
Hybrid Implementation of Error Diffusion Dithering

Aditya Deshpande, Ishan Misra, and P J Narayanan
Centre for Visual Information Technology

International Institute of Information Technology, Hyderabad
India

Abstract

Many image filtering operations provide ample par-
allelism, but progressive non-linear processing of im-
ages is among the hardest to parallelize due to long,
sequential, and non-linear data dependency. A typical
example of such an operation is error diffusion dither-
ing, exemplified by the Floyd-Steinberg algorithm. In
this paper, we present its parallelization on multicore
CPUs using a block-based approach and on the GPU
using a pixel based approach. We also present a hybrid
approach in which the CPU and the GPU operate
in parallel during the computation. High Performance
Computing has traditionally been associated with high
end CPUs and GPUs. Our focus is on everyday com-
puters such as laptops and desktops, where significant
compute power is available on the GPU as on the
CPU. Our implementation can dither an 8K × 8K
image on an off-the-shelf laptop with an Nvidia 8600M
GPU in about 400 milliseconds when the sequential
implementation on its CPU took about 4 seconds.

1. Introduction

Image processing is seen as a source of rich data
parallelism, suitable for processing by a device like
the GPU. Common image filtering operations provide
high parallelism as each input pixel creates one output
pixel value, either independently or by processing a
small neighborhood around itself in the input image.
The fact that output pixels depend only on input
pixels, and that the latter do not change as a result
of processing, allows all pixels to be processed in
parallel. Such embarrassing parallelism is not available
if the operation has a causal dependence on the output
of previous pixels. Thus, the output value of “later”
output pixels depend on a mix of input pixel values and
values of output pixels computed “earlier”. A causal
processing order for 2D images can be defined by
choosing one corner as the first pixel and its opposite

corner as the last in processing order. The processing
can then proceed along rows or along columns.

The processing step on each pixel may be a lin-
ear operation or can involve non-linear computations.
Linear operations are easy to parallelize, as the output
at each pixel can be written as a linear combination
of the input values of some or all “past” pixels. The
pixel with the longest dependency decides the running
time. This may not be possible if the operation is non-
linear. The potential dependency of the first pixel on
the last makes such operations inherently sequential
and difficult to parallelize.

Several image processing operations involve non-
linear, progressive processing of pixels. We use error
diffusion dithering as the sample application, because
the optimal error diffusion algorithm poses the maxi-
mum challenge for a parallel implementation. Dither-
ing is a technique used to create an illusion of a higher
color depth in images using a limited color palette. It
approximates other colors not available in the color
palette using a spatial distribution of available colors,
as the human visual system averages the colors in
a neighborhood. Applications of dithering vary from
printing, display on small devices like cellphones,
computer graphics [1], visual cryptography [2], image
compression [7], etc. Among the class of dithering
algorithms, error diffusion dithering algorithms are
popular due to their high quality output.

The Floyd-Steinberg Dithering (FSD) [8] is an opti-
mal error diffusion algorithm [9]. It generates better
results than other dithering methods. Its traditional
sequential implementation has O(mn) time complex-
ity (m, n being the height and width of the image
in pixels). The error distribution scheme processes
pixels from left to right and top to bottom. This
introduces a sequential dependency of the last pixel
on the first. Consequently, FSD problem is difficult to
parallelize [4].

In this paper, we present strategies to perform FSD
on multicore CPUs, the GPU, as well as a combina-

978-1-4577-1950-9/11/$26.00 ©2011 IEEE

(a) Original Image (b) Image dithered to two levels (c) Image dithered to four levels (d) Image dithered to eight levels

Figure 1. An example of image dithering. The original and dithered images are of comparable quality when
dithered at 8 levels per color channel. The images are best seen in electronic form than in print.

tion of the CPU and the GPU. We show that high
performance can be obtained by using appropriate,
problem-dependent data layout and by minimizing
communications, especially in a hybrid setting. The
hybrid approach is especially promising on low-end
computers used by millions of people, such as a laptop
or a desktop with a decent CPU and a mid or low-
end GPU. Practical parallel applications have to focus
on such low end platforms to bring the benefits of
parallelism to a huge number of users and not merely
the users of expensive HPC systems.

2. Previous Work

Metaxas [4] was one of the first to parallelize an
error diffusion dithering algorithm. They parallelized
the FSD algorithm with 2m+n parallel steps compared
to mn for the sequential version, for an m×n image.
An optimal scheduling order ensured that a pixel was
processed as soon as all its data dependencies were
met. This scheduling order is same as the knight’s
chessboard move pattern that we discuss later. The use
of a linear array of processors was proposed, with each
processor processing three pixels in a row, followed by
the pixels in the next row. After a processor processed
three pixels, it transmitted errors to the neighboring
processor and activated them for processing. This effort
was mainly directed at the PRAM processing model.

Zhang et al. take an altogether different approach
to parallelizing error diffusion [11]. They dismissed
the FSD algorithm for dithering due to the low pos-
sible parallelism. They used a pinwheel dithering al-
gorithm [6] instead, which has much more inherent
parallelism. The image is divided into blocks of two
types in a checkerboard fashion. All blocks of the same
type can be processed in parallel and independently of
each other. First, blocks of one type were processed
followed by processing the other type of blocks. Met-
rics that take into account the human visual system
show that the raster-order FSD approach provides

Figure 2. Data dependency of a pixel on its
neighbors.

better results compared to the serpentine order error
diffusion used in the pin-wheel algorithm [9].

We parallelize the original FSD algorithm as it has
perhaps the most challenging data dependency pattern
that reduces parallelism. Thus, techniques developed
for it and the lessons learned from it will be useful for
many operations that are currently considered hard for
parallel processing.

3. Floyd-Steinberg Dithering

Floyd-Steinberg dithering is optimized for quality,
compared to other similar schemes. In this section,
we explain the basic algorithm as well as our parallel
implementation schemes on multicore CPUs, GPUs,
and hybrid computers.

3.1. Basic Algorithm

The basic FSD approach proceeds as follows: For
each pixel the accumulated error from its neighbors

0 0 0
0 * 7/16

3/16 5/16 1/16

Table 1. FSD Error Distribution Matrix for the
centre pixel.

Figure 3. Optimal scheduling order. Pixels with
label n can be processed independently of other
pixels, once all the pixels with labels less than n
are processed.

(explained later) and pixel value is summed. This
value is quantized to the nearest value available in
the color palette. The residual quantization error is
then distributed to the neighboring pixels in fractions
shown in Table 1. Each pixel receives quantization
errors from its neighbors and these form the pixel’s
accumulated error. The process starts with the top-left
(or first) pixel. The quantization at each pixel makes
the output a non-linear function of all past pixel values.
The algorithm is summarized in Algorithm 1. We use
Algorithm 2 as our NearestColor implementation
to obtain colors by a simple linear scaling. In the
case of color palettes, a simple look-up table can be
constructed for NearestColor.

It is interesting to see the flow of errors in FSD.
Each pixel (except the ones on the border) needs
the error values from 4 neighboring pixels before it
can be processed (Figure 2). Thus, for any pixel,
the 4 neighboring pixels need to be processed before
processing itself. In a sequential implementation, the
rows can be processed from left to right, starting with
the first.

The error distribution pattern induces a long chain of
data dependency as shown in Figure 2. The last pixel
of the image in causal order depends on the first, in
theory. The quantization at each pixel is a non-linear
operation. The access pattern introduces the following
scheduling constraint for each pixel (i, j):

T (i, j) > max{ T (i− 1, j − 1), T (i− 1, j),

T (i− 1, j + 1), T (i, j − 1)}.

T (i, j) denotes the time/iteration at which pixel (i, j)
is scheduled for processing. Thus for a truly optimal
scheduling, each T (i, j) should be one unit greater
than maximum of its dependencies, viz, T (i − 1, j −
1), T (i − 1, j), T (i − 1, j + 1), T (i, j − 1). Optimal
scheduling constraint results in an ordering pattern

given in Figure 3. This pattern is the source of available
parallelism, as the label indicates the iteration in which
the pixel can be scheduled. All pixels with label n
can be processed in parallel and independent of each
other, provided that all pixels with label less than n
have been processed. The number of pixels that can
be processed in parallel increases as we approach the
diagonal of the image. The pixels that can be processed
in parallel are arranged in a knight’s move order in
chess. The maximum parallelism for an M ×N image
is min{M,N/2}.

Algorithm 1 Basic Floyd-Steinberg Dithering
I = Input Image
OutputImage = null
for i = 1 to m do

for j = 1 to n do
OutputImage[i,j] = NearestColor(I[i,j])
err = I[i,j] - OutputImage[i,j]
I[i,j+1] += err*(7/16)
I[i+1,j-1] += err*(3/16)
I[i+1,j] += err*(5/16)
I[i+1,j+1] += err*(1/16)

end for
end for

Refer to Algorithm 2 for our implementation of
NearestColor

Algorithm 2 Threshold(value, min, max, levels)
min = min(input color range)
max = max(input color range)
levels = output color levels
value = color value to be threshold
intervalLen = (max - min)/(levels - 1)
thresholdInd = round((value - min)/intervalLen))
thresholdVal = min + thresholdInd*intervalLen
return thresholdVal

Where min, max, round have their usual meanings.

3.2. Block-based implementation on multicore
CPUs

We now describe a block based implementation of
FSD algorithm suitable for multicore CPUs with a
small number (2-8) of cores. The pixels are grouped
together into trapezoidal blocks, each block has a
structure shown in Figure 4. The shaded region in the
figure shows the pixels that need to have completed
their processing before the region ECFG can be pro-
cessed. Also, due to the pattern of error distribution

Figure 4. Trapezoidal block structure of a single
block (used in Block-based CPU algorithm).

the bottom-right corner pixel (at the vertex F) can be
processed only after all the remaining pixels are pro-
cessed. If the triangle CDE is part of the neighboring
trapezoidal block, then parallelogram ECFG defines
the current block of pixels which needs to be dithered.
(see Figure 5)

The flow of error between such blocks is the same as
for the pixels (Figure 2). This induces a knight’s move
order for parallel scheduling of blocks. Thus, Figure 3
can be thought of as giving the optimal scheduling
order for blocks, each of which can be processed by
a thread using the sequential FSD approach. For a
multicore CPU, the thread creation overhead is high.
The optimal scheduling of a certain number of threads
is also limited by the number of cores on the CPU. A
lot of time may be spent on context switching if the
number of threads is high compared to the number of
cores. It is better to create a few heavy-weight threads
as a result. We use each thread to process one or more
blocks, keeping the overall number of threads small.
This suits the CPU architecture well and gives good
results.

We use OpenMP for thread creation and manage-
ment on the multicore CPUs. The first occurrence of
a block of label n, on a row-wise left to right and
top to bottom traversal, is termed as the primal block.
Hence, by definition, for all blocks with label n, the
primal block is the one with the minimum row number.
Once the location of primal block is obtained for an
iteration, we can get the rows and columns for the other
blocks by simply row = row+ k and col = col− 2k,
where k is chosen such that row and col are within
the range of the image. The pixels within a block are
dithered sequentially in a scan-line manner. Any block
requires only the errors from the boundaries of the
neighboring blocks (see Figure 5). The pseudo-code
for primal block location and block based dithering is
given in Algorithm 3.

Figure 5. For the block-based CPU algorithm,
consider two blocks ABCE and DCFG. The triangle
DEC is the overlapping portion between these
two blocks. If we have already processed block
ABCE, then block DCFG needs to process only
the parallelogram ECFG. We just need the error
values along EC, EG (blue strips) and one error
value along BC (blue block).

Algorithm 3 Primal Block (M,N,a,b,itr)
M,N = Image Height, Width
a,b = Block Height, Width
itr = current iteration
if itr > 0 and itr <= N/b then

primalBlock.row = 1, primalBlock.col = itr
else

primalBlock.row = ceil((itr-(N/b))/2)
primalBlock.col = (N/b)-[(itr-(N/b))(modulo 2)]

end if

Algorithm 4 Block-based Floyd-Steinberg Dithering
for i = 1 to 2 ∗ (M/a) + (N/b) do

get Primal Block (M,N,a,b,i)
omp-set-threads(t)
pragma omp parallel for
for j = 0 to totalBlocks do

row = primalBlock.row - j
col = primalBlock.col - 2*j
ditherBlock(row,col,I,Out)

end for
end for

3.3. Pixel-based implementation for the GPU

Pixel based implementation of FSD is better suited
to the massively parallel architecture of the GPU. Due
to availability of larger number of cores, it is best
to create a large number of light-weight threads on
the GPU. We let each thread process a single pixel
of the image. The sequential dependence places strict
constraints on how the threads can be scheduled. In
iteration k, only as many threads can be actively used
as there are pixels with label k (Figure 3).

Figure 6. Knight order storage of an image. Here
p indicates the primalblock.

A GPU kernel operates on the pixel data and the
error values from already processed pixels stored in the
global memory. The output pixel value and the residual
error are written to the global memory. The kernel at
each thread reads the residual errors of its neighbors,
adds the correct fraction to own pixel value, performs
quantization, and writes the output pixel value and
residual error. The thread number and the iteration
number uniquely determine the pixel (i, j) processed
by the thread. However, the reading of error values
from the neighbors will be very inefficient if the image
is stored in the usual row-major or column-major order
due to the uncoalesced memory access pattern. For
instance, in Figure 3, consecutive threads process the
3 pixels with label 6 as shown. Their neighbors are not
consecutive in memory and the uncoalesced memory
access will be very slow.

Optimum memory access times can be achieved by
reordering the image. It can be seen that when the left
neighbor is accessed by each thread, the memory loca-
tions accessed are related by a knight’s move pattern,
with difference in 1 row and 2 columns. We can reorder
the image using the iteration number (labels in Figure
3) and an order within the pixels with the same label.
Figure 6 shows the mapping from a 3× 4 image to a
12-element 1D representation. This re-ordering can be
done effectively on the GPU using shared memory by
adapting the method used to transpose a matrix [10].
In practice, since the time required by other steps is
significantly larger than this conversion time, we can
make use of a simple kernel with MN threads.

After reordering, each thread of each iteration pro-
cesses its pixel in a similar way. It can be seen that
the access to error values from the neighbors as well
as access to own pixel value, is totally coalesced in the
new order, with consecutive threads always accessing
consecutive memory locations. The output pixel and
error values are written in the same order also, using
coalesced write operations. This maintains efficient

memory accesses for subsequent iterations also. The
final resulting image needs to be transformed in the
reverse using a similar kernel. The overall computation
proceeds with each iteration of Figure 3 resulting in a
separate invocation of the basic kernel.

4. Using the CPU and the GPU

The previous implementations used the CPU or
the GPU alone. Better performance can be obtained
by using both these resources. We now discuss two
approaches for the same.

4.1. CPU-GPU handover algorithm

The number of pixels that can be processed in
parallel (called parallelism) is low in the early it-
erations and in the later iterations. The parallelism
slowly increases in the order 1, 1, 2, 2, 3, 3, · · · until
the maximum value of min{M,N/2}. Depending on
the image dimensions, many iterations can have this
maximum value. Thereafter, the parallelism reduces
slowly in the reverse order to · · · , 3, 3, 2, 2, 1, 1. If the
number of threads is low, the amount of time required
for kernel setup is more than the actual processing
time of the kernel. We therefore let the CPU process
the iterations in the beginning and towards the end,
before handing over the computations to the GPU (see
Figure 7(a)).

The simple CPU-GPU handover algorithm has the
following three stages.

1) Process the initial part (top left of the image) on
the CPU until the parallelism exceeds a threshold
and then handover the computation to the GPU.

2) Process the image on the GPU until the paral-
lelism falls below the same threshold (towards
the bottom-right part of the image) and then
handover the computation back to the CPU.

3) Process the end part on the CPU sequentially.
As will be demonstrated by the results later, this
algorithm involving a CPU-GPU handover performed
better than the algorithm where the GPU alone was
used for processing all the iterations. Note that the
GPU alone algorithm is a special case of the CPU-GPU
handover, with the CPU immediately handing over the
computation to the GPU.

4.2. CPU-GPU hybrid algorithm

In the CPU-GPU handover algorithm (Section 4.1),
the CPU and GPU do not operate concurrently. This
results in the GPU remaining idle when the CPU does

(a) CPU-GPU Handover (b) CPU-GPU Hybrid

Figure 7. CPU+GPU Dithering. The pixels processed by the CPU are shown in blue and green, and those
processed by the GPU are shown in white.

(a) (b)

Figure 8. Errors transferred between the CPU and GPU for hybrid implementation. The pixels to the left of
the red line are processed on the CPU and those to the right are processed on the GPU. (a) To process
pixels in iteration 8, the GPU needs errors from iterations 5,7 (highlighted by blue border) from the CPU.
Similarly for iteration 20, errors from iterations 17 and 19 are needed. (b) To process pixels in iterations 9,
the CPU needs errors from iteration 8 (highlighted by blue border) from the GPU. Similarly for iteration 21,
errors from iteration 20 are needed.

Algorithm 5 Pixel-based Floyd-Steinberg Dithering
for i = 1 to 2 ∗M +N do

get Primal Block (M,N,1,1,i)
//Note we use a=1,b=1 for pixel based approach
threadBlocks = ceil(totalPixels/MAX-THREAD-
PER-BLOCK)
gridDim(threadBlocks, 1, 1)
blockDim(MAX-THREAD-PER-BLOCK,1,1)
ditherKernel(gridDim,
blockDim)(i,primalBlock.row,
primalBlock.col,I,Out)

end for

the processing and vice versa. On machines like a
laptop with a GPU, considerable computing resources
are idle at all times. Fast processing of large images

needs the mobilization of all resources.

Step 1 and 3 of the handover algorithm is best done
on the CPU alone as described above. The step 2 can
be jointly performed by CPU and the GPU. We do
this by partitioning pixels of each iteration (recollect
that pixels of each iteration can be processed totally
independently) between the CPU and the GPU, with
the CPU processing a fixed number of pixels. After
each iteration, along the border separating CPU and
GPU execution, a few residual error values need to be
sent either from the CPU to the GPU or in the reverse
direction. These errors need to be sent before the next
iteration begins (Figure 8). The transfer of error values
satisfies the data dependency for the next iteration.
We use the zero copy feature of Nvidia GPUs for the
transfer as the data involved is only a few bytes. This
is a feature that enables the GPU threads to directly

Figure 9. FSD Sequential implementation timings.

access the pinned memory on the CPU. This feature is
better than stream transfer methods like cudaMemcpy
for transferring small amounts of data [5].

5. Results

We present the the results for the different methods
discussed above. The focus is on real-time processing
of large images on ordinary computers using available
computing resources in parallel. We also show results
on relatively high-end computing resources such as
high-end GPUs and 6-core CPUs to show the efficacy
of our methods. The CPUs we use are the Intel Core
2 Duo P8600 (2 physical cores), Intel Core i7 920 (4
physical cores with HyperThreading [3]), Intel Core
i7 980x (6 physical cores with HyperThreading). We
disabled the TurboBoost feature on the Core i7 proces-
sors to ensure a steady clock speed. We use the GPUs
Nvidia 8600M GT (32 stream processors), Nvidia
GTX 480 (480 stream processors, Fermi architecture),
and the Tesla T10 (240 stream processors). The input
is an 8-bit gray level image and the output is a binary
image. The conversion to knight order (Figure 6) for
the 1024×768 and 6042×3298 images takes 4 ms and
99 ms respectively on 8600M. To compare the basic
algorithms, we do not include this in the total time.

5.1. Block-based implementation on CPU

We used OpenMP for handling thread creation on
multicore CPUs. We varied the block size and the
number of threads independently of each other and
checked timings for the combinations. A strong depen-
dence between the number of cores in the CPU and the
maximum number of threads used is seen, and hence
we can assume the timings to be independent of the

Figure 10. Running times for the block-based
implementation on multicore CPUs.

block size. For a given image, we calculate the block
size from the number of threads. e.g. For n threads, we
use the block size which will have n blocks in parallel
for the maximum number of iterations. We are able
to get a 3-4 times speed-up over the purely sequential
implementation. The number of threads which gives
minimum timing is roughly 1.5 to 2 times the number
of CPU cores for CPUs with Intel HyperThreading
Technology [3], and exactly equal to the number of
cores for other CPUs. By using this observation, we
can compute the optimal number of threads needed
for a certain CPU (depending on number of cores) and
from this we can calculate the block size for any image
automatically. Consider the 1024×768 image (Figure 9
and Figure 10). For the Core 2 Duo P8600, we see that
the speed-up is 2 times compared to the sequential
code, when 2 threads are used. For the Core i7 980x,
the speed-up is around 4 times (with 9 threads).

5.2. Pixel-based implementation on GPU alone

As noted earlier, the pixel based implementation on
the GPU alone is a special case of CPU-GPU handover
algorithm. The time required for 1024×768 image on
8600M is about 48 milliseconds (ms). Similarly for
a 6042×3298 image, we need about 576 ms on the
8600M. These values are higher than the corresponding
values needed for a CPU-GPU handover. In fact, as
discussed later, we observe that to improve perfor-
mance some of the initial and final iterations (with
low parallelism) must be offloaded to the CPU.

Figure 11. CPU-GPU handover algorithm times for
different number of pixels processd by the CPU for
a 1024× 768 image on a Nvidia 8600M.

Figure 12. CPU-GPU handover algorithm times for
different number of pixels processd by the CPU for
a 6042× 3298 image on a Nvidia 8600M.

Figure 13. Best timings for CPU-GPU handover
algorithm on different images and GPUs.

Figure 14. CPU-GPU hybrid algorithm times for
different number of pixels processd by the CPU for
an 6042× 3298 image on a Nvidia 8600M.

5.3. CPU-GPU handover

The CPU-GPU handover algorithm uses the GPU
resources well. We vary the number of iterations
handled by the CPU and GPU. In essence we modify
the parameter iteration number n, which signifies the
number of iterations after which the CPU hands over
control to the GPU, and the number of iterations the
CPU handles towards the end. So an iteration value
of n means that the CPU handles n iterations at the
beginning, n iterations at the end and the GPU handles
the iterations in between. Figures 11 and 12 have
plots of time v/s iteration number. Figure 13 shows
the optimum time required for various image sizes
on various GPUs. The nature of the graphs 11 and
12 indicates that there is an optimum value of the
number of iterations which should be performed on the
CPU. Increasing or decreasing this value, results in an
increase in total time. Also as seen in graph 13, the
time required to dither various images is the lowest for
the Tesla T10. These timings are considerably lower
than the sequential timings (Figure 9).

5.4. CPU-GPU hybrid

The hybrid algorithm uses both the CPU and the
GPU during the step 2 of the processing. We vary the
number of pixels handled by the CPU in this step. This
changes the boundary for the CPU-GPU concurrent
execution part of the hybrid algorithm. Figures 14
and 15) give the times for two different images for
different amounts of load handled by the CPU. The
results demonstrate the existence of an optimum value
for pixel width processed by CPU that reduces the total

Figure 15. CPU-GPU hybrid algorithm times for
different number of pixels processd by the CPU for
an 1024× 2048 image on a Nvidia 8600M.

Figure 16. Best timings for hybrid algorithm.

overall processing time. As seen from the graph in
Figure 15, the hybrid approach is not beneficial for
small image sizes. This is because the time required
for synchronization (zero-copy memory access time
and kernel setup time) is much higher in this case
as compared to the actual time for computation. The
overall timings for various images on the different
GPUs are shown in Figure 16.

5.5. Discussion

A summary of the timings for all our approaches
is presented in Figure 17. The CPU-GPU handover
and CPU-GPU hybrid approaches perform better than
the GPU alone approach, as we are able to utilize all
available computational resources of the CPU and the
GPU. On high-end hardware, our speed up is around 10
and on low-end hardware, after exhaustive utilization

Figure 17. Summary of the best timings across all
our implementations.

of resources, the speed up is 3-4, compared to a
standard sequential implementation, shown in Figure 9.
Our approaches involving the GPU work better for
large images, since the kernel set-up time, the memory
copy time, etc., become overheads for small images.
Although it may seem that in some cases, the block-
based CPU algorithm performs better than the CPU-
GPU handover or the CPU-GPU hybrid algorithm, it
must be rememembered that the multicore CPUs used
in the block-based CPU results are relatively high end
CPUs (with 4-6 cores), while the GPU as well as the
CPU in the CPU-GPU handover or CPU-GPU hybrid
results is a commodity, low-end hardware.

6. Conclusions

We demonstrated that problems with long sequen-
tial dependency, like Floyd Steinberg Dithering, can
be efficiently implemented in parallel even on low-
end hardware. We can handle various types of data
dependency by just analyzing the pixels that can be
processed in parallel in a given iteration.

The non-linear dependence on the outputs of some
past pixels, on the computation of each pixel reduces
parallelism greatly. We can study pixel independence
as a function of data dependence, generalizing on the
dependence pattern of FSD. If a pixel does not depend
on any of its neighbors (Figure 18(a)), all pixels can
be processed independently, similar to the case where
input and output are two different copies of the image.

When a pixel sends its error to its right neighbor,
each pixel depends on the output of its left neighbor. In
such a case, the pixels of each column are independent,
but each column is dependent on its previous one.
Thus, all M pixels of each column can be processed

(a) None (b) Right

(c) Down (d) Diagonal Bottom Right

(e) Diagonal Bottom Left (f) Diagonal Bottom Right
and Down

(g) Diagonal Bottom Left
and Down

(h) Diagonal Bottom Right
and Right

Figure 18. Various types of data dependences
and how they can be resolved in parallel. Pixels
in same color indicate that they can be processed
in parallel in a single iteration.

in parallel and hence the available parallelism is M
(constant), as seen in Figure 18(b). Similarly, when a
pixel depends on its upper neighbor (i.e., error is sent
downwards), the available parallelism is N (constant),
the number of columns (Figure 18(c)). When a pixel
depends on its top-left neighbor, the first row and
column can be processed in parallel in the first step,
the next row and column in the second step, etc. Thus,
the usable parallelism is M + N,M + N − 2, etc.,
with average parallelism of (M + N)/2. If a pixel
depends on the top and top-left neighbors, the available
parallelism is N (Figure 18(g)).

The parallelism available is N if a pixel depends
on the top-right neighbor (Or M + N,M + N − 2,
etc., if the top-right pixel is the earliest). If a pixel
depends on its left and right neighbors, no solution
is possible, as there are no causal ordering. If a pixel
depends on the top-right and left neighbors, the pixels
that can be computed together in each step is shown

in Figure 6. This figure also shows the reordering
of the pixels which will result in coalesced memory
access. Each parallel execution structure given in Fig-
ure 18 corresponds to a pixel reordering. For row-
parallelism of Figures 18(c), 18(f) and 18(g), row-
major ordering of pixels will suffice. For column-
parallelism (Figures 18(b) and 18(h)), a column-major
order is necessary. A similar reording can be associated
with each of the figures.

Thus we can use this strategy to parallelize prob-
lems with any kinds of non-linear data dependency
by reordering the data and exploiting the parallelism
available in these computations.

References

[1] Bruce Waltery, George Drettakis, Steven Parker, Inter-
active rendering using the render cache. Eurographics
Workshop on Rendering, 1999.

[2] Chang Chou Lin and Wen-Hsang Tsai, Visual crytpog-
raphy for gray-level images by dithering techniques.
Pattern Recognition Letters, Vol 24.

[3] Deborah T Marr, Frank Binns, David L Hill, Glenn
Hinton, David A Koufaty, J Alan Miller, Michael Upton,
Hyper-Threading Technology Architecture and Microar-
chitecture. Intel Technology Journal, Vol 6.

[4] Metaxas, P. T., Optimal parallel error-diffusion dither-
ing. Proceedings of SPIE, 1999.

[5] NVIDIA CUDA Best Practices Guide 3.2

[6] P Li and J P Allebach, Block interlaced pinwheel error
diffusion. Journal of Electronic Imaging, 2005.

[7] Pavel Slavik and Jan Prikryl, Dithering as a method for
image data compression. Winter School of Computer
Graphics, 1995.

[8] R Floyd and L Steinberg An adaptive algorithm for
spatial grey scale. Digest of the Society of Information
Display, 1976.

[9] Sam Hocevar and Gary Niger, Reinstating Floyd-
Steinberg: Improved Metrics for Quality Assessment of
Error Diffusion Algorithms. Proceedings of the Inter-
national Conference on Image and Signal Processing,
(ICISP) 2008.

[10] Greg Ruetsch and Paulius Micikevicius, Optimizing
Matrix Transpose in CUDA. NVIDIA CUDA SDK
Application Note, 2009

[11] Yao Zhang, John Ludd Recker, Robert Ulichney, Gior-
dano B. Beretta, Ingeborg Tastl, I-Jong Lin, John D.
Owens, A parallel error-diffusion implementation on a
GPU. Proceedings of SPIE, 2011.

[12] Y Zhang, Line diffusion: a parallel error diffusion
algorithm for digital halftoning. The Visual Computer,
Vol 12.

