
An Indexing Approach for Speeding-Up Image
Classification

Rahul Jain, Sudha Praveen M., Pramod Sankar K., C. V. Jawahar
∗

Center for Visual Information Technology
IIIT-Hyderabad, India
jawahar@iiit.ac.in

ABSTRACT

One of the most common computer vision tasks is that of
recognizing the category of objects present in a given im-
age. Previous work has mostly focused on building accu-
rate classifiers based on carefully selected features. Clas-
sification is often carried on individual test images, while
most of the practical situations, such as webscale image in-
dexing, demand the simultaneous classification of a large
collection of images. This is especially true for real-world
datasets, that already contain numerous un-indexed images
and videos. In this paper, we work towards developing a
computationally efficient approach towards object recogni-
tion, that is inspired by retrieval schemes. We perform an
offline indexing of the features from the collection, so that
the classifier only needs to work on a small subset of the
entire feature set. Over a set of 2 Million features extracted
from 7000 images, classification against 5 object categories
using a standard SVM would require more than 260 hours.
Over the same test case, the classification time using our
indexing based approach is reduced to less than 13 hours.
The compromise on the accuracy is less than 7% for the 20X
speedup achieved.

1. INTRODUCTION
Computer Vision problems are characterized by humon-

gous amounts of visual data that need to be understood. It
is an accepted fact that images and videos are being gen-
erated at a much faster rate than they could be processed.
For example, more than 24 hours of videos are being up-
loaded on YouTube every minute. But, there are not many
computer vision applications that can process videos at that
speed while still providing accurate understanding. Search
and retrieval from such large collections of visual data is a
very challenging problem.

Popular retrieval systems depend on contextual textual
information such as filename, tags and surrounding text.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICVGIP ’10, December 12-15, 2010, Chennai, India
Copyright 2010 ACM 978-1-4503-0060-5/10/12 ...$10.00.

Tiger Clock Sword
Boat Tree Person
Face Bus Shoes

Figure 1: The problem addressed in this paper is to
recognize object categories in unconstrained images.
The images might contain multiple objects from dif-
ferent categories, all of which should be identified.
Such object labels enable building better image re-
trieval systems, that can search based on image-
content (rather than keywords surrounding it).

However, such information is not always available and is
expensive to generate manually. A true retrieval system
should have a certain understanding of the content of an im-
age. Classical content-based image retrieval (CBIR) mostly
matched images based on features such as color, texture [26],
SIFT [25], etc. Instead, in this paper, we shall look at the
problem of retrieval through recognizing object categories
within images.

There has been significant progress in object recognition
over the last few years [10, 16, 29]. Image recognition is
typically posed as a classification problem. Features and
classifiers are carefully selected and trained for this purpose.
Use of dense SIFT-like descriptors and SVM-like discrimina-
tive classifiers have become the widely accepted candidates
for visual recognition. Much of the previous work in visual
recognition has focused on the training phase of the system.
However, little work focuses on scaling these classifiers to
large test-sets.

There are two common approaches to speeding up object
detection: the first is a cascade based approach [30], while
the other is by using random forests [3]. Cascaded classifiers
were popularized by Viola and Jones [30], which is a modi-
fication of the AdaBoost framework, applied for the task of
face detection. Each weak classifier of the cascade depends
on only one haar-like feature, hence simultaneously acting
as a feature selection procedure. Zhu et al. [33] integrated
classifier-cascades with the Histograms of Oriented Gradi-

ents (HoG) [7] representation to build a faster pedestrian
detector. Similarly, Vedaldi et al. [28] uses a cascade of clas-
sifiers with progressively increasing complexity, for generic
object detection. The first stage involves a linear SVM,
which rejects a large number of negative windows; followed
by an Additive-SVM and a non-linear Kernel SVM. Each
stage of the cascade tests a decreasing number of windows
with an increasingly strong classifier. The major drawback
of cascade-based approaches is that one cannot recover from
the mistakes committed early in the cascade. If the first
stage wrongly rejects a window, there is no mechanism to
reconsider that window with another classifier. The classi-
fiers using a Kernel-SVM invariably performs better than
those using a cascade. In short, cascades with weak classi-
fiers are not good enough for complex concepts, while those
with stronger classifiers are computationally prohibitive.

The second approach of random forests [3, 17], uses mul-
tiple decision trees which typically use simple decision func-
tions at each node. Training is performed by maximizing
information gain on a random subset of the data, with the
posterior probabilities for each class stored in the leaf nodes.
During testing, each feature is run through all the trees, the
result being an average of the posteriors. Due to simple node
tests, the computation required for random forests is much
less compared to SVMs, with comparable performance [31].
However, they have the disadvantages of over-fitting and
lack of a principled method to tune and improve their clas-
sification performance.

The speedup achieved by previous methods, is only through
time saved in the classification module, which typically weak-
ens the classifier. If one assumes that a single classification
operation takes x seconds, a naive method of recognizing
from N images would require N · x seconds. The savings
achieved from reducing x would not be sufficient, since the
number of images to be processed N is still very large.

In this paper, our objective is to perform the classification
in far less than linear time, in number of images. Our inter-
est is in recognising objects, over a large number of images
in reasonable time. A general example of the task is shown
in Figure 1. Such recognition of objects in an image would
aid in annotation of images with meaningful concepts. The
annotated images lend themselves to be easily indexed for
semantic image retrieval. We apply our framework toward
annotating a collection of 7,000 images from the PASCAL
VOC 2009 dataset.

We demonstrate that, over a dataset of 2 Million samples,
our method performs classification in 12.5 hours, as com-
pared to more than 260 hours when using standard classifi-
cation approaches. Our approach is applicable to any given
classifier design, with no modifications required for the clas-
sifier itself. In other words, our method allows designers
to not compromise on classifier training in order to speed
it up in test conditions. We use a novel approach that is
inspired from text retrieval and from its application to ob-
ject retrieval. Our method is applicable to problems where
a large number of images need to be classified against many
classifiers, such as in large-scale image/video annotation, in-
dexing and retrieval.

The paper is organized as follows. In the next section, we
shall take a brief look at the related work to this paper. We
present our framework in Section 3 and an efficient imple-
mentation of it in Section 4. The implementation details and
results are provided in Section 5. In Section 6, we discuss

the properties of our novel framework, and its possible ap-
plications to other computer vision problems. We conclude
in Section 7.

2. RELATED WORK
There has been significant previous work regarding ob-

ject detection and recognition [8]. The recognition process
consists of two steps: feature extraction and classification.
Features can be either sparse representations based on in-
terest points, or a dense description which incorporates all
the information from each window. Popular sparse features
are a histogram of oriented gradients based descriptor for
SIFT [18] or Harris-Affine [20] interest points. The image is
represented as a set of these sparse features. On the other
hand, with dense representations, the features are extracted
from the information in a given scanning window. A com-
monly used dense descriptor is based on Haar wavelets [30],
which are a set of basis functions encoding the difference in
color pixels between adjacent regions. They are popular due
to the efficient computation using Integral images, as well
as their power to encode visual concepts.

Dense descriptors are directly used for classification with
either a discriminative classifier (such as a Neural Network
or SVM), or using AdaBoost. But, matching of sets of
features is typically more computationally expensive than
matching features in a vector space. There are two ap-
proaches that are generally used to speed up matching sparse
features. The first approach performs vector quantization of
features [25], and each feature is represented as belonging to
one of the quantized bins. The image is then represented
as a histogram of occurrences of features belonging to each
of the bins. Such histograms can be easily matched using
standard distance measures. The second approach bins the
features into hierarchical histograms [11], which are then
matched using weighted histogram intersection. The result-
ing pyramid match kernel can be directly plugged into a
typical SVM framework.

The bottleneck however, is the need to classify features
using an SVM, which in itself is computationally expensive.
The time required is of the order O(|Images|×|Dimensions|×
|SV s|). A novel speedup of SVMs proposed by Zhang et

al. [32] combines the speed of Nearest Neighbor classifier,
with an SVM being used only along class boundaries. Maji et
al. [19] introduced a speed-up for a set of non-linear kernels
which makes the classification independent of the number
of support vectors. With linear kernels, the complexity be-
comes independent of the dimensions, making it dependent
only on the number of images/windows. Further speed up
can be achieved using the branch-and-bound framework of
Lampert et al. [15]. In this approach, sets of windows are
evaluated for the highest score either of the windows could
receive. The search continues by splitting the window set
along the larger coordinate, and it terminates when a rect-
angle has a quality score that is atleast as good as the up-
perbound of all other candidates.

All the above methods have focused on speeding up the
classifier, but the best speedup in still linear in the number
of images/windows. In this paper, our aim is tp perform
classification of test data in sub-linear time. The closest
work to ours is the work of Lampert [14]. They combine
the aspects of image retrieval with object localization by
building a two-layer branch-and-bound scheme which splits
the search both across the images and within each image.

3. THE SOLUTION

3.1 Problem Description
Given a set of images, our goal is to label the images with

the names of objects that it contains (from a given set of
object categories). Such a labeling would be very useful
to annotate images for subsequent retrieval. Similar tasks
were posed by the Caltech-256 [12] challenge. In the Caltech
dataset, images contained only one object, belonging to one
of the 256 categories.

A more difficult dataset is the real-world images of PAS-
CAL VOC [9] challenge, which we shall work with in this
paper. In the VOC dataset, images are obtained from Flickr,
which contain a large variety in the objects present in them
and their spatial configurations. Since the locations of the
objects are unknown, the image needs to be sampled at var-
ious spatial locations across different aspect ratios. This is
typically performed using the sliding-window techniques, by
evaluating a large number of candidate windows that are
distributed over scale and space.

However, unlike the problem of object detection, where
the object needs to be localized, in our case we are only in-
terested in the presence or absence of the object. Instead,
we randomly sample windows from the test image collec-
tion, typically about 300 windows per image. The assump-
tion is that if sufficient features fall into the window, they
could provide enough evidence for the presence of that ob-
ject. Given such randomly sampled windows from the image
collection, the problem is to label the windows if they con-
tain a particular object.

3.2 Recognizing in Image Collections
Typical image classification problems treat each image as

an individual test element. The statistics of the test datasets
are generally ignored. It is this isolated test-case perspec-
tive that causes the large computational expense required
by these techniques. Our solution is built on two important
observations. The first observation is that a large number of
windows within an image are very similar, especially since
they overlap in scale and space. This is also true across
a collection of images; there will be similar windows from
different images whenever they contain similar objects. For
example, consider an image that contains a region depicting
grass. The sliding windows from this region would be very
similar. In case other images in the test set also contain a re-
gion of grass, the windows from that would visually overlap
across the images.

The second observation is that, in presence of visual sim-
ilarity, such windows would be very close in any reasonable
feature space they are represented in. Consequently, the
classifier scores of these windows would also be very close.
This is true for most classifiers which output a real-valued
score, the classifier score is assumed to change smoothly
across the feature space. This can be proved by disprov-
ing the contrary: any classifier which gives highly varied
scores for windows that are close in the feature space, is very
sensitive to noise in feature extraction or classifier training.
Since standard features and classifiers have sufficient noise-
tolerance, we believe that similar windows will most proba-
bly have similar scores.

This fact is reflected in the statistics of SVM-score varia-
tion with respect to feature distances, as shown in Figure 2.
A Million random feature pairs were evaluated against an

Figure 2: Statistical variation of SVM scores against
distances between corresponding features. It is clear
that when features are close the SVM scores are
similar as well. With increasing feature distances
the SVM scores vary, almost linearly.

SVM trained for aeroplanes. The distances between the
SVM scores are plotted against the distances between the
features. The plot shows that SVM scores are highly corre-
lated with the feature distances; features that are close to
each other typically have very similar classifier scores. It can
be seen that SVM scores for features lying at a distance of
0.2 are very close, corresponding to the same classification
result for most practical purposes.

Putting these two observations together, given a set of
windows that are similar to each other, it suffices to classify
only a few of them; the classifier score can then be propa-
gated to the rest of the windows. This premise will be the
basis for our proposed indexing-based image classifier.

3.3 Finding Similar Windows
In our approach, before a classifier is applied to detect an

object, we need to identify the windows which are similar
across the collection. This is a computationally expensive
task because of the number of windows that are typically
generated from an image collection is quite large. The VOC
2009 test set, for example, consists of 7,000 images resulting
in more than 1.5 Billion windows. Finding sets of similar
windows in such a huge collection is a significant task.

This challenge is very similar to the image/object retrieval
from videos. In that problem, each image is represented as a
set of local feature descriptors. Given an image region, sim-
ilar regions across the video needed to be retrieved quickly.
This was successfully addressed by the Video Google [25]
approach. Local feature descriptors are vector quantized
using K-Means clustering. Each feature is represented by
the cluster number it falls in. The quantized features were
then indexed which allowed for super-fast object retrieval.

Following this line of thought, image-windows could also
be vector quantized. Such quantization is also referred to as
building a vocabulary, due to its analogy with text retrieval.
The criterion for building this vocabulary should be to clus-
ter windows from the same object together. It means that
the precision of the clusters needs to be high, at the expense
of having multiple clusters corresponding to the same object.
Only in such a clustering, will the propagation of classifier
score across windows becomes acceptable. To achieve high
precision clustering the number of clusters needs to be quite
high.

.
. .

.

.
..

...
..

... ...

..

oo
o

o

o

o

x
x x

x

x

O
u
r

A
p
p
ro

ac
h

A
p
p
ro

ac
h
es

S
ta

n
d
ar

d

..

Figure 3: A simplified depiction of our framework.
Standard approaches directly classify the features
from image windows against a classifier. In our ap-
proach, we add an intermediate step of indexing
(based on feature clustering). As long as all the
features in a cluster belong to the same concept, it
suffices to classify only the centroid of the cluster,
resulting in significant speedup.

Building large number of clusters from even larger fea-
ture sets is computationally expensive in itself. There are
two directions to make large scale clustering computation-
ally efficient: i) Hierarchical K-Means (HKM) [22] and ii)
KDTrees [23]. In this paper we shall explore the HKM di-
rection, leaving KDTrees for future work.

3.4 Hierarchical K-Means
We shall briefly explain HKM here for completeness. In

the first stage, the windows are clustered into a small num-
ber, say B clusters. Each of these clusters is in-turn clus-
tered into B clusters, resulting in B2 clusters at the second
stage. This process is repeated up to a certain depth D so
that there are BD clusters are formed. Since the clustering
process can be depicted as a tree, it is typically referred to
as a vocabulary tree, with a branching factor B whose leaf
nodes are the clusters we seek. The depth D of the vocabu-
lary tree is atleast D = logB(N). To build the entire HKM
tree for a dataset of size N requires O(N ·B ·D) time while
standard K-Means would require O(N ·BD). For N = a mil-
lion features, on a modern desktop processor the difference
is 31 yrs for K-Means vs 13 hrs for HKM.

This process significantly speeds up not only the clustering
of data, but also the lookup of windows into the appropriate
clusters. Given a new window, to find out which cluster it
belongs to, it takes B · D comparisons unlike traditional K-
Means which would take BD comparisons. For example, if
B = 10, D = 6 then there are a million leaf nodes. K-Means
requires 106 (a million) comparisons while HKM only needs
60 comparisons.

3.5 Indexed Object Recognition
The indexing scheme can now be used to significantly

speed up the object recognition process. A schematic of our
framework is presented in Figure 3. Randomly sampled win-

dows from the image collection are clustered using the HKM.
The architecture of the indexing scheme is generally limited
by the visual variety in the data. Given a fixed indexing
schema, the number of features remains a constant regard-
less of the number of test data. Once clustered the centroids
of the leaf nodes are classified using a set of discriminative
classifiers such as SVMs. The label of the centroid is then
propagated to the rest of the cluster; which is in-turn used
to label the image itself.

4. SPEEDING UP WITH GPU
The process of indexed object recognition can be fur-

ther speeded-up by exploiting the inherent data parallelism.
This can be achieved by utilizing the Graphics Processor
Units(GPU), that have recently found profound use in large-
scale general purpose computation. New-generation GPUs
have a many-core architecture (often hundreds of cores), and
support running thousands of threads in parallel. Though
motivated primarily to support real-time shading and lo-
cal illumination computations, the programmable compo-
nents of the GPU allow the large number of computation
units to accelerate general purpose applications. Many al-
gorithms in pattern recognition and machine learning have
been speeded-up using GPUs in the recent past, such as Neu-
ral networks [1], SVMs [6], Decision trees [24], etc. GPUs
have allowed the classification on large data sets to become
feasible.

The popular software architecture to exploit GPUs is the
NVIDIA CUDA [2] SDK, which is essentially a wrapper for
C/C++. CUDA allows C functions to be executed multiple
times, by multiple threads, on multiple GPUs. These func-
tions are called kernels, which are easy to instantiate. A
thread can execute a single kernel at any given time. Mul-
tiple threads are grouped in blocks and multiple blocks are
grouped in grids. The number of blocks and threads that
can run simultaneously is limited by the number of stream-
ing processors in the GPU used. We use the NVIDIA Tesla
computer which contains four GPUs, each allowing upto 128
threads to execute in parallel.

The clustering algorithm consists of two steps: i) finding
the mean of a given cluster initializations, ii) reassigning
the points to their closest cluster. Both these steps can be
parallelised, the first step across the clusters and the sec-
ond across the points. Further, in a hierarchical setting, the
points being clustered to expand one node in the tree are in-
dependent of those in another node. This allows us to easily
map the HKM building process onto the GPU architecture.

However, the number of points that can be clustered in
each step is limited by the number of features that can be
stored in the global memory of the GPU. Over our hardware,
this limit was 4GB, accommodating upto 200K features in
one instance. The speed-up is also limited by the time re-
quired to transfer the data between the CPU and the GPU,
which is a non-trivial portion of the compute time. The time
to build a HKM using different methods, over a set of 200K
features is given in Table 1. HKM on GPU gives us about
24X speed up as compared to that on CPU. This efficiency
from GPU implementation comes at no loss of performance.

5. IMPLEMENTATION DETAILS
Our dataset comes from the VOC2009 training set, which

contains about 7000 images. The categories of interest is

K-Means (CPU) 30 Hours
Hierarchical K-Means (CPU) 10 Hours
Hierarchical K-Means (GPU) 25 Minutes

Table 1: Computational costs for clustering a set of
200K features

the set: Aeroplane, Bus, Car, Cat, Person. Features are
extracted from about 2 Million randomly sampled windows
of this image collection.

5.1 Feature Extraction
We extract dense SIFT descriptors from a grid of points

with spacing of 5 pixels. These SIFT features were vector
quantized in keeping with the Video-Google approach. A
large set of randomly chosen SIFT features are quantized by
using a GPU version of K-means, into 300 clusters. After
the clusters are obtained, each feature from the dense SIFT
computation is assigned to the closest cluster or visual word.

A given image or window of the image is now represented
as a histogram of the number of occurrences of the visual
words in an image. Since the spatial arrangement of the
features is ignored, and only their occurrence counted, this
representation is called a bag-of-words, similar to the termi-
nology in text retrieval. A certain amount of spatial infor-
mation can be preserved using the Pyramid Histogram Of
Words (PHOW) features. PHOW is computed at multiple
levels for each given window. At the first level, the stan-
dard BoW of the window is computed. At the next level the
window is divided into 4 equal parts in length and breadth.
BoW features of these 4 parts is computed separately and
concatenated to the BoW computed at previous level to form
a feature vector of length 1500(5 times that of BoW).

The computation of the PHOW features from an image
is speeded up using the Integral Image approach [30]. 300
integral images are computed corresponding to each of the
words in the visual vocabulary. The count of the features
occurring in a given window is obtained by reading only
four numbers per visual word. Given the coordinates of the
image window, each integral images quickly gives the sum
of the corresponding visual word in that bounding box and
thus the PHOW histogram is computed easily. The PHOW
features thus obtained is normalized using L1 norm.

5.2 Indexing the Features
The features extracted from the dataset are indexed using

a HKM. The quality of clustering may be quantified using
the cluster purity measure. Cluster purity measures whether
a cluster is uncontaminated by windows belonging to dif-
ferent categories. However, this measure is biased towards
small clusters. In the extreme case, if each word were its
own cluster then the cluster purity would be 100%. This is
undesirable and hence we measure the clustering quality us-
ing the F -score measure, which is popular in the document
retrieval community. The F -score is given as

Fβ =
(β2 + 1) ∗ precision ∗ recall

β2 ∗ recall + precision

To compute the precision and recall, we evaluate a set
of N · (N − 1)/2 pairwise relationships for each of the win-
dows. If a pair of windows belonging to the same category

are clustered together, such a pair contributes to the true-
positives(TP). If such a pair is assigned to different clusters,
it would be counted as a false-negative(FN). When two win-
dows are clustered together, but belong to different words
it is considered as a false-positive(FP). Based on these com-
puted values, the precision and recall are obtained as

precision =
TP

TP + FP

recall =
TP

TP + FN

In our F-score computation, we would like to penalize false
positives more than false negatives. This is achieved by us-
ing a β > 1, typically 5. This gives more weight to precision
or cluster purity. The optimal setting is identified by eval-
uating the clustering over a subset of the collection. The
F-score of our clustering scheme, with a branching factor of
10, was found to be 0.54, which is quite reasonable given
our large dataset.

5.3 Classifier Training
We build a discriminative classifier to recognize the ob-

ject categories of interest. A Kernel-SVM is learnt for each
category to perform a one-vs-all classification. The most
suitable kernel for the histogram features is the exponential
Chi-Square kernel, which is given as

K(p, q) = e−αχ2(p,q)

where, χ2(p, q) =

N
X

i=1

(pi − qi)
2

pi + qi

These classifiers were trained using the labeled positive ex-
amples from our selected dataset using the SVMLight pack-
age [13]. To improve the number of positive examples, and
to obtain certain amount of robustness to pose variations,
additional positive windows were obtained by flipping them
about their vertical axis. Negative examples for the classi-
fiers were comprised of the positive examples of other cate-
gories and 2000 windows with no object present in them.

The classifiers were tested for performance over our dataset
of 2 Million windows. Performance analysis of the individual
classifiers is given in Table 2 (top row). The best performing
category was found to be that of Person and the poorest per-
forming category was Car. These results are consistent with
the work of Vedaldi et al. [28], which is understandable since
we use very similar features to them. The scores from each
classifier were normalized to lie between [0, 1]. The category
with the highest score is assigned to each window, if the
highest score is greater than a predefined threshold. Confu-
sions across the different categories can be seen in Table 3.
One would ideally want a block diagonal confusion matrix,
but it is apparent that our performance is quite satisfactory.

5.4 Object Recognition from Indexed Windows
The final step of the implementation involves classifying

the centroids of the HKM clusters against the classifiers.
Following this classification, all the windows indexed to each
cluster are assigned the label of the centroid. While the
time required to classify each feature against the 5 SVMs is
more than 260 hours, the time required to classify only the
centroid of each cluster is merely 13 hours.

Category Aeroplane Bus Car Cat Person
SVM 78 84 75 83 92

Indexing + SVM 71 78 66 76 87
Introduced Error 7 6 9 7 5

Table 2: Classifier performance without and with
using feature indexing. The loss in performance is
acceptable, especially for an image retrieval appli-
cation. The speedup achieved compensates for the
average loss in performance of less than 7%.

Category Aeroplane Bus Car Cat Person
Aeroplane 78 8 10 2 2

Bus 5 84 6 1 4
Car 3 9 75 5 8
Cat 3 3 1 83 10

Person 1 1 1 5 92

Table 3: Confusion Matrix between the various ob-
ject classes from the learnt SVMs.

The performance of this recognition propagation is shown
in Table 2. Compared to a standard SVM, the indexing
scheme results in an average loss of accuracy of about 7%.
It is clear that the loss of accuracy by using the indexing
scheme is quite acceptable for the speedup we obtain. The
loss is least for the category of Person, which means that our
approach results in a faster pedestrian detector with little
loss of performance.

Each image is scored across the category by considering
the vote from each window selected from the image. The
votes are normalized by the number of windows picked from
the given image. For a given category query, images are
ranked based on the normalized scores. Example images
retrieved for different object categories are given in Figure 4.
Some examples where errors are introduced by the indexing
process are shown in the middle column of Figure 4. Most of
these errors might be avoided by splitting the nodes further
along the HKM tree. Further, as we see in Figure 4 (right
column) there are many windows which were misclassified
by the regular SVM (as well as our indexing based SVM). A
large percentage of these errors seem to occur because the
sampled window does not capture sufficient detail/features
of the particular object. Using a denser sampling of windows
(still less than full sliding window), one could easily obtain
better inferences over these objects.

6. DISCUSSION
One of the key characteristic of our algorithm is that it

isolates the indexing schema from the classification itself. It
also means that multiple classifiers can simultaneously pro-
cess the same test data, with all classifiers benefiting from
the time saving of applying the classifier over the indexed
data. The clusters that the classifier makes a mistake with,
provides many hard-examples to retrain the classifier with.
Our proposed scheme also performs mutual exclusion inher-
ently, which is a post-processing step of typical object de-
tectors. By assigning only one label to each cluster we can
enforce the constraint that a given window would not be a
candidate for another visual category.

Our approach easily lends itself to be applied further in
many ways:

1. The indexing based classification scheme is quite suit-
able to sliding window techniques for object localisa-
tion. With a large number of features being extracted
from a small image region, such features easily clus-
ter together, hence requiring lesser classifications per
image.

2. Recognising objects from large collections of images
such as PASCAL VOC can be made very efficient.
These datasets typically contain many similar objects
across the collection, which can be easily exploiting by
the clustering step.

3. Better classifiers such as those based on Multiple Ker-
nel Learning [27] could be built, without compromis-
ing on the accuracy for the sake of efficiency. Multiple
features such as those based on PHOG [5] and self-
similarity [28] could be combined to improve classifi-
cation accuracy.

4. Further, many other indexing schemes could be ex-
plored for reducing the computational complexity of
classification. One could possibly look at Locality Sen-
sitive Hashing [4], KD-Trees [21] (and other tree struc-
tures), etc.

In the problem of detection, at first glance, it could appear
that clustering a large set of features would be more expen-
sive than classifying them directly. However, our framework
allows the indexing to be performed incrementally. In in-
cremental indexing, we begin with a sizable set of data and
build a HKM on it. In the next step, unseen data is looked-
up against this HKM and the features from new images are
assigned to their closest clusters. This is an O(B × D) op-
eration. Now, only those nodes of the HKM need to be
expanded, that have a large variety of windows in them.
Once the clusters are built, the classification can be quickly
performed.

7. CONCLUSIONS
In this paper we have presented a novel approach to per-

form classification in large scale datasets. Instead of being
burdened by the scale of realistic datasets, our approach ac-
tually benefits from that very aspect. By deriving inspira-
tion from text and image retrieval, we index features in the
offline phase for quick online classification. The efficiency is
further boosted with the use of GPU computing wherever
possible. We demonstrate the technique over the problem
of object recognition in real-world image sets. The results
show very little loss of performance for large gains in terms
of computational expense. In future work, we shall apply
the framework on a much larger dataset, possibly for the
task of object localization.

8. ACKNOWLEDGEMENTS
Pramod Sankar would like to thank Andrea Vedaldi for an

inspiring talk on object-detection at IIIT-Hyderabad. Rahul
Jain acknowledges P. J. Narayanan for helpful discussions
regarding GPU implementations of vision algorithms.

9. REFERENCES

[1] Neural Networks on the GPU:
http://leenissen.dk/fann/html latest/files2/gpu-
txt.html.

[2] nVIDIA CUDA at:
http://www.nvidia.com/object/cuda home new.html.

[3] Y. Amit and D. Geman. Shape quantization and
recognition with randomized trees. Neural

Computation, 9(7):1545–1588, 1997.

[4] A. Andoni, M. Datar, N. Immorlica, P. Indyk, and
V. Mirrokni. Locality-sensitive hashing scheme based
on p-stable distributions. Nearest Neighbor Methods in

Learning and Vision: Theory and Practice, 2006.

[5] A. Bosch, A. Zisserman, and X. Munoz. Image
classification using random forests and ferns. In Proc.

ICCV, 2007.

[6] B. Catanzaro, N. Sundaram, and K. Keutzer. Fast
support vector machine training and classification on
graphics processors. In Proc. ICML, pages 104–111,
2008.

[7] N. Dalal and B. Triggs. Histograms of oriented
gradients for human detection. In Proc. CVPR, pages
886–893, 2005.

[8] M. Enzweiler and D. M. Gavrila. Monocular
pedestrian detection: Survey and experiments. IEEE

PAMI, 31(12):2179–2195, 2009.

[9] M. Everingham, L. Van Gool, C. K. I. Williams,
J. Winn, and A. Zisserman. The PASCAL Visual
Object Classes Challenge 2009 (VOC2009) Results.
http://www.pascal-
network.org/challenges/VOC/voc2009/workshop/index.html.

[10] L. Fei-Fei, R. Fergus, and P. Perona. Learning
generative visual models from few training examples:
an incremental Bayesian approach tested on 101
object categories. In Workshop on Generative-Model

Based Vision, 2004.

[11] K. Grauman and T. Darrell. The pyramid match
kernel: Discriminative classification with sets of image
features. In Proc. ICCV, 2005.

[12] G. Griffin, A. Holub, and P. Perona. Caltech-256
object category dataset. Technical Report 7694,
California Institute of Technology, 2007.

[13] T. Joachims. Making large-scale support vector
machine learning practical. Advances in kernel

methods: support vector learning, pages 169–184, 1999.

[14] C. H. Lampert. Detecting objects in large image
collections and videos by efficient subimage retrieval.
In Proc. ICCV, pages 987–994, 2009.

[15] C. H. Lampert, M. B. Blaschko, and T. Hofmann.
Beyond sliding windows: Object localization by
efficient subwindow search. In Proc. CVPR, 2008.

[16] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing
natural scene categories. In Proc. CVPR, pages
2169–2178, 2006.

[17] V. Lepetit and P. Fua. Keypoint recognition using
randomized trees. IEEE PAMI, 28(9):1465–1479, 2006.

[18] D. G. Lowe. Distinctive image features from
scale-invariant keypoints. IJCV, 60(2):91–110, 2004.

[19] S. Maji, A. C. Berg, and J. Malik. Classification using
intersection kernel support vector machines is efficient.

In Proc. CVPR, 2008.

[20] K. Mikolajczyk, T. Tuytelaars, C. Schmid,
A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir,
and L. V. Gool. A comparison of affine region
detectors. IJCV, 65(1/2):43–72, 2005.

[21] M. Muja and D. G. Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. In
Proc. VISAPP, 2009.

[22] D. Nister and H. Stewenius. Scalable recognition with
a vocabulary tree. In Proc. CVPR, pages 2161–2168,
2006.

[23] J. Philbin, O. Chum, M. Isard, J. Sivic, and
A. Zisserman. Object retrieval with large vocabularies
and fast spatial matching. In Proc. CVPR, 2007.

[24] T. Sharp. Implementing decision trees and forests on a
gpu. In Proc. ECCV, pages 595–608, 2008.

[25] J. Sivic and A. Zisserman. Video Google: A text
retrieval approach to object matching in videos. In
Proc. ICCV, pages 1470–1477, 2003.

[26] A. W. M. Smeulders, M. Worring, S. Santini,
A. Gupta, and R. Jain. Content-based image retrieval
at the end of the early years. IEEE PAMI,
22(12):1349–1380, 2000.

[27] M. Varma. Learning the discriminative
powerinvariance trade-off. In Proc. ICCV, 2007.

[28] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman.
Multiple kernels for object detection. In Proc. ICCV,
2009.

[29] A. Vedaldi and S. Soatto. Relaxed matching kernels
for object recognition. In Proc. CVPR, 2008.

[30] P. A. Viola and M. J. Jones. Rapid object detection
using a boosted cascade of simple features. In Proc.

CVPR, pages 511–518, 2001.

[31] J. Winn and J. Shotton. The layout consistent random
field for recognizing and segmenting partially occluded
objects. In Proc. CVPR, pages 37–44, 2006.

[32] H. Zhang, A. C. Berg, M. Maire, and J. Malik.
Svm-knn: Discriminative nearest neighbor
classification for visual category recognition. In Proc.

CVPR, pages 2126–2136, 2006.

[33] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan. Fast
human detection using a cascade of histograms of
oriented gradients. In Proc. CVPR, pages 1491–1498,
2006.

SVM and Indexing+SVM: Ours: Incorrect Ours and SVM:
Both Correct SVM: Correct Both Incorrect

Aeroplane

Bus

Car

Cat

Figure 4: (left) Examples of images correctly recognised for a few categories. The window with the highest
score for the given category is outlined in red. (middle) Examples of errors introduced by the Indexing
scheme, over those windows where a normal SVM classified correctly. The erroneous label is given with the
window that was mis-classified. (right) Windows that were mis-classified by both the regular and indexing
based SVMs.

