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Abstract— An adaptive partition based Random Forests clas-
sifier for outdoor terrain classification is presented in this paper.
The classifier is a combination of two underlying classifiers. One
of which is a random forest learnt over bootstrapped or offline
dataset, the second is another random forest that adapts to
changes on the fly. Posterior probabilities of both the static
and changing/online classifiers are fused to assign the eventual
label for the online image data. The online classifier learns
at frequent intervals of time through a sparse and stable set
of tracked patches, which makes it lightweight and real-time
friendly. The learning which is actuated at frequent intervals
during the sojourn significantly improves the performance of
the classifier vis-a-vis a scheme that only uses the classifier
learnt offline or at bootstrap. The method is well suited and
finds immediate applications for outdoor autonomous driving
where the classifier needs to be updated frequently based on
what shows up recently on the terrain and without largely
deviating from those learnt at bootstrapping. The role of the
partition based classifier to enhance the performance of a
regular multi class classifier such as random forests and multi
class SVMs is also summarized in this paper.

I. INTRODUCTION

Using features and classifiers to classify the image data

into class labels has been popular in the recent years [8],

[12]. Such techniques have been used with data obtained

from a moving vehicle or robot for classifying outdoor

data or to ascertain terrain navigability [3], [11]. However

in the context of outdoor terrain classification the baseline

classifiers can be improved to handle the spatial and temporal

context of an image point in a stream of data. This is

achieved through the partition based classification scheme

that improved the baseline performance of the popular mul-

ticlass classifiers such as random forests and SVM. Such a

partition based classification scheme was still not very well

suited for handling changing concepts or concept drift that is

associated with changing outdoor data sequences. A classifier

that learns and adapts to changing concepts while retaining

what was learnt about recurring concepts is thus entailed for

the problem at hand.

Hence this paper also proposes an adaptive classification

scheme based on a combination of a static and online

partition based classifier. The output posterior probability of

both the classifiers are fused to assign the eventual posterior

probability of a class label. To facilitate online learning and

adaptation, the online classifier is trained with a sparse but

stable set of image patches that are stably tracked by an

optical flow based tracker over a minimum number of time

samples. The combined classifier thus adapts to and learns

while preserving what has been learnt about recurring and

stable concepts. This is seen in an improved error-rate of

more than 20% for the combined classifier over and above

the single monolithic classifier trained at bootstrap.

Such adaptive terrain classification systems find immense

use in advanced driver assistance systems [14] and au-

tonomous outdoor navigation. For instance, a mobile robot

navigating outdoors, comes across various terrains such as

soft, slippery, hard, smooth, rocky or undulating ones. The

navigation strategy for the robot differs mainly based on the

kind of terrain it traverses and the limits on its velocities

vary according to these surfaces. An algorithm capable of

prior judgment of the terrain provides the much needed time

for the robot to adapt its velocity planner and thus becomes

a vital cog in outdoor navigation systems.

II. PREVIOUS WORK

Various methods have been proposed in literature for the

problem of terrain classification. In particular Vibration-

based methods [6], [13] ( which use accelerometers, IMU )

have been very successful. Yet, the main drawback of those

methods is that they classify terrain only while the sensor

attached to robot is traversing the terrain and not beforehand.

Camera-based methods follow a canonical form of using

images from camera as training data along with lasers or

stereo-rig for obtaining ground truth. Among the literature

we surveyed, the work reported in [1], is closest to our prob-

lem. However it partially relies on time consuming texture

features. Dima and Vandapal [3] trains separate classifiers on

data from laser, infra-red camera and monocular camera and

uses AdaBoost to combine the output. Bradley et al. [2]

uses multi-spectral camera to detect chlorophyll content for

recognizing grass and trees. Recent work includes, Blas et

al. [9] employing pre-segmentation algorithm based on clus-

tering using Local binary patterns. Vernaza et al. [10] uses

Markov random fields framework. Procopio et al. [7] adds

memory to the machine learning model by using ensemble

of classifiers. They report an accuracy of around 90% on

their datasets, but almost all of them detect only navigable

region and do not characterize the terrain.

The current work is different from the above mentioned

in that it explores the extent of scene interpretation ability

vested in a single camera avoiding the use of lasers and other

sensors in either generating initial class labels or as an aid

to scene classification. This investigation is especially crucial

since a camera is often much less expensive, compact, and

not power hungry like laser range finders. Unlike many pre-

vious approaches, which deal with the problem of detection



Fig. 1: Sample frames from our dataset

of navigable regions, where the terrain characterization is

neglected, our goal is to detect and characterize the terrain

ahead into commonly observed terrains. The role of a parti-

tion based classification scheme enhancing the performance

of base line classifiers has also not been reported before in

literature and its further embellishment to learn and adapt to

changing data are the contributions of this effort.

The remainder of this paper is organized as follows. First,

in Sec. III we describe our experimental settings and baseline

results. In Sec. IV we describe our novel partition-based-

method, its experiments and results. In Sec. V we describe

our Adaptive algorithm, its experiments and results. Finally

conclusions and future work are provided in Sec. VI

III. EXPERIMENTAL FRAMEWORK

Terrain classification was modeled as a classification prob-

lem of pixels and smaller windows in the past [3], [11],

where the important parameters were features, classifiers and

datasets. In this section, we describe our features, datasets

along with baseline results.

Features. For any learning based method, selecting mean-

ingful features for the classification task is very important.

We use popular RGB histogram [7], [11] and LBP his-

togram [9] as our features considering the computational cost

and performance. We use the optimal weighted combination

of these features that best suits the classifier.

Data sets. We experiment with three datasets in this study:

our own dataset and two other datasets by Procopio et al. [7].

For collecting our data, monocular camera was mounted on

the top of the vehicle, and videos were recorded at 7.5 fps.We

set the camera to high aperture and high shutter speed, in

order to minimize the artifacts caused by the moving camera

like motion blur. We collected the data in and around a

radius of 10km navigating at various speeds ranging from

0.2m/s to 4m/s. We observe that the data is challenging, as it

contained wide variations in illumination. We also observed

that the data varied from unpaved or damaged rural roads

to paved urban roads. We collected 25 videos, each of 1

min. Figure 1 shows some of the sample frames from the

recorded videos. Five different terrains were identified in the

data collection. Data contains regions of road, muddy-road,

rough-terrain, grass (Note that the class grass contains only

traversible grass or very small plants, big plants and trees

are considered obstacles. ) and obstacles ( which contains

static objects like trees, rocks etc., and dynamic objects like

moving vehicles ).

Empirical evaluation For the empirical studies, we con-

sider 200 images from our data set. We use 50% of the data

for training and the rest for testing. We extract multiple, non-

overlapping, patches of size 16×16 from these images. Thus

we have around 2 ∗ 185000 patches (The number of patches

in all the five classes are equal) for training and testing.

Baseline results Performance of selected features are

evaluated on a set of popular and promising classifiers. The

baseline classifiers which we consider in our experiments

are Naı̈ve Bayes(NB), K-Nearest Neighbor(K-NN), Artificial

Neural Networks(ANN), Support vector machines(SVMs)

and Random Forests(RF) [5]. Random forest is a classifi-

cation algorithm that uses an ensemble of unpruned decision

trees, each of which is built on a bootstrap sample of the

training data using a randomly selected subset of feature

space dimensions. Experiments were conducted by changing

important parameters like number of epochs and number of

nodes in the hidden layers in ANNs, number of trees and size

of node in RF. In case of SVMs, we conduct experiments

with linear SVM using 1 vs 1 multiclass classifier (SVM-

L) and non-linear SVM (SVM-K). We observe that RF’s

outperformed all other classifiers because of its capability to

handle large number of input variables and data samples [5].

Additionally RF classifiers are computationally efficient for

training and testing, compared to SVMs. Therefore we

choose RF as our classifier.

IV. PARTITION BASED ALGORITHM

In the last section, we have mentioned that RF classifier

is performing best among several baseline classifiers. In this

section, we describe two enhancements for terrain classifi-

cation. Initially we describe our partition based algorithm

and several experiments which indicate that, the algorithm

is robust and spatially smooth. Secondly we describe our

label transfer method along with experiments showing that,

it saves considerable amount of computation time.

The proposed algorithm partitions the training images(See

Figure 2) and trains different classifiers on different parts

of the image independently. This is repeated for partitions

of different sizes. Training different classifier from different

part of the image handles the problem of perspectivity of

the imaging process, i.e., it learns the fact that near and far

image patches show different textural characteristics. Also

learning from fixed partition over several training images

has two main advantages. The first advantage is that it

helps the classifier to learn new facts about associativity of

classes, such as occurrences of grass along with mud is more

probable than that of grass along with tar road. The second

advantage is that it helps the algorithm to be dependent upon

the position of the partition of the image and thus learns

the spatial context. By training a classifier from larger sized

partitions, global properties of the class are learnt and as

the size of the partition decreases, more local properties are



learnt. Our algorithm is a generic framework that can be

operated on any classifier.

In training phase, as summarized in Algorithm 1 we build

N classifier-sets using all the training images, let us call

them S = {C1, C2, C3, ...CN}. Note that a classifier-set Ci

contains i2 classifiers. To characterize the terrain of the given

image, for each patch of the image, we get N labels from

each of the N classifier-sets in S. From these N labels, most

occurring label is declared as the final label of the patch.

A. Experiment 1: Comparison with baseline classifiers

Figure 2a shows the percentage errors of our partition-

based algorithm operating on baseline classifiers SVM and

Random Forests. We observe that our algorithm always de-

creases the percentage errors by approximately 10%. This is

an appreciable decrease in the percentage error. It also shows

that our algorithm is generic, i.e., the algorithm improves

the performance of classifier irrespective of the classifier

chosen. To show the superiority of our algorithm across other

databases, we conduct an experiment in which our partition-

based algorithm operating over RF is tested on (i) Our dataset

(ii) DS3A and (iii) DS3B datasets of Procopio et al. [7].

We report the percentage errors in first and second column

of Table I, from the table, we observe that our algorithm

compared to baseline RF classifier, decreases the percentage

error by approximately 10% on all three datasets. We also

observe that even without training on any of the images of

DS3A or DS3B datasets, we get percentage error as low as

6.8%, the superiority of our algorithm is thus clearly evident.

B. Experiment 2: Effect on N or Learning cost

Figure 2b shows the effect of increasing the number of

classifier-sets(N), note that as N increases the learning cost

increases because one needs to train more classifier sets.

Also, the classification performance decreases as N increases.

We observe that as N increases, the percentages error initially
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Fig. 2: Partitioning the image into 4,9 and 16 partitions.

Algorithm 1 Partition based algorithm(PM)

– Training

1: Goal: To build N classifier-sets

2: Input: M Training images, S ← ∅
3: for k = 1 to N do

4: Partition training images into k2 parts, C ← ∅
5: for p = 1 to k2 do

6: Train a Classifier on pth partition over all training

images, call it KF
7: C ← C ∪ {KF}
8: end for{ Now C = {KF1, KF2, ...KFk2} }
9: S ← S ∪ {C}

10: end for{ Now S contains {C1, C2, ...CN} }

– Characterize Terrain of given image

1: Input: Image I

2: for all patches of Image I do

3: L← ∅
4: for i = 1 to N do

5: l ← get the label of the patch from classifier set Ci

6: L← L ∪ {l}
7: end for

8: Majority voted label from L is declared as final label

of the patch.

9: end for

decreases and then slowly increases. From the figure, we also

observe that the optimal choice for N ranges in between 4

to 8, which has high efficacy and also low learning cost.

C. Experiment 3: Spatial smoothness test

In Table I, third and fourth columns show the smoothness-

errors of RF and PM operated on RF(PM RF), on three

datasets. Smoothness-error is the difference between percent-

age errors before and after applying smoothing algorithm

(MRF [15]) on the predicted labelled image. We observe that

our algorithm has a negligible smoothness-error compared

to RFs, which clearly shows that PM RF itself is capable

of characterizing the image smoothly in spatial context.

Figure 3 shows the superiority of partition based algorithm

over baseline RF classifier. We observe that the images

labelled using our method are smooth in spatial context.

Fig. 3: Figure shows the test image, characterization by RF

classifier and characterization by PM respectively



D. From Image to Video
Temporal label transfer. Most of the methods in literature

deal with single image. They do not use the fact that they are

dealing with a sequence of continuous video stream. When

robot navigates through terrain, the camera captures sequence

of frames. Any two consecutive frames have lot of common

image regions. In order to characterize the terrain of the

image using traditional machine learning based algorithm

some kind of feature is extracted from each patch. The

feature vector is fed to a classifier, which returns the label

of the patch. Note that in this process, feature extraction

is computationally expensive. In our case, when a new

frame is captured by the camera, fast coarse optical flow [4]

between the previously captured frame and current frame

is calculated. For each patch of the new frame, if there is

flow present, we transfer the corresponding label from the

previous frame to the current frame, else feature is extracted

from the patch and fed to our partition-based algorithm. In

this way without even extracting features from the current

frame, we can label considerable portion of the frame. How-

ever, while transferring the labels, few incorrectly classified

labels are also transferred. Label transfer method is designed

to transfer the labels without performing classification as

transferring labels is relatively low in computational cost.

We conduct an experiment, to check (i) how much amount

of incorrect labels are transferred and (ii)what portion of the

image can be labelled by just using temporal label transfer.

The average percentage of image that is labelled correctly

over testing images is reported in fifth and sixth column

of Table I. We observed that by just using temporal label

transfer, we can label approximately 40% of the image

on three datasets with significantly lower percentage error.

This saves around 40% of the total time taken (which

includes feature extraction time and classification time), such

a reduction in time is crucial in real time systems like robots.

V. ADAPTIVE METHOD

The canonical offline or memory-less classifiers tend to

perform poorly in outdoor environments because these envi-

ronments contain huge variations in illumination. One of the

solutions to this problem is to train the algorithm on all possi-

ble variations of illuminations, which is impractical.Also, In

Dataset RF PM RF PM AVG Err

O 26.8 17.2 08.7 01.0 35.5 05.6
P-A 18.2 07.9 06.9 00.6 42.3 04.3
P-B 18.9 06.8 05.2 00.4 45.1 04.3

TABLE I: 1st and 2nd column represents percentage errors of

RandomForest(RF) and our partition based algorithm(PM).

3rd and 4th column represents smoothness-error, which

corresponds to experiment-3. 5th and 6th column represents

the percentage of images, that were labelled just by us-

ing Temporal-label-transfer method in Section IV-D, where

AVG: Average of percentages of portion of labels that are

transferred over sequence of 100 images and Err: Error in

label transfer

Fig. 4: Tracked patch-labels across three frames.

Algorithm 2 Adaptive algorithm

– Training

1: Ic ← current image that needs to be classified.

2: P ← Number of previous frames to use.

3: stepSize← Number of frames from which the patches

are to be tracked.

4: previousFrames = {Ic−P , Ic−P+1, Ic−P+2, ...Ic}
5: newTrainingData← ∅
6: for i = 1 to ⌊P/stepSize⌋ do

7: j = c− i ∗ stepSize
8: Track patches from the previous frames

{Ij+1, Ij+2, ...Ij+stepSize}.
9: for all tracked patches pj do

10: Label(pj) ← {Most repeating label among

stepSize labels}
11: end for

12: Update newTrainingData with tracked patches and

their corresponding labels.

13: end for

14: onlinePMmodel ← Get the model from Partition-

based-method trained on newTrainingData.

– Characterize Terrain of given image

1: Input: Image Ic

2: for all patches of Image Ic do

3: P1 ← the posterior probabilities from offlinePM-

model

4: P2 ← the posterior probabilities from onlinePM-

model

5: P1 = P1 + P2 {Fuse the results}
6: Label corresponding to maximum probability in P is

declared as final label of the patch

7: end for

general, increasing the amount of training data drastically,

decreases the performance of classifier. These motivate us

for developing a terrain classification scheme, that is capable

of classifying the terrain in dynamic environments. Previous

laser based solutions [7] for this problem are appreciable, but

our aim is to classify terrain using only monocular camera,

where collecting online ground-truth is impossible. In this

section, we describe our scheme for this problem that would

enable the robot to adapt to unseen images.

In the proposed algorithm ( summarized in Algorithm 2

in page 4 ), let us denote the current frame with Ii. The

previous P frames would be Ii−P ,Ii−P−1...Ii−1, which

are already labelled by our scheme. Using the previously

computed flow between successive frames in Section IV-D,

we track the patches from previous frames at an interval
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Fig. 5: Block diagram of the proposed scheme

of K frames. We use K = 5 in our experiments. For

example, Figure 4 shows the tracked patches from three

successive frames. These tracked patches across frames

slowly vary in their illumination and perspectivity. For each

of the tracked patches, we have K labels associated from

the K frames. We label the tracked patches accurately by

selecting the most repeating label from the K labels. Note

that, here the training relies on off-line classifier, even if

the off-line classifier classifies wrongly, the final labels are

superior because we choose the most repeating label from

K labels. We train another Partition-based classifier on these

tracked patches on previous P frames, we call this classifier

as online-partition-based-classifier. We update the online-

partition-based-classifier every P frames.

To characterize the terrain of the current frame, the

posterior probabilities of Offline partition based classifier

and online-partition-based-classifier are added (see Figure 5

in page 5). In case, two of the posterior probabilities are

close, we choose the label that is most repeated with in the

neighborhood of the patch.

Implementation details. In our experiments we train

online-partition-based-classifier every 200 frames, note that

while training the captured frames are classified indepen-

dently. Hence online training and classification can be ex-

ecuted in parallel. Also using RFs internally adds another

advantage. In RF, the final posterior probability is fused

result of several posterior probabilities of several trees, here

each tree can be used independently and hence can be

executed in parallel. These advantages make our algorithm

parallel and can be implemented efficiently using GPUs.

A. Performance Gain Due to Adaptive Classifier

In this section we show both by quantitative and qualitative

experimental results the advantages of having an online

classifier. Quantitatively we show decrease in errors on 6 data

sets, including two publicly available data sets. Qualitatively

we show those portions in the image where the adaptive

classifier has corrected wrongly classified patches by the

Partition method. We also show results from an experimental

run where the vehicle reaches the location from where it

started its journey.

1) Quantitative and qualitative results: Table II shows

the percentage errors of Offline-partition-based-method and

Dataset PM Adaptive Error-rate

O-A 18.2 12.7 30.2
O-B 20.2 15.9 21.2
O-C 17.0 13.3 21.7
O-D 17.5 16.1 07.9
P-A 07.9 05.3 32.9
P-B 06.8 06.1 10.2

TABLE II: Comparison of Adaptive algorithm with Offline-

partition-based-method

Adaptive algorithm on 6 sequences in columns 2 and 3.

Since the Offline-partition-based-method already achieves a

reasonably low percentage errors, further improvements over

Offline-partition-based-method by Adaptive algorithm can be

portrayed in terms of rate of decrease in error, which is

Error rate = % error of PM − % error of Adaptive algorithm
% error of PM

.

The error-rates were presented in column 4 of Table II. The

first four rows of the table correspond to 4 sequences of our

dataset. In these sequences, the robot is navigated contin-

uously until 800 frames were captured. Adaptive algorithm

is applied on these 4 sequences independently, where the

online-classifier is updated every 100 frames. The last two

rows show the percentage errors on datasets by Procopio [7],

since their data-set is a sequence of only 100 frames, the

online-classifier is updated every 20 frames. 20 randomly

picked images from each sequence were used for testing. We

observe that the Adaptive algorithm has a huge decrease in

error-rate of more than 20% on almost all the sequences. This

clearly shows the superiority of the proposed scheme. The

adaptive algorithm was tested on our dataset, we observed

that dataset contains gradual and sometimes fast gradual

appearance changes but not sudden appearance changes.

Figure 6 shows some of the test images marked with the red-

colored-patches from our dataset. They represent the labels

that are correctly labelled by Adaptive algorithm, which are

wrongly labelled by offline Partition-method.

2) Closed loop test: The closed loop test is a means

to evaluate if the performance of the adaptive algorithm

improves over time, the knowledge embedded in the classifier

is not static and has adapted with passage of time. The im-

proved performance comes by exploiting the data that comes

on the fly, while simultaneously not forgetting what was

learned at bootstrap. At the beginning of the run the robot has

learned based on the offline dataset representing bootstrapped



Fig. 6: Test images marked with red-colored-patches, rep-

resenting the labels that are correctly labelled by Adaptive

algorithm but wrongly labelled by offline Partition method.

knowledge. As the run progresses the knowledge is expected

to be enhanced. By showing improved performance upon

reaching the starting location after a run of more than 2km

we verify that the objective of learning without forgetting

the past is realized.

In this experiment, we test our Adaptive algorithm in a

closed loop path (see Figure 7 in page 6)i.e., the Adaptive al-

gorithm is applied on data which was collected by navigating

the robot on the same road twice. 20 random images from

each loop at approximately same locations were used for

testing. Note that not even one of these images were used in

the initial offline training dataset. We observe that the mean

error on the round-1 is 16%, where as the mean error for

round-2 was observed to be 13%. The decrease in percentage

error was observed mainly because, the adaptive algorithm

slowly adapts itself to the new environments. Second row of

the Figure 7 shows the test image along with the predicted

labelled images from the first and second loops. We observe

that the wrongly labelled mud(orange) patches in first loop

are being correctly labelled in the second loop.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a novel partition-based algorithm

for classification of outdoor terrains using monocular cam-

era. The proposed algorithm is generic and enhanced the

percentage error of base-line classifiers by approximately

10%. The partition-based algorithm was extensively tested

on our dataset and on other publicly available datasets and

its efficacy established. Partition-based method was extended

to Adaptive algorithm by learning from the data by fruitfully

exploiting the data that was obtained on the fly. Concepts

may drift over time, offline classifiers may not adapt to these

drift as effectively as a classifier that also adapts online. The

adaptive algorithm was tested on several data sets, where an

average decrease in error rate of around 20% was observed

to portray its advantages. Further we show results where a

vehicle upon coming back to the same starting point after

traversing a loop of more than 2km improves its performance

during the second traversal of the loop. This demonstrates

Fig. 7: 1st row: Path navigated by robot in a closed loop,

marked in green color. 2nd row: Test image with predicted

labelled images from the first and second loops.

that the adaptive classifier is able to adapt to changes that

occur during a traversal while holding on to what was learned

at bootstrap or before the commencement of navigation. The

future scope of our work includes much better processing

of the video data using complex temporal clues along with

fusing geometric and appearance clues.
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