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ABSTRACT
Human Visual attention (HVA) is an important strategy
to focus on specific information while observing and under-
standing visual stimuli. HVA involves making a series of
fixations on select locations while performing tasks such as
object recognition, scene understanding, etc. We present
one of the first works that combines fixation information
with automated concept detectors to (i) infer abstract image
semantics, and (ii) enhance performance of object detectors.
We develop visual attention-based models that sample fix-

ation distributions and fixation transition distributions be-
tween regions-of-interest (ROI) to infer abstract semantics
such as expressive faces and object-interactions (such as look,
read, etc.). We also exploit eye-gaze information to deduce
possible locations and scale of salient concepts to aid state-
of-the-art detectors. We observe a 18% performance increase
with over 80% reduction in computational time for the state-
of-the-art object detector in [4].

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human information pro-
cessing; I.5.4 [Pattern Recognition Applications]: Com-
puter vision

General Terms
Algorithms, Measurement, Human Factors

Keywords
Visual attention, fixations, salient regions, eye-tracker, ab-
stract semantics, concept detection

1. INTRODUCTION
As humans, we understand what we see. Nevertheless,

since our cognitive system is designed to assimilate only
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some of the abundant visual information from the outside
world, we only see what we attend to. Human Visual Atten-
tion (HVA) is the strategy employed to allocate cognitive
resources for visual processing. Eye movements are an im-
portant artifact of HVA [2], and consist of stationary phases
called fixations and rapid, ballistic eye movements called
saccades. Visual information assimilation happens mainly
for the portion of scene close to the center of gaze (foveal
region), and detailed visual information is assimilated ex-
clusively during fixations [6]. Popular computational tech-
niques predict visual attention on the basis of bottom-up or
early saliency [9]. However, the regions-of-interest predicted
by such saliency algorithms often do not match with those
fixated by humans [7] as HVA is dominated by top-down
factors in semantically rich images, leading to characteristic
gaze patterns [1].

Eye-gaze measurements have been employed in [3] to es-
tablish that visual attention is driven by the recognized and
interesting objects in semantically rich images. Inherent as-
sociation of an ‘order of importance’ to objects, even in ev-
eryday scenes, has been shown in [12]. Fixations on salient
image regions have been found to be consistent across a sub-
ject population for semantically rich images [13]. We term
this phenomenon as attentional bias.

This paper presents one of the first works to exploit
attentional-bias in image understanding. We summarize by
stating the key contributions of this work as follows:

• We demonstrate the extraction of abstract image se-
mantics from fixation information by combining auto-
mated concept detection with fixation analysis. This
is opposed to previous works that essentially employed
fixation clusters as a handle to identify salient image
regions [7, 13].

• We show that the fixation sequence can be exploited
through the ‘binning’ algorithm. This be used to de-
duce object interactions for characterizing actions such
as look, read, shoot, etc..

• This is also one of the first works to investigate how
fixation information can be used to enhance the per-
formance of concept detectors.

2. RELATED WORK
An exhaustive review of research works that model the

eyes and gaze is presented in [5]. Salient image region es-
timation using low-level image information has been shown



in [9, 14]. Recently, [7] motivated salient region estimation
from fixations and trained a saliency predictor using com-
piled eye-tracking data.
Recently, a biological perspective to actively segment im-

ages using ‘fixation seeds’ has also been proposed in [8],
based on the assumption that eye fixations invariably fall
on the interior of salient objects. In [11], gaze is used to
achieve eye-gaze driven, interactive semi-automated crop-
ping of images. Fixations observed consistently on salient
image regions are exploited for semi-automated localization
of image-caption labels in [13]. We now describe how fixa-
tions can be combined with concept detectors to infer ab-
stract image semantics, beginning with a brief outline of the
NUSEF [10] database used for our experiments.

3. IMAGE SEMANTICS FROM GAZE AND
CONCEPT DETECTORS

3.1 Data and Experimental Protocol
We used the NUS Eye Fixation database (NUSEF) [10]

compiled from a pool of 75 undergraduate and graduate
volunteers aged 18-35 years, for our experiments. Fixations
were acquired non-invasivelyusing the ASLTM eye-tracker
as subjects freely-viewed images. The eye-tracker is accurate
within the nearest 1o visual angle at 3 feet viewing distance
leading to an on-screen error radius of 5 pixels. NUSEF
comprises fixations for a pool of 758 images from diverse
semantic categories, capturing objects at varying scale, il-
lumination and orientation. The semantic image categories
include faces- normal (neutral, smiling) and expressive (an-
gry, disgust, surprise, fear), portraits showing both the face
and body of mammals and nudes, action images contain-
ing a pair of interacting objects as in look, read, shoot, world
images comprising living and non-living entities, reptiles, in-
jury, etc.

3.2 Description of gaze-based measures
Semantically rich images can be represented using regions-

of-interest (ROIs), with each ROI denoting a unique con-
cept. ROIs may be overlapping, and can be generated auto-
matically using concept detectors such as the face [15] and
person [4] detectors. We observe that fixations are strongly
driven by image semantics [13], Also, fixations on salient im-
age regions have been found to be consistent such as ‘man’,
‘book’ in Fig.1(a). We term this attentional-bias.
To quantitatively model and exploit attentional-bias for

inferring image semantics, in addition to the fixation dura-
tion, bias weight and conditional probability definitions in-
troduced in [13], we also use the ROI-interaction measure
defined as follows.
Let image I comprise of n ROIs, the representative in-

teraction measure, Int(l,m)I, which models the interaction
between each key ROI pair al, am, is then defined as,

Int(l,m)I = CP (m/l)I + CP (l/m)I (1)

CP (i, j) being the conditional probability of transition from
ROI ai to aj . When there is a strong interaction observed
between a pair of entities (concepts), extensively high num-
ber of eye-gaze transitions are observed between the entity-
pair as illustrated by the ‘man looks at book’ image (Fig.
1(a)), resulting in high Int(l,m)I values. We define action
images as those that are characterized by a noticeable inter-

(a) (b)

Figure 1: Action vs multiple non-interacting enti-
ties. A read image is shown in (a) with man, book
being key interacting elements. (b) is an example
image containing multiple non-interacting entities.
Fixations are shown as yellow dots superimposed on
the images. Fixation cluster centroids are marked
with red circles with radius proportional to cluster
size. The thickness green arrows are indicative of
fixation transition probabilities between them.

action between the source and recipient, as denoted by the
thick green arrows in Fig.1(a,b).

3.3 ‘Binning’ algorithm for automated ROI de-
tection

We now describe a novel ‘binning’ procedure that we adopt
to automatically determine spatially distinct ROIs based on
time-sequence information. A majority of fixation transi-
tions occur between locations corresponding to distinct, but
related image ROIs, due to exploratory behavior by humans.
We exploit this property of eye-gaze to discover and bound
semantically related image ROIs.

The binning algorithm assigns a set of P fixation points
to N bins. The algorithm begins with NULL bins. Bins
are created with time, based on the spatial distribution of
fixation points. Due to the exploratory behavior exhibited
by users, two consecutive fixations hardly fall on the same
ROI. Therefore, if fixation Sj has been assigned to bink,
the algorithm will attempt to assign Sj+1 to to binl, such
that k �= l, based on Euclidian distance, implying a fixation
transition from ROI k to l. If the closest bin is bink itself,
it’s assumed that the subject’s eye-gaze hasn’t transitioned
to another ROI in the image. Large distances between Sj+1

and binl lead to the formation of a new bin with Sj+1 as
centroid. Bins with high membership counts, represent most
salient image concepts. BinAdj is a matrix that stores the
number of transitions between bins l,m∀ l,m = 1..N . The
binning procedure is summarized in Algorithm.3.1.

As illustrated in Fig.1(a), the binning procedure enables
automated estimation of the ROIs as well as the extent of
transitions between the ROIs. This is especially interest-
ing because it is extremely difficult to infer object interac-
tions such as look, by applying computer-vision based tech-
niques on image or video data. Fig.1(a) is an example of a
read action image, while Fig.1(b) shows an image contain-
ing multiple non-interacting entities. While a high number
of fixations are observed around salient objects, the fixation
density alone is insufficient to infer object interactions.

Fig.1(a),(b) show the computed bin-centroids as red cir-
cles with radius proportional to the fixation cluster size.
Also, the green arrows denote the directions of fixation tran-
sitions between ROIs with the arrow thickness denoting inter-



ROI transition count. For action images, the fixation tran-
sitions between interacting entities are symmetrically high,
while for images having multiple non-interacting objects,
like in Fig.1(b), the symmetrical transitions are missing.
This phenomenon permits the automated classification of
action vs non-action images.

Algorithm 3.1: ClusterFixations(FixationData)

bins← [NULL]
BinAdj ← [NULL][NULL]
for each Sj in S

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

prevBin← null
for each Sj in pattern

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if isempty(bins)
then
bins.create()
bins(1).add(Sj)
prevBin← 1

else
foundBin← bin closest to Sj

prevBin← foundBin
if foundBin == null
then
prevBin← bins.addNewBin()

else
if foundBin �= prevBin
then
bins(foundBin).add(Sj)
BinAdj(prevBin, foundBin).addEdge()

else
if foundBin == prevBin
then
bins(foundBin).add(Sj)

return (bins,BinAdj)

3.4 Experiments and Results
In this section, we discuss how eye fixations can be utilized

to infer abstract image semantics. In particular, we discuss
classification of normal vs expressive face, portrait vs nude
and action vs non-action image categories. The ratio of at-
tentional bias (wi) values between eyes and nose+mouth is
employed for normal Vs expressive discrimination. A sim-
ilar wi ratio between face and body is used for portrait Vs
nude classification. We use automated detectors to infer the
necessary ROIs. However, for action images, where the in-
teracting entities are spatially separated, concept detectors
alone, are insufficient. This is owing to the fact that while
concept detectors can only identify that there is a ‘Man’ and
‘Book’ for Fig.1(a), the presence or absence of inter-entity
interactions has to be purely determined using gaze infor-
mation. The methodologies for determining ROIs automat-
ically in face and person images are the same as described
in Section 3.2.
For classification, we perform leave-one-out cross-validation,

i.e., all but one instance is used training data, while the cho-
sen one is used as test data. The training data is then used
to learn representative wi/Int(l,m)I for the classes involved
(Int(l,m)I is employed for action images only). This pro-
cess is repeated until all images are chosen for the test data.
Table.1 (rows 1-4) presents the classification results for face
and person images. An overall accuracy of 69.6% and 60.2%

Category Instances Correctly Accuracy
Classified

Normal Face 37 28 0.76
Expressive Face 25 15 0.6

Nude 32 18 0.57
Person 36 23 0.63
Action 34 21 0.62

No Action 36 23 0.63

Table 1: Row 1-4 demonstrate the combination of
concept detectors and fixations to classify face and
person images. Rows 5,6 demonstrate classification
results for Action and no-Action images.

are obtained for the face and person classes respectively.
Results obtained for 70 action images are also presented in
Table. 1 (row 5,6). Overall, correct action classification is
achieved for 62.5% of the images.

4. USING VISUAL ATTENTION TO GUIDE
OBJECT DETECTION

We now present a novel framework demonstrating the ef-
fectiveness of human eye-gaze in guiding state-of-the-art ob-
ject detectors. Sliding window based object detectors such
as [4], are essentially image classifiers. A trained classifier
is used to exhaustively inspect rectangular regions over suc-
cessively scaled down versions of the input image. Detection
scores from detections at successive levels are then combined
across multiple scales to identify image regions with maxi-
mum likelihood of the object-presence. Lacking prior knowl-
edge of the location or size of key objects in the image, ob-
ject detectors search exhaustively through an exponentially
large search space of windows. For example, a 1024x768 im-
age consumes 15-20 seconds to be searched in totality by the
[4] detector on a standard PC (Pentium Core 2 Duo, 2 Ghz,
2 Gb RAM). In the next section, we demonstrate the effec-
tiveness of visual attention in guiding a state-of-the-art de-
tector [4]. We show how object detectors can achieve higher
detection rates within shorter time-spans, when guided by
fixation clusters.

4.1 Using eye-gaze information to guide ob-
ject detection

If object search is limited to within ROIs obtained as de-
scribed in Sec. 3.3, detectors are then limited to operate on
a fraction of the scales in the image pyramid. The scales
chosen are the ones where the sliding window size is close
to the size of ROIs, which in most cases, is close to the
size of the salient object. More formally, trained model is
a filter F of size w × h. Let H be the feature pyramid ex-
tracted from the successively resized images and pos(x, y, l)
be a position (x, y) in the lth level of the pyramid. The
score of F at pos(x, y, l) then is F ∗ ψ(H, pos, w, h), where
ψ(H, pos(x, y, l), w, h) is the vector obtained by concatenat-
ing feature vectors in the w × h sub-window at level l. The
final likelihood is then obtained by combining scores so ob-
tained across different levels. The exact score generation
and combination strategy can vary across specific detector
implementations.



(a) (b)

Figure 2: visual attention greatly enhances perfor-
mance of the baseline detector [4] are shown in red
and those after enhancement using HVA is shown in
green.(b) Fine grained scale selection enables detec-
tion of key objects missed by [4].

4.2 ROI size estimation and scale control to
reduce false positives

Eye fixations are most useful for controlling false positives
obtained from object detectors (red boxes in the Fig. 2 (a).
Scale selection is enforced on ROIs by choosing levels l from
all pyramid levels L such that the area of resized ROI is close

to the sliding window area at these levels, i.e;
area(l)

w × h ≈ 1.

This is akin to creating a partial pyramid with finer grained
resizing scales.

4.3 Experimental results and Discussion
We demonstrate the applicability of our method using a

generic object detector that has been the top performing
system in the recent PASCAL VOC 2009 challenge [4]. A
subset of 200 images from our dataset is chosen for evalua-
tion corresponding to person, dog, cat and bird.
We combine precision and recall using an fmeasure score

computed over detection boxes (bbox ) with respect to human
annotated ground-truth (gtruth) boxes as,

fmeasure =
2∗precision∗recall
precision+recall

. Where,

precision =
bbox∩gtruth

bbox
and recall =

bbox∩gtruth
gtruth

. The eval-

uation over 120 images from the concept person yields a 18%
improvement in fmeasure.
Our method is independent of the application that the

ROIs are put to, and in this case, the specific object-detector
employed therein. We demonstrate this by considering
fmeasures for ROI boxes generated from eye-gaze data as
detections by a hypothetical detector and comparing against
human annotated ground-truth boxes as shown in Table. 2.

Category Images Fmeasure-VA Fmeasure-VOC
Person 120 0.3 0.34
Bird 40 0.41 NA

Cat or Dog 40 0.43 NA

Table 2: Evaluation of the visual attention guided
ROIs against human annotated ground truth by
considering ROI as a detection. This is especially
significant in cases like bird and cat/dog, where the
automatic detector [4] fails completely.

5. CONCLUSION
In this paper, we present one of the first works that em-

ploys gaze information in conjunction with concept detec-
tors to enhance image understanding. While fixation dis-
tribution amongst salient ROIs is exploited to distinguish

between normal/expressive face and portrait/nude images,
timing information of fixation data is critical for discovering
inter-entity interactions using the novel binning procedure,
in action images. Incorporating fixation information in the
detection framework improves the accuracy of concept de-
tectors, and significantly reduces computational time.
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