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Abstract—Biometric identification often involves explicit com-
parison of a probe template against each template stored in a
database. This approach becomes extremely time-consuming as
the size of the database increases. Filtering approaches use a
light-weight comparison to reduce the database to smaller set
of candidates for explicit comparison. However, most existing
filtering schemes use specific features that are hand-crafted for
the biometric trait at each stage of the filtering. In this work,
we show that a cascade of simple linear projections on random
lines can achieve significant levels of filtering. Each stage of
filtering consists of projecting the probe onto a specific line and
removal of database samples outside a window around the probe.
The approach provides a way of automatic generation of filters
and avoids the need of developing specific features for different
biometric traits. The method also provides us with a variety of
parameters such as the projection lines, the number and order
of projections, and the window sizes to customize the filtering
process to a specific application. Experimental results show that
using an ensemble of projections reduce the search space by 60%
without increasing the false negative identification rate.

I. INTRODUCTION

Biometric identification has a long history and was used in

criminal and prisoner identification as early as 1870s. One of

the early problems that was encountered in identification of a

person from a large number of potential candidates was the

time required for explicit comparison of a biometric sample

against each possible candidate. Around 1900, Sir Edward

Henry developed an indexing scheme for fingerprint based

identification, where each fingerprint was classified into one

of five classes (right loop, left loop, whorl, arch, and tented

arch) based on the overall ridge flow in the fingerprint. This

reduces the search space to one-fifth, albeit with some misses

due to misclassification of samples into the above categories.

With the advent of computer based biometric identification

the speed of matching has improved considerably obviating

the need of indexing in most databases. However, electronic

storage and comparison has also enabled several large scale

identification programs such as voter registration programs,

national ID projects and large-scale AFIS in law enforcement.

Many of these datasets contain tens of millions of records and

a single identification request can take a significant amount of

time even with the advances in computing speeds. The search

time becomes an important factor in the success and failure

of such systems.

Approaches to reducing the search time falls into two

categories: indexing and filtering. Indexing, as mentioned

before, classifies a probe as belonging to a specific class

(or a few classes), and uses only that part of the dataset

from the same class for explicit comparisons. The process

is extremely quick as the time required for classification

of the probe is independent of the database size. However

approach assumes that the biometric trait can be partitioned

into mutually exclusive set of classes and classification into

these classes is accurate. Filtering approaches relaxes this

assumption and uses a simple light-weight matcher to compare

the probe against each entry in the database. All samples that

are potential candidates from this matching process is passed

on to the next stage for further comparisons.

We note that the ideal feature representation of strong

biometric trait used for identification is not well-suited for

indexing as the inter-class distances tend to be close to each

other as evidenced by low variance of the imposter distribu-

tion. Similarly, the length of feature representation and the

comparison mechanisms used in practice for strong biometric

traits makes it too heavy for use in a filtering process. As

supported by experimental evidences, a direct approach to

indexing biometric data such as the use of indexing structures

like KD-Trees on the feature representations of a strong

biometric does not yield satisfactory results. To overcome

these difficulties, researchers and biometric practitioners have

proposed a variety of features and matching strategies, often

tailored to a biometric trait for the purpose of indexing and

filtering. As we are using the indexing or filtering stage as

a precursor to explicit matching, we would like to keep the

False Non-Identification Rate (FNIR), very close to zero, while

pruning the database as much as possible. FNIR indicates the

probability that a probe with a matching record in the database

would return a no-match after the entire identification process.

Automatic classification of fingerprints into the Henry

classes was explored by Jain et al. [8], yielding a system with

12.4% FRR. A similar work by Ratha et al. [16] yielded a

False reject rate(FRR) of 10% with search space pruned to

25% of the original database. In an experiment conducted by

Cappelli et al. [3]on NIST Special Database 4, it was shown

that the distribution of Fingerprint population was non-uniform

with 2 of the 5 Henry classes they considered holding nearly

65% of the population. Note that the FNIR (corresponds to

FRR in this case) is too high for most practical purposes and



often one has to search more than one bin in the database

for every probe. This further reduces the effectiveness of the

method.

The pyramid indexing [14] technique tries to map a feature

vector into one of the pyramids centered at the mid point of

the feature range. The index of the pyramid and the location

of the probe within the pyramid helps to reduce the search

space to points within a few pyramids in the database. The

authors report considerable success with this technique, with

a database pruned to 8.86% of original size with 0% FNIR

in case of hand geometry. Unfortunately the method performs

poorly with larger feature vectors such as Gabor responses of

IRIS images. Mehrotra et al. [13] proposed the use of ordered

DCT coefficients for indexing a dataset of IRIS images. The

authors were able to prune the database to around 2.6% with

an FNIR of 35.6%. The method is sensitive to the location

and orientation of the samples and does not work well with

other modalities such as palmprints or fingerprints.

For palmprints, Zhang et al. [19] proposed the use of

high-level textural information to filter out a set of possible

candidates for fine-grained matching using interest points.

Hierarchical identification of palmprint, where a Hough trans-

form of the principal lines is used as a feature for filtering was

proposed by Li and Leung [12]. Local information extracted

from line-based Hausdorff Distance (LHD) is used for further

fine-level identification.

In short, we note that the feature representations and the

indexing and filtering schemes developed are often tailored

for a specific biometric modality. In this work, we explore

the use of random linear projections as a generic method

for deriving features from a given feature representation of

a strong biometric for the purpose of filtering. We also

propose a cascaded window based filtering scheme that would

be applicable to such feature representations in an efficient

manner.

A. Random Projections

The use of linear projections to reduce the dimensionality of

a dataset is a well explored topic. Approaches such as Principal

Component Analysis and Linear Discriminant Analysis try

to find a set of projections for a given dataset that would

maximize a specific objective function. In other problems

such as unsupervised learning, the objective function is either

not defined or cannot be optimized analytically. The distance

preserving nature of linear projections into random subspaces

were explored by Johnson and Lindenstrauss [10] in 1984 (JL

Theorem), who showed that random projections preserve the

structure of high dimensional data well in lower dimensions.

Specifically, the distortion in distances, when mapping n p-

dimensional points into a q-dimensional random subspace,

where q ≥ O(log(n)/ǫ2) is less than a factor of 1 + ǫ. The
method of random projections have been proven to be useful

in a variety of practical applications such as dimensionality

reduction, density estimation [4], data clustering [5], nearest

neighbor search [11], [7], document classification [15], etc.

Random projections have also been used in biometric ver-

ification to derive lower dimensional feature representations

of modalities such as face [6] and to derive cancelable repre-

sentations using Multi-space Random Projections [9]. In this

work, we explore the use of single random projects as weak

classifiers that can act as a filtering stage for efficient biometric

identification. We employ each projection as an independent

filter in a cascaded fashion [18] to achieve efficient and flexible

filtering. The use of cascades as a method for improving

efficiency of matching for iris was also suggested in [17].

II. FILTERING WITH PROJECTIONS

Fig. 1. Cascading random projections: P1, P2 and P3 are three projections
used in a sequence. Samples that are not falling within a window of the probe
are removed at each stage.

We consider each projection as a weak but efficient repre-

sentation of the biometric dataset. Matching against a dataset,

where each sample is represented as a scalar is extremely

efficient. If the samples of each class are clustered in the

projected space, it is reasonable to assume that samples of

the same class will be within a window of the probe in the

projected space. At each stage, we discard the samples that are

outside the window. Figure 1 shows the result of projection of

a set of two dimensional samples on to three projections and

discarding the samples that lie outside a window. The white

polygon in the middle represents the samples that are selected

from the cascaded filter.

Algorithm 1 Compute Candidate list for a probe.

CandidateList ⇐ {All templates in gallery}
for each projection Pi do

Retrieve projected values for CandidateList for Pi

Find the window around the projection of probe on Pi

Remove templates outside window in CandidateList
end for

Return CandidateList

Although the final set of samples that are selected are

independent of the order of projections, the efficiency of the



cascade is clearly dependent on it. If we use projections that

remove large number of impostor samples at initial stages of

the classifier, the number of comparisons at later stages of

the cascade can be minimized. If the projection preserves the

intra-class similarity in the projected space as compared to

the inter-class variations, then we can use a small window

that would reject a large number of impostors without losing

any genuine samples. The property that we like to maximize

is close but not identical to the Fisher criterion, the ratio of

between-class scatter to within-class scatter (SB/Sw).

At projection the data outside the filter window around

the probe is analyzed. If the data is from the different class

(person), we call it a correct reject (rejected correctly) and

if the data is from the same class, we call it a false reject

(rejected falsely). The fitness of a projection i with a window

W may be calculated using the following:

ci =

∑

j /∈W

¬S(j)

∑
j ¬S(j)

(1)

fi =

∑

j /∈W

S(j)

∑
j S(j)

, (2)

where S(j) is and indicator variable that takes a value 1, when

j is of the same class as the probe, and N is the total number

of samples. The score of the ith projection is defined as the

ratio:

Scorei =
ci

1 + fi
. (3)

We note that the definition of this objective function does

not yield to an analytic formulation of a minimization problem

to find the optimal set of projections. The use of the Fisher

criterion will give us the most discriminating set of basis

vectors. However, as we note from Figure 1, the use of

additional projections over a basis set of vectors can further

improve the filtration process. To address this problem, we

start with a large number of random projections, and select

those which maximizes the above criterion function. One could

also include the discriminating basis vectors along with the

random projection before the selection process. Section IV

compares the use of LDA vectors as a projection basis as op-

posed to random projections, and the effect of its combination.

A. Advantages of Random Projections

The use of random projections allow us to deal with a

variety of problems encountered in other linear projection

estimation techniques. As noted before, according to the

Johnson-Lindenstrauss lemma[10], a random subspace of di-

mensionality O(logn) can effectively represent n samples in

any high dimensional feature space. Moreover, the use of

random projections make the resulting representation to be

independent of the training data, and hence addition of new

data does not require changes to the random basis. We partially

negate this advantage by choosing a subset of the random

projections that best filter the training data. One can also

produce any number of projections as desired unlike methods

such as PCA or LDA that are limited by the rank of the

covariance matrix or the number of classes.

Avoiding matrix inversions that are required in the computa-

tion of other linear projection methods makes the computation

more numerically stable and widely applicable. The training

process is also relatively less expensive.

III. IMPLEMENTATION DETAILS AND CHALLENGES

Binarized feature vectors such as those used in palm and iris

codes do not behave well for indexing and filtering purposes.

We use the response values of the filters to carry out the

indexing. Each feature is first normalized to the range [−1, 1]
using the sigmoidal function:

y =
1 − e−sx

1 + e−sx
(4)

where x is a feature value of the sample and s decides the

slope of the sigmoid function. We have selected s = 1.5 for

palmprint dataset and s = 10 for iris. Once all the samples

are projected on the random basis, they are scaled to the range

[0, 10]. Note that the range of projected values depend on the

length of the feature vector.

A. Determining Window Width and Cascade Sequence

As the filtering is a precursor to the regular identification

stage, it is desirable to tune this stage in such a way that the

accuracy of the identification system is not adversely affected.

The width of the window should be selected such that the

FNIR is very close to zero. In other words the number of

genuine samples outside the window should be practically

zero.

Once the window width is finalized, one can re-order the

cascade to make the overall process more efficient. As noted

before, the order of cascade does not affect the final accuracy.

However, we use only a subset of the projections that has

very low false rejects. We randomly generate 1500 projec-

tions and select best 500 projections based on the scores as

mentioned before. The projections are ordered in the sequence

of decreasing scores as computed by Equation 3. This would

minimize the total amount of comparisons as the samples that

are rejected in one projection is not considered in the following

projections in the cascade.

B. Effect of Feature Representation

In our experiments, we use three different feature represen-

tations for the initial feature vector (before projection) for the

purpose of comparison. The first one (referred to as F1) is a

Gabor wavelet based texture feature that is popular in Iris as

well as Palmprint recognition. The response is computed by

convolving the image with the following kernel:

G(x, y, θ, u, σ) =
1

2πσ2
e{−

x
2+y

2

2σ2
}e{2πι(uxcosθ+uysinθ)},

(5)

where ι =
√
−1;u is the frequency of the sinusoidal wave;

θ controls the orientation of the kernel and σ is the standard

deviation of the Gaussian envelope. Palmprint is represented



using a 2048 (32 × 32 × 2) dimensional feature vector, while

the iris was represented using 9600 (240×20×2) dimensional

vector. In our case θ = π
4 and σ = 0.0916. Another set

of features that was proposed for iris indexing was DCT

coefficients in various subbands [13]. After normalizing for

pose and illumination variations using an adaptive histogram

equalization, image is divided into non-overlapping 8×8 pixel

blocks and are transformed to generate DCT coefficients.

The coefficients from each block belonging to a particular

subband are grouped together. Energy value Ei of each sub-

band Si is obtained by summing up the square of coefficients

as

Ei =
∑

Si(x, y)2 (6)

The feature vector consists of different energy values obtained

from 10 subbands, resulting in a 10-dimensional feature vector.

The image key consists of bin number corresponding to each

subband. The bin numbers for each subband are combined

together in increasing order of frequency. We refer to the DCT

feature representation as F2 from now on.
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Fig. 2. Effect of F1 and F3 on filtering performance using only random
projections.

Using only the Gabor response features and using a mixture

of projections computed from LDA as well as random gener-

ation, we can prune 56% of the dataset with the genuine loss

of 10%. However, if we use a concatenated feature vector of

both Gabor Responses and DCT (referred to as F3). In case of

palmprint images, we can prune the dataset upto 62.1% with

no loss in genuine (see Figure 2).

C. Effect of Window Size

The size of the window selected also plays an important

role in determining the accuracy of the system, if the size of

the window is too small, we will be able to remove more of

the gallery, but many genuine samples will also be removed

during the process. However, if the window size is too large,

it will not be able to reduce the search space considerably

(see Figure 3). We need to select the optimum window size

depending on the nature of the data.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The experiments are performed on two different modalities:

Palmprints and Iris. The PolyU database [1] of palmprint and

CASIA database [2] of Iris were used for this purpose. For
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Fig. 3. Effect of window size on filtering using feature set F3.

the palmprint, only those images in the dataset, where the

complete palm was visible was considered. For iris, the entire

database was considered irrespective of whether part of the

iris was covered by the eyelids or not. The Palmprint dataset

contains images of size 384×284 with 10 samples from each

of 385 users. The iris database contains images of size 320×
280 with 3 samples each from a total of 286 users. Tables I

and II provides the Penetration rates achieved versus the FNIR

for different databases, features and projection methods.

Feature Palmprint Iris
PolyU CASIA

Pen. FNIR Pen. FNIR

F1 64.8% 10.3% 38.9% 21.2%

Pyramid 98.9% 0.15% 88.8% 5.4%
Indexing

F2 - - 35.6% 2.6%

F3 37.9% 0% 33.3% 10.0%

TABLE I
FNIR AND FILTERING RATES WITH VARIOUS FEATURES ON PALMPRINT

AND IRIS DATASETS.

Feat. Random LDA Combined

Pen. FNIR Pen. FNIR Pen. FNIR

F1 65.0% 10.3% 46.1% 10.0% 42.4% 10.7%

F3 37.0% 0% 41.0% 5.1% 24.8% 1.0%

TABLE II
FNIR AND FILTERING RATES WITH VARIOUS METHODS OF SELECTION

THE PROJECTIONS USING THE PALMPRINT DATASET.

A. Cost analysis

We now analyze the cost advantage of carrying out a

filtering stage before explicit matching. Each stage of filter-

ing would remove a part of the dataset from consideration,

thereby improving the speed of the overall system. However,

as the number of projections in the cascade increases, the

returns starts diminishing, and at some point the cost of the

projection and matching would override the cost advantage

due to filtering. Figure 4 shows a plot of the reduction in

search space (100-penetration) versus the FNIR for various

lengths of the cascade. The green dots indicate the lengths of

1, 51, 101, . . . , 451. We note that after around 100 projections,

the reduction in penetration rate is not significant.
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Fig. 4. Data pruned after each set of 50 projections, starting with 1. The
improvement in pruning reduces as the number of projections increase.
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Fig. 5. Overall time taken (seconds) for identification as the number of
projections in the cascade increases.

To compute the actual gain in speed, we carry out an experi-

ment with a sample probe and the time taken for identification

for various lengths of the cascade was determined. Figure 5

shows a graph between the overall time taken for identification

(in seconds) and the number of projections in the cascade. This

experiment was conducted on the PolyU Palmprint database.

As expected, the returns of adding further filtering stages

reduces and then reverses as the number of projections cross

a limit (104). The time required for explicit comparison of

a template against all samples in the database was around

2.86 seconds. However, as part of the samples are filtered out,

the total time required for comparison decreases, and with a

filtering pipeline of 104 random projections, the time required

for an identification drops to 0.84 seconds. Note that the actual

time will depend on the specific probe being used. However,

the overall trend remains the same.

If the size of dataset is very large such that it cant be fit in

memory, then it is divided into chunks. Each chunk is pruned

independently. As the process directly lends to parallelization,

each chunk can be pruned at the same time on a different

machine.

V. CONCLUSIONS AND FUTURE WORK

We have presented a generic approach to biometric filtering

using cascaded filtering by random projections. The results

show that we can reduce the search space by over 63% with

no increase in the false non-identification rate (FNIR). The

approach is flexible to use different feature sets and their

combinations to carry out the projection. As each sample

can be projected independently during the training, and hence

the computational cost of inserting a new sample into the

database is minimal. The approach also allows a high degree

of parallelization or pipelined processing.

We are currently exploring the possibility of creating more

complex filtration stages with formally characterized fitness

functions.
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