= r · (q + r′) (17)

qj = (q′j ∗ r−1
j − r′j) mod Pj (18)

Privacy: The PPDP method provides high level of privacy for the secret data. The
randomization parameters r and r′ are jointly chosen and remains unknown to all. The
randomization of the secret data, X , is itself done using the secret shares. The random-
ization function (Eqn: 15) is designed so as to safeguard against the potential attacks
such as factorization and GCD based. In the entire process, no additional meaningful
information is leaked to any one. The method not only provides provable privacy but is
also efficient with communication cost limited to one round of interaction.
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iii) Checking Termination Criterion: At the end of every iteration, we check for
the closeness of the new clusters. The ‘closeness’ is defined as i) minimizing the total
energy of the clusters, the energy of a cluster k is given as Ek =

∑nk

1 (‖xl−cl‖), ii) the
new clusters locations are close to the old ones. i.e

∑K
1 (‖ck − c′k‖), or iii) the number

of points making transition across clusters is small.
If the closeness is below the threshold, then we go to step three otherwise continue

with next iteration. Any of these definitions can be privately implemented using the
approaches like already described.

Step three: Knowledge Revelation. At the termination of the Lloyd step, the cluster
centers are stored as the secret shares at the R serves. The cluster assignment of the
anonymized entities is also available. To learn the cluster locations, the servers are made
to collude under legal agreements. The identity of the entities is known only to the data
owner, and hence he is the only one who learns the final cluster assignment. The cluster
locations can be revealed, only if agreed upon.

Analysis. We have proposed a provably secure protocol, the proofs of which are similar
to those in [24]. The computation overhead at each server is limited to the randomiza-
tion. The communication overhead is due to one round of interaction to simulate divi-
sion and comparison operation. However, this overhead is negligible when compared to
SMC. No numerical comparisons are provided, due to a) space constrains, and b) theo-
retical efficiency, an operation taking hundreds of rounds of communication in SMC is
do able using zero or at max one round of interaction in our protocol.

4 Conclusion

We propose a novel ‘cloud computing’ based solution using the paradigm of Secret
Sharing to privately cluster an arbitrary partitioned data among N users. Traditional
approaches uses primitives such as SMC or PKC, thus compromising the efficiency and
in return provide very high level of privacy which is usually an overkill in practice.
The paper contributes a different approach to solve the problem. We show that privacy
need not be always at the cost of efficiency. We exploit the properties of the data and
the problem to circumvent the limitations faced by traditional methods (that are general-
purpose). Our solution does not demand any trust among the servers or users. Security is
based on the standard assumptions of honest-but-curious, non-colluding servers having
ability to generate random numbers. As expected, the protocol is costly compared to
the one with zero-security. However, the additional communication costs are kept to a
minimum (one round) and are negligible compared to those of SMC. With the RNS
being doubly homomorphic, the paradigm of shattering and merging is generic and has
potential to extend over to even more diverse data mining applications.

References

1. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. John Wiley and Sons, Chich-
ester (1973)

2. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, London
(1990)

3. Cranor, L.F.: Internet privacy. Commun. ACM 42(2), 28–38 (1999)



166 M. Upmanyu et al.

4. Turow, J.: Americans and online privacy: The system is broken. Technical Report (2003)
5. Agrawal, R., Srikant, R.: Privacy-preserving data mining. SIGMOD 29(2), 439–450 (2000)
6. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000.

LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)
7. Vaidya, J., Clifton, C.: Privacy-preserving data mining: why, how & when. Security & Pri-

vacy, 19–27 (2004)
8. Verykios, V.S., Bertino, E., Fovino, I.N., Provenza, L.P., Saygin, Y., Theodoridis, Y.: State-

of-the-art in privacy preserving data mining. SIGMOD Rec. 33(1), 50–57 (2004)
9. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving properties of

random data perturbation techniques. In: ICDM, pp. 99–106 (2003)
10. Bunn, P., Ostrovsky, R.: Secure two-party k-means clustering. In: CCS, pp. 486–497 (2007)
11. Liu, K., Giannella, C., Kargupta, H.: A Survey of Attack Techniques on Privacy-Preserving

Data Perturbation Methods. Privacy-Preserving Data Mining 34(15), 359–381 (2008)
12. Oliveira, S.R.M.: Privacy preserving clustering by data transformation. In: 18th Brazilian

Symposium on Databases, pp. 304–318 (2003)
13. Goldreich, O.: The Foundations of Cryptography, vol. 2. Cambridge Univ. Press, Cambridge

(2004)
14. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data mining.

Cryptology ePrint Archive, Report 2008/197 (2008)
15. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically partitioned data.

In: KDD (2003)
16. Inan, A., Kaya, S.V., Saygin, Y., Savas, E., Hintoglu, A.A., Levi, A.: Privacy preserving

clustering on horizontally partitioned data. Data Knowl. Eng. 63(3), 646–666 (2007)
17. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering over arbi-

trarily partitioned data. In: KDD, pp. 593–599 (2005)
18. Upmanyu, M., Namboodiri, A.M., Srinathan, K., Jawahar, C.V.: Blind authentication: A se-

cure crypto-biometric verification protocol. IEEE-Transactions on Information Forensics and
Security, TIFS (to appear, 2010)

19. Orlandi, C., Piva, A., Barni, M.: Oblivious neural network computing via homomorphic en-
cryption. In: EURASIP, pp. 1–10 (2007)

20. Jha, S., Kruger, L., Mcdaniel, P.: Privacy preserving clustering. In: di Vimercati, S.d.C.,
Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 397–417.
Springer, Heidelberg (2005)

21. Rappe, D.: Homomorphic cryptosystems and their applications. Ph.D. dissertation, Univer-
sity of Dortmund (2004)

22. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178
(2009)

23. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Transactions on
Information Theory 29, 208–210 (1983)

24. Upmanyu, M., Namboodiri, A.M., Srinathan, K., Jawahar, C.V.: Efficient privacy preserving
video surveillance. In: International Conference on Computer Vision, ICCV (2009)

25. Shamir, A.: How to share a secret. ACM Communications 22(11), 612–613 (1979)
26. Beimel, A., Chor, B.: Universally ideal secret sharing schemes. In: Brickell, E.F. (ed.)

CRYPTO 1992. LNCS, vol. 740, pp. 183–195. Springer, Heidelberg (1993)
27. Goldreich, O., Ron, D., Sudan, M.: Chinese remaindering with errors. IEEE Transactions on

Information Theory 46 (2000)
28. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein., C.: The chinese remainder theorem. In:

Introduction to Algorithms, pp. 873–876. MIT Press, McGraw-Hill (2001)
29. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)
30. Ulman, Z.: Sign detection and implicit-explicit conversion of numbers in residue arithmetic.

IEEE Transactions on Computers C-32 (1983)


	Efficient Privacy Preserving K-Means Clustering
	Introduction
	The Building Blocks of Security
	The Proposed Algorithm
	Phase One: Secure Storage
	Phase Two: Secure K-Means

	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /DEU <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


