
Eurographics Symposium on Parallel Graphics and Visualization (2010)
J. Ahrens, K. Debattista, and R. Pajarola (Editors)

Ray Tracing Dynamic Scenes with Shadows on the GPU

Sashidhar Guntury and P J Narayanan

Centre for Visual Information Processing
International Institute of Information Technology (IIIT)

Hyderabad India
{sashidhar@research.,pjn@}iiit.ac.in

Abstract

We present fast ray tracing of dynamic scenes in this paper with primary and shadow rays. We present a GPU-

friendly strategy to bring coherency to shadow rays, based on previous work on grids as acceleration structures.

We introduce indirect mapping of threads to rays to improve the performance of ray tracing on the GPU for the

traversal and intersection steps. We also construct a light frustum in a spherical space for shadow rays. A grid

structure is constructed each frame for the light frustum and traversed coherently. This involves careful mapping of

the primary ray information to the light space and balancing the work load of the threads. Using the finegrained

parallelism of GPU, we reorder the shadow rays to make them coherent and process multiple thread blocks to

each cell to balance the work load. Spherical mapping is key to handling light sources placed anywhere in the

scene by reducing the triangle count and improving performance in shadow checking. In addition it also allows us

to introduce spotlights in raytracing. In practice, we attain interactive performance for moderately large models

which change dynamically in the scene.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—
Color, shading, shadowing, and texture I.3.6 [Computer Graphics]: Methodology and Techniques—Graphics data
structures and data types I.3.1 [Computer Graphics]: Hardware Architecture—Graphics processors

1. Introduction

Raytracing can produce images with very high degree of vi-
sual realism, but at the expense much higher computation.
Ray tracing consists of two tasks: building of the accelera-
tion data structure and tracing of the rays. Tracing involves
traversing the acceleration structure and primitive intersec-
tion. Fast raytracing on the GPU is receiving a lot of in-
terest in recent times, given their high compute power. Ray
tracing dynamic and deformable scenes is now possible at
near-interactive rates on modern GPUs. Acceleration data
structures play a central role in ray tracing. A uniform grid
is perhaps the simplest data structure used for ray tracing.
Bounding Volume Hierarchies (BVH) [WBS07, LeYM06]
and KD-trees [PGSS07,SSK07] have also been used widely
for raytracing. BVH and kd-trees can exploit ray coherence
more efficiently than grids. Their hierarchy also helps elim-
inate large portions of primitives before actual intersection.

Grids are easiest to build, giving them an edge over other

structures for scenes where acceleration structure has to be
built frequently. The cost of building a kd-tree or a BVH
is significantly higher. Ray specialized grids like a perspec-
tive grid take advantage of the common point of origin of
the rays and have a high degree of coherence. This makes
ray traversal efficient and fast. Primary rays are examples of
highly coherent rays. They originate from the camera point
and their traversal is always bounded by a frustum. Patidar
and Narayanan demonstrated the utility of such grids for pri-
mary rays [PN08] for deformable models by sorting trian-
gles to perspective cells in each frame. The grid construction
took only 15-30% of the total time for them. The ray tracing
step dominates the total running time as a result.

In this paper, we examine the performance of grids for
raytracing dynamic scenes for both primary as well as
shadow rays. We show the use of perspective grids for the
primary as well as shadow rays. We reduce the problem of
shadow rays to another round of spherical grid construction

c© The Eurographics Association 2010.



Sashidhar Guntury & P J Narayanan / Ray Tracing Dynamic Scenes with Shadows on the GPU

and tracing from the point of view of the light source. The
shadow rays are traced exactly to provide correct shadows.
We build the perspective grid for each light in a spherical
space. This enables us to place the lights anywhere inside or
outside the scene and also provide spotlight effects. We are
able to construct and render fairy forest model with a mov-
ing light in about 80 ms and the Conference hall model with
one light in about 62 ms.

2. Background and Previous Work

A survey of the current techniques for ray tracing can be
found in [WMG∗07]. Acceleration data structures are built
to speed up the process of finding ray triangle intersection.
Earlier, the entire process of raytracing was offline and the
time to build the datastructure was relatively small. Multi-
core CPUs and GPUs, make raytracing is possible at inter-
active rates [RSH05], with the data structure building be-
ing the bottleneck, especially on dynamic scenes. Consider-
able work has gone into speeding up this process, especially
on parallelizing the build on GPUs. Zhou et al. [ZHWG08]
and Lauterbach et al. [LGS∗09] gave fast methods of con-
structing kd-trees and BVH respectively on GPU. Patidar
and Narayanan built a perspective grid in parallel on the
GPU [PN08]. The main drawback of their approach was that
of triangles distributions and spanning arbitrary number of
voxels. It was solved by Kalojanov and Slusallek on uniform
grids [KS09]. They also used appropriate grid resolution to
improve the quality of the grid.

Unlike on a BVH and a kd-tree, rays on grids can not be
handled as packets easily. Wald et al. [WIK∗06] presented
an algorithm for traversing the grid in a slice-wise coher-
ent manner. Due to the use of a frustum like grid, Hunt and
Mark [HM08] and Patidar and Narayanan [PN08] treat the
camera rays in a totally coherent manner, making traversal
efficient. Hunt and Mark suggested the idea of rebuilding
the data structure from the light point of view on a multicore
CPU [HM08]. Our technique of building a DS from light
point of view is similar to theirs but goes much further by
building a spherical grid to increase efficiency as well as to
support spotlights and lights within the scene.

2.1. GPU Computing Model

We implement our techniques using the CUDA [NBGS08]
programming model on Nvidia GPUs. CUDA uses kernels,
which are programs that run in parallel on all threads. A
huge number of threads – upwards of tens of thousands – is
launched for efficiency. The threads are grouped into thread-
blocks or CUDA blocks. Threads within a single CUDA
block can be synchronized with negligible overhead. They
also have access to a small, fast, on-chip shared memory.
Global memory is accessible to all threads, but is consider-
ably slower.

Threads are batched into warps (of 32 threads), which run

in a strictly SIMD mode. Warps are scheduled sequentially
on available processor resources. Thus, the SIMD width of
the GPU computing model is the size of the warp. Memory
access patterns of threads of a warp also affect performance
deeply. Memory performance is best if proximate threads ac-
cess global memory locations that are close. Performance is
best if data used by all threads of a block is loaded onto the
shared memory.

3. Perspective Grids for Ray Tracing

Y

X

Z

Figure 1: The triangle storage layout. This kind of layout is

achieved by keeping the X value in the MSB and Z extent in

the LSB.

We construct a perspective grid by dividing the view frus-
tum into voxels. This scheme is very similar to [PN08,
HM08]. Similar to [KS09] we determine the cells each tri-
angle spans and build a list of triangles for each cell. This
procedure is less sensitive to the triangle distribution in the
scene. We create a list of (triangle, cell number) pairs, with
one entry for each cell that each triangle maps to. We also
can remove back-facing triangles to reduce the number of
entries in the list. This leads to a faster build of the grid and
fewer triangles to be checked during ray traversal. Since the
number of cells is in the range of 8K to 1M, we use the scal-
able SplitSort [PN09] to sort this list with the cell-id as the
key. We use scan primitives to build the list of triangles in
each cell.

The perspective grid provides perfect coherence to pri-
mary rays. We process the rays of each tile together on the
GPU using a CUDA block or a work group, with each pixel
assigned to a thread or a work item. The triangle data is
brought into the shared memory before intersection calcu-
lations. Since all threads need to process all triangles in the
cell, the overhead of bringing the triangles is amortized over
the intersections. The threads alternate between loading a
portion of the triangles into shared memory and computing
intersections for them, with a synchronization between these
two roles. A thread that has found an intersection at one cell
need not check for intersection in a later cell, as the cells
are processed in a front-to-back order. We use the optimized
routine for checking triangle intersection [MT05].

c© The Eurographics Association 2010.



Sashidhar Guntury & P J Narayanan / Ray Tracing Dynamic Scenes with Shadows on the GPU

Figure 2: Heat map of the number of triangles checked be-

fore declaring intersection. The left image corresponds to

direct mapping while there is marked reduction in indirect

mapping, shown in right. Number of triangles checked be-

fore declaring intersections increases from blue to pink and

is highest in yellow regions.

The size of the image-space tiles and depth-space voxels
can impact the performance. Tile is a coherent, rectangular
cross section of rays. Larger tiles may exploit greater co-
herence than smaller ones. However, smaller tiles and cells
result in fewer overall ray-triangle intersection calculations
due to a finer sorting. The SIMD width of the architecture
also affects the performance, as the computing resources
may be wasted if the number of threads used is below the
SIMDwidth. We use an indirect mapping of threads to strike
a balance between these conflicting demands. We sort the tri-
angles to smaller tiles, but ray trace using larger number of
threads, by mapping threads differently. In practice, we sort
the trianges to kN×kN tiles in image space. For ray tracing,
we divide the image into N×N tiles such that a k× k group
of sorting tiles fit into each ray tracing tile. The work groups
used while tracing have more threads. The available shared
memory is partitioned equally among the sorting tiles dur-
ing ray tracing. Triangles from each sorting tile is brought to
the respective area of the shared memory and are intersected
with the rays corresponding to the sorting tiles. The config-
uration of 2×2 sorting tile within each tracing tile provides
the best results on current GPU hardware. The most compu-
tationally intensive part of the entire ray tracing routine is the
triangle intersection part and that is where indirect mapping
helps. Indirect mapping reduces the overall triangles to be
checked. For the Happy Buddha benchmark, we got 30-50%
speedup using indirect mapping as the maximum number of
triangles checked dropped by more than half. Figure 2 shows
this using a heatmap for the work done.

4. Spherical Light Grid for Shadows

Primary rays generate an intersection point for each pixel.
Secondary rays are generated from the intersection points in
general ray tracing. Secondary rays could be shadow rays
that go to each light source, reflection rays that reflect off
the surface or refraction rays that enter the object. Secondary

B

A

Figure 3: Ray coherence is lost for shadow rays near silhou-

ettes.

rays are inherently less coherent as they neither have a com-
mon starting point nor a direction. Methods like the DDA
algorithm in a 3D voxel space [AW87] can be used to enu-
merate the cells traversed by each ray. A packet based traver-
sal where a set of shadow ray packets are traced using frus-
tum shaft culling and mailboxing was proposed for the CPU
with SSE [WIK∗06]. Coherence that is significant to GPU
with its wide SIMD width cannot be achieved using this
kind of traversal alone. Shadow rays are not always coherent
[WIK∗06] and need to be split into multiple packets around
object silhouettes as shown in Figure 3. Splitting them into a
number of packets would introduce divergence and impede
full use of the resources. Nevertheless shadow rays can be
made coherent as they converge at the light source. This is a
role reversal from the point of view of primary rays, but sim-
ilar techniques can be used for coherent tracing of shadow
rays.

One way to exploit the aforementioned coherence is by
listing the cells for each shadow ray and then merging them.
This has been found to be expensive on CPU [WIK∗06] ond
will be expensive on GPU. However, building the grid data
structure is cheap and building it again from the point of
view of the light source is feasible on GPU. The process
of tracing the shadow ray is then similar to that of tracing
the primary rays. In the next few subsections, we present a
method of raytracing shadow rays accurately and effectively.
Our method works for different light types as positions of the
light source.

4.1. Building Light Grids and Ray Mapping

We build a perspective grid with the light source taking the
role of the camera. The camera has an intrinsic direction and
a set of pixels. This is not natural for light sources. Point light
sources emit light in all directions. Spot lights have light-
ing volumes of impact. We use a spherical mapping to map
light’s world into a perspective grid. A light frustum is con-
structed in the α-β space where α and β are the azimuthal

c© The Eurographics Association 2010.



Sashidhar Guntury & P J Narayanan / Ray Tracing Dynamic Scenes with Shadows on the GPU

up

forwardright
α

β

forward

right

α A B

C

α

π

A B

C

C

Figure 4: Spherical space used for shadows.

and elevation angles (see Figure 4). A rectangle in the α-β
space defines the light frustum and plays the role of the im-
age for primary rays. We define “tiles” on this rectangle to
build cells of the grid using constant depth planes. Figure 4
shows the spherical space with respect to the forward, right
and up directions. The angle α is measured from the for-
ward direction in the forward-right plane and and the angle
β is measured from the forward direction in the forward-up
plane. Lower and upper limits on the distance from the light
source play the role of near and far planes.

Figure 5: Bounding rectangle of the geometry in spherical

space defines the light frustum of interest.

Spherical mapping of this kind treats all directions
equally. We would ideally want to handle only the geometry
which is visible to the camera. For this, we limit the angular
extents of the light’s frustum to the bounding box of pro-
jection of the camera’s view frustum. Figure 5 demonstrates
this. This reduces the number of triangles participating in the
grid building and ray triangle checking. Furthermore, it also
devotes the grid tiles to a smaller area thus dividing the area
more finely. This technique also points a way to implement
proper spot lights with light fall off. The spot can be marked
as a bounding rectangle in the spherical space shown in Fig-

ure 5. A cubemap style of ray mapping to limit light space
rays was used earlier [HM08]. They handle each frustum
separately, resulting in a lot of extra work for the traversals.
Furthermore, clamping a cubemap is very tedious. Spherical
mapping is more convenient and provide exact shadows as
we will see later.

Figure 6: By clamping the region to a userdefined value,

we can get a spotlight like effect too. Only the shadow of

fairy is seen while the bushes, trees and dragonfly don’t have

shadows.

4.2. Ray Sorting and Reordering

Figure 7: Points of primary ray intersection are mapped to

the light frustum.

The shadow rays emanate from the intersection points of
primary rays and travel towards the light source. Rays in the
primary space that are distant may follow similar paths to
the light source, as shown in Figure 7. The primary inter-
section points are recorded against each ray at the end of
the primary step. We map the starting points of the shadow
rays to spherical space of the light source and store the tile
number for each. Thus a pair of (primary ray, light tile num-
ber) is created for each shadow ray. This list is sorted with

c© The Eurographics Association 2010.



Sashidhar Guntury & P J Narayanan / Ray Tracing Dynamic Scenes with Shadows on the GPU

the tile number as the key to bring shadow rays that belong
to the light tile together. This brings similar coherence to
secondary rays as the primary ones, with the information
about each shadow ray that passes through the tile available.
Shadow ray generation and reordering are performed on the
GPU in parallel using scan primitives [SHZO07] from the
CUDPP library and the SplitSort primitive, which can han-
dle arbitrary length keys [PN09].

4.3. Load Balancing

For tracing primary rays, blocks of threads are assigned to
tiles directly or indirectly. This is efficient for them as the
number of rays in each tile is a constant. For shadow rays,
however, the number per tile can vary widely. The above
thread mapping strategy can be inefficient due to the im-
balance in work loads. We try to keep the number of rays
handled by each thread block below a maximum value. This
needs assigning multiple thread blocks to excessively popu-
lated light tiles. We do this by splitting tiles with more than a
maximum number of shadow rays into multiple logical tiles.
Sparsely populated tiles, however, cannot be merged as they
work on different triangle data.

Suppose a light tile has R > r rays mapping to it, where r
is the number that a thread block can handle efficiently. We
assign ⌈R/r⌉ blocks in the CUDA program to this tile. Other
tiles are mapped to one thread block each, after eliminating
empty ones. The total number of thread blocks needed is

Ctotal =
N

∑
j=1
⌈R j/r⌉, where R j is the number of rays in tile j.

128 8 8 9 10 11 11 1110

128 8 8 9 10 11 11 1110 11 2 3 1 1 2 2 3 1

128 8 8 9 10 11 11 1110

128 8 8 9 10 11 11 1110 7164 65 66 67 68 69 70 72 73

64 66 6867 70 71 72

6964 65 66 67 68 70 71 72 7383 32 38 65 66 99 86 95102 84

128 8 8 9 10 11 11 11108 8 8 9 10 10 11 11 11 12

G

E

D

C

B

A

F

d

b

c

e

a

Figure 8: Mapping frustum blocks to CUDA blocks.

The ray ordering and load balancing are illustrated in Fig-
ure 8. The array of (primary ray, light tile number) pairs for
each primary intersections is sorted with tile number as the
key. The pixel number array is shown asA and the tiles array
as B. An array that holds thread numbers (or index numbers)
is shown as F. A simple kernel (step a) marks the boundaries
of each light tile of B into an array C. The hatched cells sig-
nify the starting of a new tile. We call this a hard boundary.
A segmented scan of an array of all 1’s with C defining the
segments, gives us the number of shadow rays for each tile

in D (step b). A tile with more than a threshold r rays are
mapped to multiple blocks. This is marked in array E where
the grained cell signifies the starting of a new block (step e).
We call this a soft boundary. Every hard boundary (different
tile) is also a soft boundary (mapped to a different block.)
To keep track of the first ray in each block, we do a stream
compaction step and shrink the number of cells to Ctotal . In
the Fig. 8, r = 2 is used. An array G, whose size is equal to
Ctotal contains the location of the cells in the list of triangle-
cell pairs. The first ray of each block bi is the ray whose
index in A is referenced by the value in location bi in G. The
total number of rays in a block bi is the difference between
the values in locations bi and bi+1 in G. This completes the
load-balanced mapping of shadow rays to thread blocks.

Algorithm 1 Rays to CUDA Block Mapping
1: TOTALPIXELS← imagesize

2: pseudoArr← array of TOTALPIXELS zeroes
3: scratchArr← array of TOTALPIXELS ones
4: validArr← array of TOTALPIXELS zeroes
5: threadArr← array of TOTALPIXELS zeroes
6: outArr← array of TOTALPIXELS zeroes
7: gr← dim3(BLKX ,BLKY ,1)
8: bk← dim3(THDX ,THDY ,1)
9: tagThread <<< gr,bk >>> (pixelIDArr, threadArr)

10: sort(tileIDArr, pixelIDArr)
11: f lagScan <<< gr,bk >>> (tileIDArr, pseudoArr)
12: segScan(tileIDArr, pseudoArr,scratchArr)
13: getChunk <<< gr,bk >>> (scratchArr,validArr)
14: numCBlocks← strCompact(threadArr,validArr,outArr)

4.4. Shadow Ray Tracing

The shadow tracing is similar to primary ray tracing. Each
thread block knows the shadow rays it traces from the map-
ping described above. Triangles are loaded into shared mem-
ory for each cell in order before checking for intersection.
Each thread knows the identity of the primary ray whose
shadow ray it is tracing as well as the shadow ray origin.
Shadow ray tracing only checks if an intersection exists or
not. If one is found, the shadow bit corresponding the pri-
mary ray is set. Shadow bits are initially reset. By keeping
the shadow information in the primary ray space, we avoid
the need for costly synchronization steps that may be needed
when tiles and cells are processed by multiple thread blocks
simultaneously. This cannot work for primary rays, as the
point of the closest intersection is needed, not a yes/no an-
swer.

5. Results and Discussion

We evaluated the performance of our techniques on an
NVIDIA 280 GTX card on a 32-bit linux machine. Our test-
cases included static as well dynamic models. Our default
resolution was 1024x1024. In all cases, we don’t include the

c© The Eurographics Association 2010.



Sashidhar Guntury & P J Narayanan / Ray Tracing Dynamic Scenes with Shadows on the GPU

Figure 9: Some of the test scenes : Fairy Forest(174k), Sibenik Cathedral(82k), Bunny/Dragon Model(252k), Conference

Room(284k), Cloth Folding(92k), Buddha(1.09M)

Model Tris Primary Rays With Shadows
HBVH kd-tree Grid Our Method Our Method

Fairy 174k 124 / 33.11 65 / 125# 24 / 285.7 8.73 / 32.43 82.18 ms
Sibenik 82k 30 / 45.32 n/a n/a 8.86 / 13.11 58.81 ms

Bunny/Dragon 252k 66 / 128.94 93 / 25 13 / 129.87 3.71 / 10.92 31.63 ms
Conference 284k 105 / 37.11 n/a 27 / 142.85 7.51 / 17.64 61.15 ms

Cloth 92k 39 / n/a∗ n/a n/a 5.23 / 11.23 44.47 ms
Buddha 1.09M n/a n/a n/a 13.76 / 38.91 114.57 ms

Table 1: Results are as noted on our raytracer at 1024×1024 resolution. First three columns give the primary rays performance.
Next column gives the performance of our system on shadow rays. In each of the entry, the first value corresponds to the DS

build time and the second value corresponds to the time taken to traverse and trace the rays. However in the shadow rays

column, the entry corresponds to time taken for the all steps till shadow computation. Our times don’t include time to shade or

the time taken for the costly transfers of data from host to GPU. All times are in milliseconds, ms. HBVH is timings of [LGS∗09],

kd-tree numbers are from [HSZ∗09], Grid values are from [KS09]. All on NVIDIA GTX 280 hardware. Also, Fairy in kd-tree

was rendered with two lights and shadows. Cloth model in BVH was rendered at 14 fps with shadows.

time required to transfer the model data from host to device.
We build the datastructure for every frame. Table 1 shows the
performance of our system with the models shown in Fig. 9.

Figure 10: Time spent in each of the broadly classified

stages. Data Rearrangement includes the time taken to map

the ray, sort them, scan them, segment scan them into chunks

and finally stream compact too. Refer to the algorithm

Figure 10 shows the detailed breakup of various stages for
a frame. Unlike primary rays, shadow rays are not equally
distributed among all tiles. Therefore shadow ray traversal is

almost always more time consuming than primary ray traver-
sal. Ray reordering consists of mapping the shadow rays to
the spherical map, clamping the spherical map to get a tight
frustum. Sorting the shadow rays, binning them into the right
tiles and finally stream compacting these tiles to eliminate
empty tiles is also included in this step. The time needed to
do all this is more or less the same for all models as it doesn’t
depend on the model. Instead it depends on the resolution at
which we are rendering the images. In our case, we need to
sort 1024x1024 shadow rays, bin them and perform stream
compaction.

The performance of our technique shows vast improve-
ment of grid based raytracer for architectural and roommod-
els like Conference and Sibenik Cathedral. However, large
sized triangles that span across many voxels is still a problem
of grid. Presence of large number of such triangles hampers
the performance. This problem is less for BVH or kd-tree as
they split the triangle [SFD09].

Also shown is the performance of other GPU based im-
plementations. As of writing this paper, there is little work
dealing with shadow rays on GPU. The numbers have been
given to show the difference and as such it would be un-
fair to compare our shadow numbers with that of [LGS∗09]
and [ZHWG08] as they mainly concentrate on building the
datastructure. Our grid construction is similar to that of
[KS09] but due to the use of a much faster SplitSort [PN09]

c© The Eurographics Association 2010.



Sashidhar Guntury & P J Narayanan / Ray Tracing Dynamic Scenes with Shadows on the GPU

routine, we build the grid very fast. We take advantage of the
fact that the number of cells is less than 32 bits (in our case
it is 18) for splitting.

The performance of our approach is much better in all
testcases except that of Fairy where we are only slightly
faster. This is due to the inherent problem of grids in han-
dling teapot in stadium kind of scenarios. [HSZ∗09] report
their Fairy Forest timings with two lights as 5.26 fps while
we are able to clock on an average 7.6 fps with two lights.
By building the datastructure from scratch and data rear-
rangement, we are able to ensure a coherent traversal. Fig.
11 shows the change in time taken for traversal as the light
moves further away from the model. This dependence of
shadow rays’ performance on the position of light is com-
pensated by load balancing. This fact is illustrated in the
same figure where we show for different threshold values.
Shadow rays which would have got piled up in a few frus-
tum blocks are broken into chunks before mapping them to
CUDA blocks. This factor along with coherent traversal is
the biggest reason why we are faster than kd-tree inspite of
it being more efficient for such models.

Figure 11: Time in ms versus the distance of the light from

the center of the model for different number of rays per

CUDA block as the light moves further away from the model.

6. Conclusion and Future Work

In this paper we demonstrated a strategy that gives signifi-
cant improvements in performance of tracing rays on GPU.
To the best of our knowledge there is no discussion of trac-
ing shadows efficiently on GPU. Our implementation at ev-
ery stage maintains coherence among rays to make full use
of the frustum traversal technique. We get this coherence by
first mapping the rays to the frustum and then sorting them
to each tile. In order to cover all the points in the space we
use spherical mapping system. Depending on the minimum
and maximum extents of the shadow rays, we also clamp
the frustum in order to devote more blocks to the geometry
against which the rays will check. And finally in order to

make the ray checking fast, we divide the ray packets into
smaller, easily manageable chunks and distribute the load
almost equally among all CUDA blocks.

While many of the techniques we discussed are grid spe-
cific, ray sorting and load balancing can be applied to kd-tree
and BVH based implementations. Any data intensive, work
efficient GPU kernel takes advantage of the way data is or-
ganized and that is exactly what ray sorting and load balanc-
ing do. They lay the data in way such that the intersection
checking kernels spend little time getting data and check for
intersections faster.

Although grids are not the best choice for raytracing on
CPU, their structure intuitively seems more suited to GPU
model. Also the use of grids to cheaply build datastructure
helps us shift computational demand almost entirely to the
actual raytracing activity. Since the method is a pure frustum
traversal based method, the effectivenss of our strategies is
only to a point till coherence exists but till that point, grid
outperforms other datastructures by a wide margin. The time
gained can thus be devoted for true secondary ray traversals.
Thus we believe grids might still be as competitive as kd-
tree and BVH. Our method is esspecially good for scenes
with deformable models. Faster traversal of rays is good for
interactive applications where there is a demand for higher
framerates while at the same time raytracing standards are
moderate, i.e have some basic lighting and shadows.

In the paper we demonstrated ways to load balance a sce-
nario where there are too many rays in a frustum block. We
are also looking at ways to load balance a scenario when too
many triangles fall in a single frustum block. This can be
achieved by dividing triangles in a frustum into chunks and
parallely checking them. This might require some synchro-
nization through atomic operation or some reduction. We are
looking at this possibility.

We present the following conclusions based on our work
on ray tracing dynamic models. These points are likely to
hold for all high performance hardware platforms with some
SIMD width, though they rose out of our experience with
Nvidia GPUs.

• Coherence is the most important factor that determines
the performance, especially when SIMD width is large.
Processing coherent rays together can achieve high per-
formance.

• Grids are the easiest structures to build as fast sorting
is usually available on most platforms. The acceleration
structure needs to be rebuilt in each frame when dealing
with dynamic or deformable scenes. Adaptive hierarchies
like kd-Trees and BVH trees are expensive to build. Rigid
structures like grids and octrees are better.

• Perspective grids are most efficient for primary rays due
to their maximum coherence. Coherence can be brought
to shadow rays for point light sources by building a per-
spective frustum for each light.

c© The Eurographics Association 2010.



Sashidhar Guntury & P J Narayanan / Ray Tracing Dynamic Scenes with Shadows on the GPU

• Grids are inefficient for secondary rays from reflection
and refraction due to their incoherence. Tree-based data
structures can do better on them, but only when the SIMD
width is low. Divergence increases with SIMD width,
making irregular access no better than grids.

• Sorting is usually fast, thus favouring data structures with
smaller grid cells. Fewer triangles will be in each cell, re-
ducing the ray-triangle intersections. However, processing
very small packets of rays may be inefficient if the SIMD
width is high. The indirect mapping approach strikes a
balance between these by processing multiple small cells
together.

7. Acknowledgements

We thank Marko Dabrovic for the Sibenik Cathedral Model,
University of Utah for the Fairy Forest scene, Stanford 3D
Scanning Repository for the Bunny, Dragon and Buddha
models, UNC Dynamic Scene Benchmarks for Exploding
Dragon and Cloth models and Anat Grynberg and Greg
Ward for the Conference Room Model. We thank Nvidia for
generous equipment donations and partial financial support
through CUDA Fellowship.

References

[AL09] AILA T., LAINE S.: Understanding the efficiency of ray
traversal on gpus. In HPG ’09: Proceedings of the Conference

on High Performance Graphics 2009 (2009), pp. 145–149.

[AW87] AMANATIDES J., WOO A.: A fast voxel traversal algo-
rithm for ray tracing. In In Eurographics ’87 (1987), pp. 3–10.

[BOA09] BILLETER M., OLSSON O., ASSARSSON U.: Efficient
stream compaction on wide simd many-core architectures. In
HPG ’09: Proceedings of the Conference on High Performance

Graphics 2009 (2009), pp. 159–166.

[HM08] HUNT W., MARK W.: Ray-specialized acceleration
structures for ray tracing. In Interactive Ray Tracing, 2008. RT

2008. IEEE Symposium on (Aug. 2008), pp. 3–10.

[HSZ∗09] HOU Q., SUN X., ZHOU K., LAUTERBACH C.,
MANOCHA D., GUO B.: Memory-Scalable GPU Spatial Hi-

erarchy Construction. Tech. rep., MSR Asia, UNC, Chapel Hill,
2009.

[ISP07a] IZE T., SHIRLEY P., PARKER S.: Grid creation strate-
gies for efficient ray tracing. In RT ’07: Proceedings of the 2007

IEEE Symposium on Interactive Ray Tracing (Washington, DC,
USA, 2007), IEEE Computer Society, pp. 27–32.

[ISP07b] IZE T., SHIRLEY P., PARKER S.: Grid creation strate-
gies for efficient ray tracing. In RT ’07: Proceedings of the 2007

IEEE Symposium on Interactive Ray Tracing (2007), IEEE Com-
puter Society, pp. 27–32.

[IWRP06] IZE T., WALD I., ROBERTSON C., PARKER S.: An
evaluation of parallel grid construction for ray tracing dynamic
scenes. In Interactive Ray Tracing 2006, IEEE Symposium on

(Sept. 2006), pp. 47–55.

[KS09] KALOJANOV J., SLUSALLEK P.: A parallel algorithm
for construction of uniform grids. In HPG ’09: Proceedings of

the 1st ACM conference on High Performance Graphics (2009),
pp. 23–28.

[LD08] LAGAE A., DUTRÉ P.: Compact, fast and robust grids for
ray tracing. Comput. Graph. Forum 27, 4 (2008), 1235–1244.

[LeYM06] LAUTERBACH C., EUI YOON S., MANOCHA D.: Rt-
deform: Interactive ray tracing of dynamic scenes using bvhs. In
In Proceedings of the 2006 IEEE Symposium on Interactive Ray

Tracing (2006), pp. 39–45.

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S.,
LUEBKE D., MANOCHA D.: Fast bvh construction on gpus.
Comput. Graph. Forum 28, 2 (2009), 375–384.

[MT05] MÖLLER T., TRUMBORE B.: Fast, minimum storage
ray/triangle intersection. In SIGGRAPH ’05: ACM SIGGRAPH

2005 Courses (2005), p. 7.

[NBGS08] NICKOLLS J., BUCK I., GARLAND M., SKADRON

K.: Scalable parallel programming with cuda. Queue 6, 2 (2008),
40–53.

[PBMH02] PURCELL T. J., BUCK I., MARK W. R., HANRAHAN

P.: Ray tracing on programmable graphics hardware. In SIG-

GRAPH ’02: Proceedings of the 29th annual conference on Com-

puter graphics and interactive techniques (2002), ACM, pp. 703–
712.

[PGSS07] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK

P.: Stackless kd-tree traversal for high performance gpu ray trac-
ing. Computer Graphics Forum 26, 3 (2007).

[PN08] PATIDAR S., NARAYANAN P. J.: Ray casting deformable
models on the gpu. In ICVGIP (2008), pp. 481–488.

[PN09] PATIDAR S., NARAYANAN P.: Scalable Split and

Gather Primitives on the GPU, IIIT/TR/2009/99. Tech. Rep.
IIIT/TR/2009/99, 2009.

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.: Multi-level

c© The Eurographics Association 2010.



Sashidhar Guntury & P J Narayanan / Ray Tracing Dynamic Scenes with Shadows on the GPU

ray tracing algorithm. ACM Trans. Graph. 24, 3 (2005), 1176–
1185.

[SFD09] STICH M., FRIEDRICH H., DIETRICH A.: Spatial splits
in bounding volume hierarchies. In HPG ’09: Proceedings of the

Conference on High Performance Graphics 2009 (2009), pp. 7–
13.

[SHG09] SATISH N., HARRIS M., GARLAND M.: Designing
efficient sorting algorithms for manycore gpus. In IPDPS (2009),
pp. 1–10.

[SHZO07] SENGUPTA S., HARRIS M., ZHANG Y., OWENS

J. D.: Scan primitives for gpu computing. In Graphics Hard-

ware (2007), pp. 97–106.

[SSK07] SHEVTSOV M., SOUPIKOV A., KAPUSTIN E.: Highly
parallel fast kd-tree construction for interactive ray tracing of dy-
namic scenes. Computer Graphics Forum 26, 3 (2007).

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Trans. Graph. 26, 1 (2007).

[WGBK07] WALD I., GRIBBLE P. C., BOULOS S., KENSLER

A.: SIMD Ray Stream Tracing - SIMD Ray Traversal with Gen-

eralized Ray Packets and On-the-fly Re-Ordering. Tech. Rep.
UUSCI-2007-012, 2007.

[WIK∗06] WALD I., IZE T., KENSLER A., KNOLL A., PARKER

S. G.: Ray tracing animated scenes using coherent grid traversal.
ACM Trans. Graph. 25, 3 (2006), 485–493.

[WMG∗07] WALD I., MARK W. R., GÃIJNTHER J., BOULOS

S., IZE T., HUNT W., PARKER S. G., SHIRLEY P.: State of the
Art in Ray Tracing Animated Scenes . pp. 89–116.

[ZHWG08] ZHOU K., HOU Q., WANG R., GUO B.: Real-time
kd-tree construction on graphics hardware. ACM Trans. Graph.

27, 5 (2008).

c© The Eurographics Association 2010.


