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ABSTRACT
The aim of a local descriptor or a feature descriptor is to
efficiently represent the region detected by an interest point
operator in a compact format for use in various applica-
tions related to matching. The common design principle be-
hind most of the mainstream descriptors like SIFT, GLOH,
Shape context etc is to capture the spatial distribution of
features using histograms computed over a grid around in-
terest points. Histograms provide compact representation
but typically loose the spatial distribution information. In
this paper, we propose to use projection-based representa-
tion to improve a descriptor’s capacity to capture spatial
distribution information while retaining the invariance re-
quired. Based on this proposal, two descriptors based on the
CS-LBP are introduced. The descriptors have been evalu-
ated against known descriptors on a standard dataset and
found to outperform, in most cases, the existing descriptors.
The obtained results demonstrate that proposed approach
has the advantages of both the statistical robustness of his-
togram and the capability of the projection based represen-
tation to capture spatial information.
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1. INTRODUCTION
Local features play an important role in a wide variety

of applications such as wide-baseline matching, image re-
trieval, robot localization, object recognition etc and due
to their applicability a lot of feature descriptors have been
developed in the recent times. The general aim of the de-
scriptors is to capture the distribution of features such as
gradient orientation or response to a particular kind of filter
around the interest points. Traditionally this has been done
with help of histograms of features computed over a defined
grid.
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Several different kinds of descriptors can be generated
based on the combination of features extracted and the grid
over which the histograms are computed. For example Scale
Invariant Feature Transform[5] is a 3D histogram of gradi-
ent orientations computed over a 4x4 square grid where as
Gradient Location and Orientation Histogram[6] (GLOH)
is computed over a log-polar grid. A recent study [10] has
shown that the computation of most of the local descriptors
that have been proposed till date can be divided into two
main stages: The first stage is a feature extraction stage
where features like gradients or Gabor filter responses are
extracted over a given patch. The second stage is a pool-
ing stage where the gradient like features within the patch
are represented using histograms computed over pre-defined
grids.

An important factor that influences the performance of
these descriptors, apart from the choice of features, is the
grid over which the histograms are computed. The grid plays
a key role in determining the level of spatial distribution
information that can be captured. Towards addressing this
issue the problem of descriptor construction has been posed
in [10] as an optimization problem to maximize the similarity
scores of true matches while maximizing the dissimilarity
of the negative matches from an independently computed
ground truth data. Alternate ways to encode the spatial
distribution information into the histograms have not been
investigated.

In contrast to the steerable filters or gradient based fea-
tures that were used earlier, a local variational feature has
been investigated resulting in the local binary pattern (LBP)
descriptor [7]. The LBP is popular for texture description.
This has been extended for a matching scenario by making
some improvements in terms of compactness and by con-
structing a descriptor (called Center-Surround LBP (CS-
LBP)) on the same lines as SIFT using a 4x4 grid to compute
histograms [2]. The results obtained by CS-LBP are shown
to be better than the ones obtained using SIFT.

The discriminating power of a descriptor is good if it can
capture the spatial distribution information and at the same
time remain invariant to common photometric and geomet-
ric distortions. Spatial distribution information can be bet-
ter captured by computing histograms over finer grids but
this approach makes the descriptor more susceptible to geo-
metric or photometric distortions. [2] reports that an empir-
ical study on the optimal grid size revealed that a 4x4 grid,
similar to SIFT, was the best compared to coarser ones such
as 2× 2 or much finer grids such as 8× 8. Coarse grids lose
the required granularity for information capture while fine



grids tend to be sensitive to distortions. The demanding
task for a descriptor is to be as representative as possible
without losing its invariance. Since finer grids have been
shown to be susceptible to distortions, we wish to investigate
an alternative route to incorporate the spatial distribution
information.

Radon transformation or projection based representation
is known to be effective in capturing the spatial distribution
information of the image pixels. It has been successfully used
for development of shape descriptors like R-Transform[9],
Histogram of Radon transform[8], Radon Representation based
feature descriptor [4] etc.Even though these methods have
been shown to be useful for robust shape description, Radon
representation based features are not used in the context of
building local descriptors for image matching. It has been
mainly due to two reasons: the descriptors are mainly de-
signed for handling binary shape images and their poten-
tially high dimensionality. In this paper, we investigate how
projection based information can be incorporated into a lo-
cal feature descriptor. We do this by studying binary pat-
terns computed in the Radon transform domain. We pro-
pose to construct a descriptor by concatenating the CS-LBP
pattern of a patch along with CS-LBP pattern of its projec-
tions. The rest of the paper is organized as follows. In sec-
tion 2 we briefly review the CS-LBP operator, section 3 gives
a brief description of our idea using binary images as an ex-
ample, section 4 describes the construction of our descriptor
and section 5 provides details of experimental methodology.

2. CENTER-SURROUND LOCAL BINARY
PATTERN

The CS-LBP descriptor is a modified and extended version
of LBP descriptor proposed in [7] for the purpose of image
matching. The CS-LBP operator is computed by comparing
the center symmetric pairs of pixels instead of comparing the
center pixel with all the surrounding pixels which is done in
generating the LBP. The main advantage of computing the
centre symmetric rather than centre to surround difference,
is that the length of the descriptor is reduced significantly
(by half). The CS-LBP is computed for a pixel using the
neighbors at radius R, as follows

CS − LPBR,N,T (x, y) =

N
2∑

i=0

s(ni − ni+N
2

)2i (1)

where s(x) = 1, ∀x > 0 and s(x) = 0 otherwise. CS-LBP
as an operator is shown to be good at capturing the local
variational patterns amongst the pixels. It has several desir-
able properties such as ease of computation and illumination
invariance.

3. PROPOSED DESCRIPTOR: TEXTURE OF
PROJECTIONS

Consider the segmented binary shapes as shown in Fig.1.
The corresponding sinograms or the Radon transform of
these binary shapes are also presented. It can be observed
from this figure that different shapes give rise to different
kind of textures in the sinograms. In the shape description
literature, most of the techniques which use Radon trans-
form have only attempted to bring in invariance to trans-
lation and rotation by computing shift invariant represen-
tations like Histogram of Radon transform [8] or Fourier

Figure 1: Binary Shapes and Their Projections

transform of the Radon transform [11]. We argue that at an
abstract level, shape can be characterised by measuring the
variability of its projections at different angles and radial dis-
tances. A variational descriptor like CS-LBP, captures just
this kind of information and also provides a compact repre-
sentation and should serve an ideal starting point. Hence,
it should be possible to develop a good shape representation
by computing the CS-LBP on the projection space. How-
ever, in the case of greyscale images, this approach would
be inadequate. This can be explained as follows. When a
greyscale image is projected (at a particular angle) an ob-
tained ray sum can be due to any combination of pixel values
along the ray. This implies that the variational pattern of
the projections alone is insufficient to represent a region in
an image. If in addition a histogram of the region is also
provided, it can serve as an additional constraint and help
improve the discriminability of the representation. This can
further be illustrated via an example based on the popular
Su Do Ku puzzle. Let us consider a 3× 3 grid which has to
be filled with numbers k using two simple rules: The sum
of pixels along a column or row has to be a constant value
3k and any specific pixel value can occur along a row or col-
umn only once. The puzzle is guaranteed to have a unique
solution only when both rules are applied since, in the ab-
sence of the second rule, there are multiple solutions to the
problem.

Thus, we propose to combine two kinds of information for
achieving higher discriminability without losing the essential
invariance of a local descriptor for greyscale images: i) a
variational pattern computed in projection space and ii) the
histogram information computed in the spatial domain. For
capturing the first type of information we propose using CS-
LBP of projections and for the latter, we propose using CS-
LBP again as it contains the histogram information albeit
of the variational pattern in the raw image. This choice
to compute both parts of the proposed descriptor with the
same base descriptor CS-LBP, should also help gain insight
into the value addition that projection based information



can provide to a descriptor’s performance in different tasks
such as matching.

3.1 Descriptor Computation
In constructing the proposed descriptor, we considered

two variants of the same idea.

• Type 1
In the first variant, given a patch, the CS-LBP is com-
puted in the spatial domain and in the projection do-
main over the entire patch. The projection domain
representation for the patch is obtained by computing
the Radon transform of the patch. This descriptor is
henceforth referred to as “PLBP”.

• Type 2
In the second variant, the patch is subdivided first into
n×n blocks and CS-LBP of the projections of each
block is computed. A histogram of length n2 is com-
puted for each CS-LBP pattern. The length of the
total CS-LBP histograms thus formed is 16 ∗ n2, are
combined with the original CS-LBP histogram of the
patch to construct the final descriptor. This method
is henceforth referred to as ’PLB1’.

4. IMPLEMENTATION DETAILS
We used a Hessian-Affine region detector for detecting in-

terest points. The detected regions were first affine normal-
ized to a size of 41x41 before computing the descriptors.
This size is as per the standards of detector literature.

The CS-LBP used for computation is our own implemen-
tation of the algorithm. Since the main idea behind this
paper is to check the validity of the idea behind combi-
nation of the complementary information, basic parameter
settings were used for the CS-LBP operator. The CS-LPB
implementation was with the following parameters Radius
= 1, Number of nearest neighbours = 8 and Threshold = 0.
These parameters were also reported to be performing well
in [2]. As given in the CS-LBP implementation, we use a
4x4 grid to finally compute the histograms for spatial do-
main representation of the patch along with the projection
domain representation of the patch. The number of projec-
tions for Radon transform computation was empirically set
to 60.

In the computation of PLBP and PLB1 normalization of
the descriptors is done in a similar fashion to that of the
SIFTas follows:Initially the descriptor is normalized to unit
length. Then all the bins having a maximum value of 0.2,
are clipped to 0.2 and the descriptor is re-normalized.

5. EVALUATION
The proposed descriptors were evaluated on the standard

dataset using the standard matching protocol provided by
[6]. The underlying performance measure for this protocol
is the recall versus false positive ratio. The performance of
the designed method was compared with some state of the
art descriptors like SIFT, GLOH, Shape Context and native
CS-LBP. Computation of all these descriptors except CS-
LBP, have been with the binaries provided by the Robotics
group at Oxford [3] have been used.

The standard dataset contains different image sets with
different geometric and photometric transformations. It cov-
ers six different types of changes for has both pairs of struc-
tured and textured scenes. The transformations provided

are: viewpoint change, scale change, image rotation, im-
age blur, illumination change, and JPEG compression. For
each category there are a set of six images with established
ground truth homographies. For a given detector and de-
scriptor pair, the performance of the descriptor is measured
using the following steps,

1. Accurate number of correspondences are measured by
projecting the regions detected on one image on to
other and if the overlap error is below a threshold,
then the patches are said to be corresponding. The
overlap threshold is set to 0.5 in our case.

2. The ground truth number of correspondences also de-
pend on the matching strategy used. Here, we test the
descriptor using two matching methods.

• Nearest Neighbour Method: Two points are said
to be corresponding if the distance between their
descriptors is the minimum and is below a thresh-
old. This implies there is one to one matching.

• Threshold based or Similarity Based Matching:
Two points are said to be corresponding if the dis-
tance between their descriptors is below a thresh-
old. Here, a point can have many correspon-
dences. Even thought it might look counter in-
tuitive to consider this kind of matching Schmid
et al have reasoned that when matching is per-
formed on a large database of descriptors, it is
very useful.

3. Finally for performance evaluation, the threshold pa-
rameter is varied to obtain a plot of recall versus (1-
precision).

recall =
No. of correct matches

No. of correspondences
(2)

1− precision =
No. of false matches

Total no. of matches
(3)

We have evaluated the descriptors based on both nearest
neighbour based and threshold based matching. The follow-
ing sections provide the results obtained and their analysis.

5.1 Results and Analysis
The performance results for matching the image pairs

shown in Fig.2 are shown in the Fig.3 and 4. The per-
formance is compared with some standard descriptors like
SIFT [5], GLOH [6] and Shape Context [1] The axis of all
the graphs is scaled between 0 and 1. The X-axis of the
graph plot 1- precision and the Y-axis of the graph plots
recall. The legend used for the plots is as follows , SIFT
- Scale Invariant Feature Transform, GLOH - Gradient Lo-
cation and Orientation Histogram, SCON - Shape Context,
CLBP - Center - Surround Local Binary Pattern (Our im-
plementation), PLBP ,PBP1.

5.2 Performance for different transformations

• View point change
Based on the graphs for the Graffiti and wall images,
we can observe that the performance of the the PLBP
is superior in handling view point change over all de-
scriptors including PBP1. This implies a) that texture



(e) Graf (f) Wall (g) Boat (h) Bark

(m) Bikes (n) Trees (o) Leuven (p) UBC

Figure 2: Image Pairs used for evaluation



(a) Graffiti: Nearest Neighbour (b) Graffiti: Similarity Matching

(c) Wall: Nearest Neighbour (d) Wall: Similarity Matching

(e) Boat: Nearest Neighbour (f) Boat: Similarity Neighbour

(g) Bark: Nearest Neighbour (h) Bark: Similarity Matching

Figure 3: Performance of Various Descriptors over Hessian Affine Regions



(a) Bikes: Nearest Neighbour (b) Bikes: Similarity Matching

(c) Trees: Nearest Neighbour (d) Trees: Similarity Matching

(e) Leuven: Nearest Neighbour (f) Leuven: Similarity Matching

(g) UBC: Nearest Neighbour (h) UBC: Similarity Matching

Figure 4: Performance of Various Descriptors over Hessian Affine Regions



of projections along with LBP is providing more invari-
ant and robust information for matching; and b) tex-
ture of projections over smaller regions makes it more
sensitive to changes which is to be expected.

• Rotation and Zoom
The graphs for the Boat and Bark images exhibit a
compromised performance for all descriptors based on
CS-LBP. This was discovered to be due to the follow-
ing. The rotation correction routine implemented in
our work does not account for scale as a consequence
of which the normalisation is improper. With a cor-
rect scale-space implementation such as in [5], there is
scope to address this problem and improve the perfor-
mance. This is attested to by the better performance
reported in [2] on these images.

• Blur
The difference in the graphs for the Bikes and trees
illustrates that blur in a structured (bikes) compared
to a textured (trees) scene indicates that the behaviour
of the descriptor under blur depends on the content of
the scene. This is due to the fact that a textured scene
is more affected by blur, which is faithfully captured by
the descriptor. We also observe that PBP1 performs
better in blurred textured scene due to the fine grain
texture information it is able to capture.

• Illumination and JPEG compression
LBP (and its variants including ours) by design han-
dles illumination changes well. This can be seen from
the graphs for Leuven. While all descriptors are robust
to JPEG compression the textured projection informa-
tion appears to give a slight edge to the performance
as seen in graph for UBC image.

5.2.1 Dimensionality
One of the limitation of the proposed descriptors (PLBP

and PBP1) is that the dimensionality of the descriptor is
twice that of the CS-LBP operator. We believe that this is
an aspect that can be addressed in the future using some di-
mensionality reduction techniques such as PCA or changing
the histogram binning parameters. It is noteworthy how-
ever, that past attempts to increasing the number of patches
from 4 ×4 to 8 ×8 have resulted in a poorer performance.
This was evident in the performance test results given by
Table 2, page 430 ,[2].

6. CONCLUSIONS AND FUTURE WORK
In this paper, we began by observing that spatial distribu-

tion information was lost in most of the existing approaches
which use histograms. This was sought to be rectified by
adding the information from projection space. Towards es-
tablishing the utility of this idea, we have proposed a method
to incorporate spatial distribution information using varia-
tional patterns in projection domain. This is markedly dif-
ferent from the traditional way of addressing this issue by
computing histograms on finer grids.

We have proposed two ways of executing the proposal for
inclusion of projection-based information. These resulted in
two descriptors based on the CS-LBP. Evaluation of these
descriptors, using a standard evaluation protocol, have shown
that the projection space has sufficient information to be

captured as the designed descriptor (PLBP) outperforms the
traditional methods in most of the cases.

An interesting aspect of the proposed approach is that it
shows that a variational pattern in projection domain can
be used to capture useful information in grayscale images as
well. In the future, we aim to test the proposed approach
on tasks like object recognition.
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