
GPU-Accelerated Genetic Algorithms

Rajvi Shah
International Institute of
Information Technology

Hyderabad, India
rajvi.shah@research.iiit.ac.in

P.J.Narayanan
International Institute of
Information Technology

Hyderabad, India
pjn@iiit.ac.in

Kishore Kothapalli
International Institute of
Information Technology

Hyderabad, India
kkishore@iiit.ac.in

ABSTRACT
Genetic algorithms are effective in solving many optimiza-
tion tasks. However, the long execution time associated with
it prevents its use in many domains. In this paper, we pro-
pose a new approach for parallel implementation of genetic
algorithm on graphics processing units (GPUs) using CUDA
programming model. We exploit the parallelism within a
chromosome in addition to the parallelism across multiple
chromosomes. The use of one thread per chromosome by
previous efforts does not utilize the GPU resources effec-
tively. Our approach uses multiple threads per chromosome,
thereby exploiting the massively multithreaded GPU more
effectively. This results in good utilization of GPU resources
even at small population sizes while maintaining impressive
speed up for large population sizes. Our approach is mod-
eled after the GAlib library and is adaptable to a variety
of problems. We obtain a speedup of over 1500 over the
CPU on problems involving a million chromosomes. Prob-
lems of such magnitude are not ordinarily attempted due to
the prohibitive computation times.

Categories and Subject Descriptors
D.1.3 [PROGRAMMING TECHNIQUES]: Concurrent
Programming—Parallel Programming ; I.2.8 [ARTIFICIAL
INTELLIGENCE]: Problem Solving, Control Methods,
and Search—Heuristic Methods

General Terms
Algorithms,Performance

Keywords
GAs,GPU,Genetic Algorithm,CUDA,Parallel GAs

1. INTRODUCTION
Genetic Algorithms (GAs) are a set of evolutionary algo-
rithms, powerful and effective in solving search and opti-
mization tasks. This class of algorithms is inspired by the

process of biological evolution. Similar to the process of evo-
lution, genetic algorithms employ natural selection, crossover,
mutation and survival of fittest to find the fittest solution in
a search space represented by a population of chromosomes,
where each chromosome represents one possible solution to
the optimization problem (Holland [4]).

A typical genetic algorithm starts with selecting random
points in search space, representing them as chromosomes
and building an initial population. This initial population
is evaluated using a fitness function to suggest how fit a
chromosome is to represent the solution. A fitness-based
or uniform selection is carried out to select parent chromo-
somes to undergo crossover and produce offsprings, which
usually with a very low mutation probability gets mutated.
Hence, main components of a genetic algorithm are chromo-
some representation, selection, crossover and mutation. A
representation that encodes the solution of the problem in
the best possible way is used. Crossover and Mutation op-
erators are often limited by the representation being used.
Many methods exist for the process of selection as well, a
method is chosen based on the convergence and diversity
needs.

The user needs to tune various parameters and experiment
with genetic operations and selection methods to achieve de-
sired results using a genetic algorithm. In such a scenario, a
library-like utility provides users great flexibility and ease of
experimentation, speeding up the process of actual problem
solving. Many public libraries exist for genetic algorithms
providing a unified and optimized approach to achieve de-
sired results. GALib (Wall [16]) is one such widely accepted
library which enables the users to represent and solve their
problems using genetic algorithms in a simple and effective
way with enough flexibility. The long execution times asso-
ciated with Genetic Algorithms constraints its application
in many domains, despite its popularity on many domains.

In this paper, we present a generic framework for Genetic
Algorithms accelerated by the modern Graphics Processing
Units (GPUs), inspired by GALib. Such a framework not
only provides a platform for fast execution but encourages
experiments in new domains and with novel approaches in-
volving huge population sizes which was limited due to im-
practical execution times. The key distinction of the ap-
proach is the effort to go beyond chromosome level par-
allelism whenever possible and utilize the massively mul-
tithreaded model of GPUs to its fullest.



Our approach is implemented using Nvidia’s CUDA pro-
gramming model (NVIDIA [7]), but with enough isolation
from the user program so that users need not be proficient
in CUDA programming. We implement the original genetic
algorithms and achieve a speed up of about 1500 on large
problems using the massively multithreaded model of the
GPU as exposed by CUDA.

2. RELATED WORK
Genetic Algorithms have been well explored and used in
many domains for a long time. Attempts have been made
in recent times to accelerate their performance using GPUs.
Yu et al. [18] implemented a fine-grained parallel genetic
algorithm (Tomassini and Calcolo [14]) on the GPU using
Cg shader mechanism. A hybrid genetic algorithm (HGA)
was proposed and implemented on GPU using the graphics
pipeline and shading languages by Wong and Wong [17].

These above approaches were implemented and tested on
Nvidida’s GeForce 6800GT GPUs using the graphics pipeline.
As the GPUs became more powerful and popular, they have
become fully programmable parallel processing units. With
the availability of high-level programming languages such
as CUDA (NVIDIA [7]) and OpenCL (Khronos OpenCL
Working Group [6]), researchers now see GPUs as a high
performance multi-core processors. This has established a
trend for General-purpose computation on GPUs (GPGPU)
(GPGPU [3]).

In a recent work, Posṕıchal et al. [8] presented a mapping
of the parallel-island model of GA (Cantu-Paz [1]) to the
CUDA architecture. This approach was implemented and
tested on Nvidia’s high-end CUDA compatible GPUs, namely,
the 8800 GTX and GTX 285. The mapping of population
islands to blocks benefits tremendously by fast access to
shared memory resources within a block accelerating the
performance many times. The island model is further ex-
plored to solve 0-1 knapsack problem in Posṕıchal et al. [9].
The islands model is especially well suited to the block struc-
ture of CUDA with limited shared memory. This approach
doesn’t extend well to the general GA framework, which is
the focus of this work.

3. GPU AND CUDA ARCHITECTURE
We present an overview of the CUDA programming and
hardware models in this section. Please see (NVIDIA [7]) for
more details about CUDA programming. Figure 1 depicts
the CUDA programming model, mapping a software CUDA
block to a hardware CUDA multiprocessor. A number of
blocks can be assigned to a multiprocessor and they are
time-shared internally by the CUDA programming environ-
ment. Each multiprocessors consists of a series of processors
which run the threads present inside a block in a time-shared
fashion based on the warp size of the CUDA device. Each
multiprocessor further contains a small shared memory, a
set of 32-bit registers, texture, and constant memory caches
common to all processors inside it. Processors in the multi-
processor executes the same instruction on different data at
any time. This makes CUDA an SIMD model. Communi-
cation between multiprocessors is through the device global
memory which is accessible to all processors within a mul-
tiprocessor. Synchronization between threads of a block are

possible. Synchronization across blocks is possible only at
kernel boundaries.

The CUDA API provides a set of library functions which
can be coded as an extension of the C language. A compiler
generates executable code for the CUDA device. The CPU
sees a CUDA device as a multi-core co-processor. The code
executes as threads running in parallel in batches of warp
size, time-shared on the CUDA processors. Each thread can
use a number of private registers for its computation. A
collection of threads (called a block) runs on a multiproces-
sor at a given time. Threads of each block have access to
a small amount of common shared memory. Synchroniza-
tion barriers are also available for all threads of a block.
A group of blocks can be assigned to a single multiproces-
sor but their execution is time-shared. The available shared
memory and registers are split equally amongst all blocks
that timeshare a multiprocessor. An execution on a device
generates a number of blocks, collectively known as a grid
Figure 1.

Each thread executes a single instruction set called the ker-
nel. Threads and blocks are given a unique ID that can be
accessed within the thread during its execution. These can
be used by a thread to perform the kernel task on its part of
the data resulting in an SIMD execution. Algorithms may
use multiple kernels, which share data through the global
memory and synchronize their execution either at the end
of each kernel or forcefully using barriers.

4. GPU ACCELERATED GA
Genetic algorithm execution is a parallel process. That is,
there is no dependency across the chromosomes of a popu-
lation for the process of fitness evaluation and genetic op-
erations. Hence, the entire population can be operated in
parallel within a generation. To exploit the parallelism at
a greater level, we form groups of threads to handle a sin-
gle chromosome, thus mapping the problem to a massively
multithreaded model for which GPUs are best suited. Cur-
rently, we have implemented the generic genetic algorithm
with uniform and roulette wheel selection strategies, one
point crossover and flip mutation (Goldberg [2]). Figure 2
shows the overall flow of the genetic algorithm framework
onto a GPU.

4.1 Data Organization
In past, efforts were made to effectively utilize the paral-
lelism of chromosomes by employing one thread per chro-
mosome to perform fitness evaluation as well as genetic op-
erations (Posṕıchal et al. [8], Robilliard et al. [10]). The key
difference of our approach is that we use several threads to
perform these operations on a single chromosome, resulting
in a better utilization of GPU resources. This is realized in
practice by organizing the data in GPU memory in such a
way that genes of each chromosomes can be accessed effi-
ciently in a coherent manner by multiple threads handling
it. This section describes organization of thread and data,
used by various CUDA kernels.

Population is laid out in main memory of GPU, as a two
dimensional N × L matrix such that columns refer to chro-
mosomes and rows corresponds to genes within chromosomes
as shown in Figure 3, where N is population size and L is



…

…

SP SP SP SP

SP SP SP SP

Shared Mem

Shared Mem

The device global memory

Grid with multiple blocks resulting from a Kernel call

The CUDA Device, with a number of Multiprocessors

CUDA Block

Multiprocessor

Runs On

Threads

The CUDA Hardware Model

1

n

The CUDA Programming Model

Variables

Figure 1: The CUDA hardware model (top) and programming model (bottom), showing the block to multiprocessor mapping.

Figure 2: Program Execution and Memory Transfers

chromosome length. For a thread per chromosome model,
threads in a block are arranged as a one dimensional array
as shown in Figure 4 with one thread per chromosome. For a
fully parallel approach, threads in a block are also arranged
as a two dimensional matrix as shown in Figure 5. Ker-
nel parameter blockDim.x is controlled by the number of
threads per block (TPB), which is a CUDA block param-
eter. This layout leads to a one-to-one mapping between
thread indices and genes. So, all genes of a chromosome can
be accessed simultaneously.

Figure 3: Population Matrix in memory

Figure 4: Thread Layout A

A detailed description of the execution flow depicted in Fig-
ure 2 and the mapping of the data layout shown in Figure 3
to a massively multithreaded model in each of the kernels is
given in the subsequent subsections.

4.2 Fitness Evaluation Kernel
The process of fitness evaluation determines how fit each
chromosome is to be the solution. Unlike other genetic op-



Figure 5: Thread Layout B

erators, fitness evaluation is a problem specific process and
has to be provided by the user. In our framework, we pro-
vide a partially parallel and a fully parallel methods for the
process of fitness evaluation.

The partially parallel method uses thread layout A as shown
in Figure 4 with one thread per chromosome. In this method,
user can access the chromosome as a 1D array and write
an expression for fitness evaluation by accessing this array.
User’s C code fragment is used in fitness evaluation kernel
by each of the threads to evaluate fitness of each individ-
ual. This is possible as CUDA is compatible to C. The
calculated fitness scores are written back to the GPU global
memory. As only chromosome level parallelism is exploited,
this method may prove less efficient. But, it doesn’t require
a user to be familiar with CUDA architecture or program-
ming. Hence, it makes the utility useful to a larger commu-
nity at a small loss in performance.

The fully parallel method is provided for CUDA proficient
users wherein the user can supply an evaluation function
including a fitness evaluation kernel which may utilize the
GPU resources in a more effective manner. This provides
the user a way to achieve maximum performance.

Consider an example of 0-1 Knapsack problem. We are given
a set of items with associated weights and costs. The aim is
to pick items such that the total cost is maximum and total
weight does not exceed knapsack capacity. A binary string
is a convenient representation for chromosomes in this prob-
lem, where 1 indicates presence of an item and otherwise.
Length of the chromosome is set to total number of items.
In such a problem the fitness evaluation will involve finding
cost sum and weight sum for all the chromosomes.

In partially parallel method, every thread will read one chro-
mosome, its weight and cost, calculate total sum and to-
tal cost and write the score, providing parallelism across
the chromosomes. Whereas in a fully parallel approach, we
copy a block of cromosomes to shared memory. According
to thread layout B (Figure 5), threads in each column read
genes of corresponding chromosome, multiply it with cost
and weight arrays and perform a log-sum as shown in Fig-
ure 6.

Fully parallel approach with careful utilization of shared re-
sources can make the evaluation process much faster, espe-

Figure 6: Parallel Sum

cially for problems involving intensive fitness calculation.

4.3 Statistics Kernel
After the fitness scores are calculated, population statistics
need to be updated. Population statistics are used for the
process of selection and to decide termination. The max-
imum, minimum and average and total fitness scores are
calculated using standard parallel reduce algorithms (Jaja
[5]). Best and worst chromosomes are recorded to ensure
elitism, if selected by user. Also the selection probability for
each of the chromosome is calculated.

Fitness scores may need to be sorted depending upon the se-
lection method to be used. Sorting is not required if stochas-
tic selection method is used. For probabilistic selection, like
roulette wheel or rank selection, scores need to be sorted.
A fast GPU based radix-sort, provided by CUDPP (CUDA
Data Parallel Primitives) library is used for the same (Satish
et al. [12]). Some method-specific statistics are also calcu-
lated, which is described later.

4.4 Selection Kernel
The execution of a Genetic Algorithm begins with the pro-
cess of selection. In the process of selection, parent chro-
mosomes are selected to go through the process of crossover
to produce offspring. Selection Kernel will vary according
to the selection method being used. Here, Uniform and
Roulette Wheel selection kernels are described in detail. A
uniform selection kernel is described in Pseudo-code 1.

Pseudo-code 1 Uniform Kernel
N ← popSize
numThreads ← N

2

{For all threads in parallel}

i ← threadIdx
parent1(i) ← random(0, N − 1)
parent2(i) ← random(0, N − 1)
parent1(i + 1) ← parent1(i)
parent2(i + 1) ← parent2(i)

Roulette wheel selection is more expensive than uniform
selection. To simulate the roulette wheel, the population



is sorted based on the fitness score values (Satish et al.
[12]). These score values are normalized to calculate se-
lection probabilities. A sum-scan is performed on the nor-
malized array (Sengupta et al. [13]). This new array is
stored in global memory and used as a roulette wheel array
(rouletteArray). These calculations are done in statistcs
update stage, prior to execution of selection kernel. This
selection kernel is described in Pseudo-code 2.

Pseudo-code 2 Roulette Wheel Kernel
GLOBAL : rouletteArray
N ← popSize
numThreads ← N

2

{For all threads in parallel}

i ← threadIdx
p1 ← random(0− 1)
p2 ← random(0− 1)

parent1(i) ← rotateWheel(p1, N)
parent2(i) ← rotateWheel(p1, N)
parent1(i + 1) ← parent1(i)
parent2(i + 1) ← parent2(i)

The rotateWheel function used in selection, performs a bi-
nary search on prefix-summed rouletteArray for the nearest
smaller real number and returns parent index. This subrou-
tine is described in Pseudo-code 3.

Pseudo-code 3 rotateWheel(n,N)

GLOBAL : rouletteArray
flag = 0
start = 0, end = N, middle = d end

2
e

while !flag do
left ← rouletteArray[middle]
right ← rouletteArray[middle + 1]
if n >= left then

if n < right then
index ← middle
flag = 1

else
start = middle
middle = start + d end−start

2
e

end if
else

end = middle
middle = d end−start

2
e

end if
end while
return(index)

Both, Uniform and Roulette Wheel Selection use thread lay-
out A as shown in Figure 4.

4.5 Crossover Kernel
A pair of chromosomes selected in selection process under-
goes the process of crossover to produce offsprings. The pro-
cess of crossover is controlled by the crossover probability.
Our implementation performs one-point crossover, but the
same approach can be adapted to other crossover methods
as well.

4.5.1 Crossover Preprocess
In our implementation, crossover points are calculated and
stored prior to invoking actual crossover kernel. As the ap-
proach used for crossover uses multiple threads per chro-
mosome, all the threads performing crossover between two
chromosomes should know a common crossover point value.
This prohibits generation of crossover points in crossover
kernel itself due to a restrictive memory model and synchro-
nization issues across the blocks in CUDA (NVIDIA [7]).

A kernel for selecting crossover points for one-point crossover
is described by Pseudo-code 4. This kernel uses thread
model A as shown in Figure 4.

Pseudo-code 4 Crossover Points Kernel
N ← popSize
L ← chromoLength
numThreads ← N

2

{For all threads in parallel}

i ← threadIdx
r1 ← random(0, 1)
if r1 ≥ probCross then

crossPoint(i) ← random(0, L− 1)
crossPoint(i + 1) ← crossPoint(i + 1)

else
crossPoint(i) ← 0
crossPoint(i + 1) ← 0

end if

In practice, crossover points are also selected along with par-
ents in selection kernel as it uses the same thread layout.

4.5.2 One-point Cross-over
Instead of making one thread read two chromosomes, per-
form crossover and write the offspring chromosomes back,
we make use of multiple threads to read a single chromo-
some. This approach results in a coalesced read and write
of data speeding up the execution greatly.

As shown in the Figure 3, a chromosome occupies a column
in the population matrix. Hence, the column index becomes
the chromosome index. For the process of crossover we make
use of total NL threads where N is the population size and
L is the chromosome length. These threads are also laid
out as a 2D matrix with N columns and L rows across the
bloacks as shown in Figure 5. Now, instead of using one
thread per crossover operation we use 2L threads, utilizing
the massively multithreaded GPU model. Pseudo-code 5
describes a one-point crossover kernel using NL number of
threads.

4.6 Mutation Kernel
In the process of genetic evolution, some chromosomes of
the population mutate with a small mutation probability.
Mutation is very crucial to bring genetic algorithm out of a
local maxima or minima. The process of mutation is con-
trolled by the mutation probability. We consider mutation
probability as a probability for a gene to get mutated. For
mutation kernel we again make use of matrix layout of Fig-
ure 3 for population and thread layout of Figure 5. Each



Pseudo-code 5 Crossover Kernel
GLOBAL : Parent1, Parent2, crossPoint
N ← popSize
L ← chromoLength
numThreads ← N × L

{For all threads in parallel}

Cidx ← threadIdx.x
Ridx ← threadIdx.y

p1 ← Parent1(Cidx)
p2 ← Parent2(Cidx)
xPoint ← crossPoint(Cidx)

if Ridx ≤ xPoint then
newPopulation(Cidx, Ridx) = oldPopulation(p1, Ridx)

else
newPopulation(Cidx, Ridx) = oldPopulation(p2, Ridx)

end if

thread now corresponds to a gene and decides whether or
not to mutate the gene.

4.7 Random Numbers
Random numbers are extensively used throughout a genetic
algorithm. CUDA does not provide any support for on the
fly generation of a random number by a thread because of
many synchronization issues associated. To solve this issue,
an estimate of required random numbers is made. For ex-
ample, a GA set up for a uniform selection with one-point
crossover and flip mutation requires nearly T = 2N+N+NL
random numbers in one iteration, where N is the population
size and L is length of the chromosome. Based on this esti-
mate and memory limits imposed by hardware, a large pool
of random numbers are generated and stored on GPU global
memory before initiating the genetic algorithm. To speed up
the process of generation and avoid transfer, we make use
of rand routine provided by CUDPP, which uses MD5 al-
gorithm for pseudo random number generation (Tzeng and
Wei [15]). If high quality random numbers are needed, this
is replaced by a CPU based random number generation fol-
lowed by a copy to global memory.

5. PROGRAMMING INTERFACE
GALib (Wall [16]) is built around a few base classes, the
main two being a Genome class and a Genetic Algorithm
class. A user is allowed to tune a Genetic Algorithm accord-
ing to the problem by setting various parameters through
these classes.

Our framework is built around three main structures: GA
Context, Genome Context and GAStatistics Context.

Out of these three, GA Context and Genome Context are
mainly filled by user and contains various parameters for
execution of genetic algorithm like population size, chromo-
some size, crossover and mutation probabilities, selection
method, termination method etc. GAStatistics is mainly
filled by the program along with execution of genetic algo-
rithm. It holds fitness scores and other population related

statistics. Support functions are provided to fill these struc-
tures, print parameters and destroy the structures.

Other than these three structures, user in his program needs
to declare a void pointer to the population, and define and
declare a user data structure which user might want to use
for fitness evaluation. User also needs to supply fitness eval-
uation related code fragment as explained previously. A
typical example user program 1 is listed below.

int main()
{

void *population;
UDATA udata;

GAContext ga;
GNMContext genome;
GAStats stats;

GASetParameters(&ga,&genome,&stats);
GAPrintParameters(&ga,&genome,&stats);

gaEvolvePopulation(&population,&ga,&genome
,&stats,&udata);

PrintSolution(population,&genome,&stats);

GAdestroyContexts(&ga,&genome,&stats);
return 0;

}

device float FitnessFunc(BIN1D *g,
GNMContext genome,UDATA *udata)

{
// Code to find fitness of a genome
return score;

}

Program 1: An Example User Program

6. RESULTS AND DISCUSSION
We use a quarter of Nvidia’s Tesla S1070 GPU to test our
implementation. Tesla is a massively parallel platform with
30 multiprocessors each having 8 cores. We compare the
performance of our GPU implementation with the serial im-
plementation provided by GAlib (Wall [16]), running on an
Intel Core2 Duo E7500(2.93 GHz) CPU. The direct com-
parison of running time (or speedup) of the CPU and the
GPU is not entirely meaningful to evaluate their merits and
demerits. The timing statistics is provided to provide the
readers a sense of what they can expect with respect to a
standard package.

We chose a standard 0-1 knapsack problem (Sahni [11]) to
measure the performance speedup. We performed various
experiments by changing chromosome length, population
size, number of generations and selection methods. In all
the experiments, the GPU accelerated approach showed sig-
nificant speed up against serial implementation with com-
parable results. The quality of results is not degraded, as
the basic algorithm was not modified but only paralleled.

A side-by-side performance comparison is given in Table 1
and Table 2, showing the GPU and CPU execution times for
various population sizes for uniform selection and roulette
wheel selection methods respectively. Chromosome length
and number of generations were fixed at 50 and 100 respec-



tively. All the timings are averaged over 5 trials. The num-
bers clearly indicate that problems of huge magnitude can
be solved in seconds with a GPU accelerated approach.

N GPU Std.Dev CPU Std.Dev Speed Up
100 0.025 0.000006 0.127 0.006148 5.04
1000 0.031 0.000472 1.364 0.002490 43.61
10000 0.153 0.000485 19.799 0.270023 129.40
100000 1.561 0.001172 342.814 4.714645 219.06
1000000 3.662 0.001435 4803.381 214.557712 1311.36

Table 1: Timing Comparison for Uniform Selection, Time
for 100 generations is given in seconds

N GPU Std.Dev CPU Std.Dev Speed Up
100 0.046 0.000051 0.141 0.003834 3.01
1000 0.053 0.000041 1.629 0.017473 30.38
10000 0.209 0.000859 21.609 0.624903 103.19
100000 1.724 0.001149 492.927 9.326317 286.04
1000000 4.727 0.000327 7233.716 176.666921 1530.14

Table 2: Timing Comparison for Roulette Wheel Selection,
Time for 100 generations is given in seconds

Table 3 shows the average execution time of the GPU-based
approach for various chromosome lengths and population
sizes for 100 generations, with a plot of the same in Figure 7.
It is apparant from Figure 7 that the run-time growth is
sublinear as the product NL increases.

Population Size (N)
L 100 1000 10000 100000 1000000
16 0.022 0.026 0.073 0.625 6.472
32 0.024 0.030 0.111 1.164 2.671
64 0.026 0.035 0.202 2.105 4.124
128 0.031 0.052 0.443 4.523 11.592
256 0.041 0.109 1.137 11.092 39.792
512 0.062 0.265 2.443 10.492 93.301

Table 3: Run-time in seconds for varying parameters for 100
generations

2 2.5 3 3.5 4 4.5 5 5.5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Number of Generations(log10)

T
im

e 
in

 S
ec

on
ds

(lo
g1

0)

 

 

L:256
L:128
L:64
L:32

Figure 7: Run-time growth with N and L

Run-time growth of our approach with increasing number of
iterations is linear as can be seen from Figure 8.

We also tried a numerical optimization problem using our

50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Generations

T
im

e 
in

 S
ec

on
ds

 

 

L:128
L:64
L:32

Figure 8: Run-time growth with number of generations

implementation for its effectiveness. Our system found the
minima of Rosenbrock’s function effectively and fast.

Direct performance comparison of our approach with other
GPU based approaches is not meaningful. We achieve much
higher speed up than that achieved by (Wong and Wong [17],
Yu et al. [18]), but this comparison is not justified as they
use a relatively old and less powerful hardware. Posṕıchal
et al. [8] use comparable hardware and demonstrates great
speedup but using a parallel-island model of GA which can
benifit greatly by shared resources.

7. CONCLUSION
In this paper, we demonstrate an approach to accelerate
a simple genetic algorithm using the GPUs by exploiting
gene level parallelism. We provide a mapping of various GA
kernels to massively multithreaded model of GPUs using the
CUDA programming model. Our GA framework is built
around three basic structures to make the implementation
extensible and flexible. Current implementation discusses
a simple genetic algorithm with 1D chromosome and two
different selection methods. The proposed framework can
be extended to a GPU accelerated genetic algorithms library
by incorporating more and more features. With speedup
achieved over a factor of 1000 and a programmable library-
like interface, GPU accelerated GA can find applications in
many new domains.

8. ACKNOWLEDGEMENT
We would like to thank Nvidia for providing equipment sup-
port.

References
[1] E. Cantu-Paz. Efficient and Accurate Parallel Ge-

netic Algorithms. Kluwer Academic Publishers, Nor-
well, MA, USA, 2000.

[2] D. Goldberg. Genetic algorithms in search, optimiza-
tion and machine learning. Addison-Wesley, 1989.

[3] GPGPU. General purpose computation on Graphics
Processing Units. URL http://www.gpgpu.org.

http://www.gpgpu.org�


[4] J. Holland. Adaptation in natural and artificial systems
: an introductory analysis with applications to biology,
control, and artificial intelligence. MIT Press, Cam-
bridge Mass., 1st MIT press ed. edition, 1992.

[5] J. Jaja. An Introduction to Parallel Algorithms.
Addison-Wesley Professional, 1992.

[6] Khronos OpenCL Working Group. The OpenCL Spec-
ification, version 1.0.29, 8 December 2008.

[7] NVIDIA. NVIDIA CUDA Programming Guide Version
3.0. NVIDIA Corporation, 2010.

[8] P. Posṕıchal, J. JaroŽ, and J. Schwarz. Parallel Genetic
Algorithm on the CUDA Architecture. In Applications
of Evolutionary Computation, LNCS 6024, pages 442–
451. Springer Verlag, 2010.

[9] P. Posṕıchal, J. Schwarz, and J. JaroŽ. Parallel Genetic
Algorithm Solving 0/1 Knapsack Problem Running on
the GPU. In 16th International Conference on Soft
Computing MENDEL 2010, pages 64–70. Brno Univer-
sity of Technology, 2010.

[10] D. Robilliard, V. Marion-Poty, and C. Fonlupt. Popu-
lation parallel gp on the g80 gpu. In EuroGP’08: Pro-
ceedings of the 11th European conference on Genetic
programming, pages 98–109, Berlin, Heidelberg, 2008.
Springer-Verlag.

[11] S. Sahni. Approximate Algorithms for the 0/1 Knap-
sack Problem. J. ACM, 22(1):115–124, 1975.

[12] N. Satish, M. Harris, and M. Garland. Designing effi-
cient sorting algorithms for manycore GPUs. In IPDPS
’09: Proceedings of the 2009 IEEE International Sym-
posium on Parallel&Distributed Processing, pages 1–10,
Washington, DC, USA, 2009. IEEE Computer Society.

[13] S. Sengupta, M. Harris, and M. Garland. M.: Efficient
parallel scan algorithms for GPUs. NVIDIA. Nvidia
technical report, NVIDIA Corporation, 2008.

[14] M. Tomassini and C. S. D. Calcolo. A Survey of Genetic
Algorithms, 1995.

[15] S. Tzeng and L.-Y. Wei. Parallel white noise generation
on a GPU via cryptographic hash. In I3D ’08: Proceed-
ings of the 2008 symposium on Interactive 3D graphics
and games, pages 79–87, New York, NY, USA, 2008.
ACM.

[16] M. Wall. GAlib, A C++ Library of Genetic Algorithm
Components. http://lancet.mit.edu/ga/, 2008.

[17] M. Wong and T. Wong. Parallel Hybrid Genetic Al-
gorithms on Consumer-Level Graphics Hardware. In
Evolutionary Computation, 2006. CEC 2006. IEEE
Congress on, pages 2973–2980, 2006.

[18] Q. Yu, C. Chen, and Z. Pan. Parallel genetic algorithms
on programmable graphics hardware. In Advances in
Natural Computation, First International Conference,
ICNC 2005, Proceedings, Part III, volume 3612, pages
1051–1059. Springer, August 27-29 2005.


