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Abstract—The presence of microaneurysms (MAs) is usually
an early sign of diabetic retinopathy(DR) and their automatic
detection from color retinal images is of clinical interest. In this
paper, we present a new approach for automatic MA detection
from digital colour fundus images. We formulate MA detection as
a problem of target detection from clutter, where the probability
of occurrence of target is considerably smaller compared to
the clutter. A successive rejection-based strategy is proposed
to progressively lower the number of clutter responses. The
processing stages are designed to reject specific classes of clutter
while passing majority of true MAs, using a set of specialized
features. The true positives that remain after the final rejector
are assigned a score which is based on its similarity to a true
MA. Results of extensive evaluation of the proposed approach on
three different retinal image datasets is reported, and are used
to highlight the promise in the presented strategy.

Index Terms—Diabetic retinopathy, Microaneurysm, Clutter-
rejection, Retinal image

|. INTRODUCTION

IABETIC Retinopathy (DR) is a major public heath

issue since it can lead to blindness in patients with
diabetes. Microaneurysms (MAS) are usually the first clinical
symptom of DR. They are swellings of capillaries caused by a
weakening of the vessel wall [1]. Their sizes range from 10um
to 125um [2]. In the clinical scenario, experts rely either
on direct manual examination or fluorescein fundus angiog-
raphy where MAs appear with high contrast as bright white
spots. Given the high cost and the cumbersome regquirement
of intravenous injection of a dye for this type of imaging,
interest in the recent past has been on detecting MAs from
a colour fundugretinal image(CFl). In CFls, MAs appear as
tiny, reddish isolated dots. Automatic detection of MAs from
digital CFls can play an important role in DR screening at a
large scale [3][4]. It can significantly reduce the workload of
the ophthalmologists and the health costs in the DR screening
[3].

Early published work attempted to address the problem of
MA detection in fluorescein angiogram images of the retina
[5][6][7][8][9]. Lay et al., [5] presented the first MA detection
method for angiograms. In this method, MA candidates were
obtained using top-hat transformation which eliminates the
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vasculature structure from the image leaving possible MA
candidates untouched. Spencer et al., [7] presented a shade
correction technique and a candidate detection method using
matched filtering. However, potential mortality associated with
the intravenous use of fluorescein [10][4] prohibits the appli-
cation of this technique for large-scale screening purposes.
Instead, colour fundus imaging has emerged as a preferred
modality due to its non-invasive nature [ 10]. Extensive clinical
studies show the effectiveness of CFl for large-scale DR
screening [3].

Existing methodsfor MA detection generally consist of two-
stages where, the first stage is aimed at obtaining potential
MA candidates while the second stage is used to assign
MA or non-MA category to the candidate using features
computed around the candidate location. The main processing
components include 1) pre-processing; selection of candidate
MA and 2) feature extraction; classification. The focus of
the early methods has been on pre-processing and candidates
selection steps. Later methods focus more on designing new
sets of features and choosing of classifiers. Recently published
work have re-examined the individual processing components
and presented improvements on certain aspects.

Numerous algorithms have been proposed to detect early
signs of DR (MAs) from CFI. The first such method was
presented by Oien et a. [11]. The pre-processing used here
is similar to the approach used by [5]. In later methods, a
rule-based classification was added to the processing pipeline
[6][8][12][13]. Usher et al.,[14] employed a neural network
based classification on the candidate regions obtained using
recursive region growing and adaptive intensity thresholding.

Huang et al.,[2] presented a local adaptive approach to
extract candidates, where multiple subregions of each image
were automatically analyzed to adapt to loca intensity varia-
tion and properties. Niemeijer et al.,[4] presented a supervised,
pixel classification technique to extract red lesions to get MA
candidates. A large set of features was added to the original
feature set used in [6]. A knn classifier was used for MA
recognition. Fleming et al.,[1] presented a local image contrast
normalization technique to get more discriminative features for
MA. A vessel-free region is obtained around each detected
candidate using watershed segmentation which is then used
to enhance the contrast of candidate. A parametric model of
a paraboloid is used for the MA and fitted on a set of pixels
obtained by applying region growing on the candidate location.
The model parameters are used to derive a new set of features
for the candidate and finally classified using a knn classifier.

Walter et al.,[15] used a morphological (diameter) closing
technique for detecting candidates. A supervised density-based
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Fig. 1.
Image: A sample result for MA candidate.

classifier is used for MA classification. Quellec et a. [16]
presented a method based on template matching with a gen-
eralized Gaussian template. The matching is performed in the
wavelet domain to obtain MA candidates. The classification
stage optimizes the selection of wavelet sub-bands in which
maximum discriminative information exists for MAs versus
non-MA regions.

The existing approaches have primarily given importance
to robust modelling of the MA class and seek to suppress
the false MA class by explicit segmentation of optic disk
and vessels. Complex modeling of MA structure for candidate
detection [17][16], local enhancement for illumination invari-
ant MA features [1], use of local context/statistics and color
information [1][4][15] are few attempts in this direction. This
approach has, we believe, reached a saturation point as indi-
cated by the lack of significant improvement in the detection
performance [18] [19]. We think part of the reason for this
scenario is the strategy followed for false MA suppression via
optic disk (OD) and vessel segmentation. These segmentation
problems are well researched, however the highest precision
reported in literature is still inadequate for the suppression
task. Consequently, there is a trade-off between detection of
thin vessels and dark objects such as MAgnoise [20][21].
Alternatively it might be interesting to shift the focus to non-
MA structures (clutter) and hence, we propose a strategy that
gives prime importance to clutter rejection rather than signal
(MA) detection.

The paper is organized as follows. Section 2 gives the
motivation for a new approach and Section 3 conceptualizes
it. Section 4 illustrates a system developed upon the proposed
approach. Section 6 analyzes the results and draw some
conclusions.

Il. APPROACH FORMULATION

MAs appear as tiny, reddish isolated dots, subject to small
intensity- or structure-based transformations. As mentioned
above, detection of MAs is compounded by the presence of
similar looking structures or image noise, leading to high
number of false positives. Figure 1 shows a sample result for
MA candidates. In the sample considered, many false candi-
dates occur at vessel structures and general image background.
Some unknown structures also contribute to false alarms, those
highlighted in cyan arise due to camera noise.

If we consider true MAs and non-MAs (similar structures)
as two classes, in a given image, the probability that a

Left Image: A sample region of a CFl. Green box highlights the true MA locations and magenta box shows the similar looking image noise. Right

candidate belongs to the true MA (Pr) class is substantially
smaller, compared to that of belonging to non-MA class (P¢).
Here, we formulate the MA detection problem as a problem
of detecting a target embedded in a background clutter, where
the target occurs with a much lower probability compared
to the clutter (Pr <« Pc). From this formulation point of
view, the earlier methods can be viewed as attempts towards
getting better characterization of target class followed by a
classification stage.

We are interested in exploring whether knowledge of the
clutter class can play a positive role in MA detection. Thus,
instead of the earlier formulationswhere MA is the only object
of interest, we wish to gain better understanding of objectsin
the clutter class, in addition to the target class.

Here, we propose to model the clutter, attempting to address
the discrimination aspect early, and postpone the target mod-
eling. Such a strategy that aims at very early clutter [abeling,
can be beneficial to the overal detection as this can facilitate
progressive rejection of clutter responses (using many rejectors
sequentialy), and target recognition may be performed when
fewer clutter responses remain.

In each rejection stage, responses classified as clutter can
be removed from further consideration, retaining the remaining
responses as putative targets. These are to be passed on to the
subsequent rejector for further examination. The objective of
such a cascade of rejectors is to reduce Pc while maintaining
Pr.

I1l. PROPOSED APPROACH

Fig. 2 illustrates the proposed method where the strategy is
to get a set of candidate MAs using a simple threshold, from
a pre-processed image, and then culling the clutter among the
candidates using a set of rejectors in cascade. Since the clutter
class has multiple objects with different characteristics, the
known and frequently occurring clutter objects are rejected
first, and a second stage is designed to discriminate the
remaining class of (largely unknown) clutter objects. In the
final stage, the candidates are assigned a similarity score based
on their similarity to true MAs.

The candidate selection method is kept simple since current
focus is on rejection of false positives rather than acquiring
good candidates. The first rejection stage is aimed at elimi-
nating candidates originating from dark structures like vessels
and hemorrhages. Candidates occurring on such structures can
be well-characterized using local morphological information
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Fig. 2. Flow Diagram of the proposed approach

(for example, elongated structure co-located with the candidate
indicates the possibility of the candidate occurring on avessel).
Thus a set of shape-based features and a two-class classifier
are used to eliminate such clutter candidates.

The sources of remaining non-MA candidates could be due
to a variety of reasons including loca minima formed by
image noise, region between two bright regions, optic disk,
etc. Locally, these candidates have shape profile similar to a
MA however can be discriminable if surrounding background
region is considered. Since, it is difficult to obtain a common
characterisation for this range of clutter candidates, a target-
oriented rejection strategy is employed. A coarse model for
MA candidates is learnt using context sensitive local features.
The candidates found to be inconsistent with this model are
classified into the clutter and are eliminated.

Culling of clutter by two stages results in a significant
reduction in the number of reported candidates. In the final
stage, we compute the degree of similarity of each remaining
candidate to a true MA profile, and assign a score which
ranges from [0 — 1]. This stage uses a composite set of
features capturing true MA profile based on morphological
and appearance based information. A fina set of MA points
can be obtained by applying a threshold on the similarity score.
In the forthcoming sections, each of the processing stages is
elaborated in detail.

IV. PRE-PROCESSING AND CANDIDATE SELECTION

To minimise the effect of intensity variation in the back-
ground across the image, preprocessing is performed on the
green colour plane of CFl I,. The green colour plane is
chosen because it provides highest MA contrast compared to
other colour planes [1] [4][16]. The background is normalised
by subtracting an estimate of the background from I,. The
estimate of the background (called ;) is obtained by median-
filtering I, with a pre-defined sized kernel whose size is
chosen such that it can include the widest blood vessel in
the dataset.

Irg = Iy — Ing @

In Iy, the background is normalized and of high intensity,
whereas dark structures of I,, such as vessels and MAs
have low value. This is followed by morphological bottom-
hat enhancement using a disk for the structuring element, to
enhance small size structures like MA, resulting in Iyopa:-

Next, a morphol ogy-based approach presented by [6] is used
to extract linear structuresin various orientations. The suprema
of morphological openings (obtained with linear structuring
elements of different orientations [4]) is used as the marker,
and with Ip,nq: as the mask, we perform morphological
reconstruction, to get [,...on. The fina preprocessed image
1, is obtained by subtracting I,.ccon from Ipoina:, thereby
suppressing linear structures. The potential candidate locations
in I, have a high intensity. Since, MAs have high values in
I,,,, an empirically chosen threshold is applied to get candidate
regions. The local minima in the green colour plane of each
candidate regions are used as candidates (designated as C'y) in
further stages.

V. REJECTION STAGE-1 (RS1)

Theobjective of RS, istoidentify from Cy, the known class
of clutter namely, candidates on vessels, hemorrhages, vessel
junctions etc. A set of features are designed to capture infor-
mation and aid in discriminating above clutter candidates from
true-MA. The information about the location of occurrence is
extracted from each candidate using some specialy designed
filters, and scale-specific statistics, as explained below.

Anisotropic Filters: Vessel fragments can be modeled as
elongated structures. A set of oriented filters are obtained
by rotating a second-derivative of Gaussian filter [22]. The
analytical expression for the second derivative in x-direction
based on 1-dimensiona kernels and separability, is derived
using the following relationships:

’132
(@) = —=—5 expl(—55) @
Gh(@) = —gs(2) x =
% —o?
91(@) = gala) x = ®)

A smoothed anisotropic Gaussian second derivative filter ¢,
is constructed using separability as:

(4)

where o.. is the standard deviation of a static 1-dimensional
smoothing Gaussian function with a value of 9 pixels. Re-
sponses obtained from these filters help in discriminating

Goa(2,9,0) = g0 ()90, (y),
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between false candidates on vessels and true MAS by way
of high response to the former and low response to the latter.

A bank of filters at 6 equi-spaced orientationsand 3 different
scales are used at the output of which the maximum (r,,),
variance (r,) and sum (rs) of the responses are computed.
The following features are then derived for each candidate at
each scale: @) (rs — ry,,): this difference is high for true MA
locations which are characterised by high r», (about 6 times
that of r,,) compared to clutter located on vessels and b) r,:
this is expected to be low at true MA locations, and high at
vessel and junction locations.

Scaled difference-of-Gaussians: A difference of Gaussian
(DoG) filter acts as a blob detector, giving a high response
to dark, isotropic structures. We introduce a variant of DoG,
given by

fa=a g(o2) = g(o1) ©)

where o1 < 09 and a > 0 is a parameter controlling the
height of the rim, o4 controls the width of the rim. At a
candidate resembling a well-defined MA, this filter's response
rq ishigh. If acandidatelieson avessdl, 4 islow value (going
negative if the vessel is thick). This is hence an informative
feature for discrimination.

Inverted Gaussians. While the first filter responses help
in discriminating candidates on vasculature, a second type of
clutter structure that is similar to MAs are hemorrhages. In
order to capture these, inverted Gaussian filters at high scale
are used. Thesefilters will maximally respond to larger objects
such as hemorrhages and thick vessels in contrast to well-
defined MA.

A. Feature Set-1

o 15 — 7, Difference between sum and max of responses
from rotated g, (2(*/?)) for i = 3,4,5 pixels

« 7, : Variance of responses from rotated g, (2(/?)) for
1=3,4,5 pixels

o 74 : Response to DoG filter at o5 = 2,4,6 pixels

o 74(0) : Response to inverted Gaussian at o =2,4,6 pixels

B. Classifier-I

In the above feature space, true samples occupy the positive
(first) hyper-quadrant and are agglomerated near the coordinate
origin (have low positive values). In contrast, false samples
are scattered away from the origin. We use the nearest-mean
classifier, which computes the mean of the true and false
training samples, and stores them as prototypes. A random
selection of the vessel points from the segmented vessel map
obtained by [21] is chosen as training samples while true MA
samples are taken from the ground truth.

A new sample z, is labeled by considering the distance to
the prototypes and assigning the label of the nearest prototype
to the new sample:

lg = argmin(||zy — il]),7 = true, false (6)

where p; isthe prototype of classi in thetraining set. Figure
3 illustrates sample on OD rejected by RS, .

Fig. 3. Sub-image around optic disk indicating candidates rejected by RS

VI. REJECTION STAGE-2 (RS>)

The function of this rejector is to identify from the candi-
dates C passed by RS+, the remaining class of clutter objects.
These clutter arise due to a variety of reasons including image
noise, poor image resolution etc. and are difficult to model.
Therefore, we employ different rejection strategy where clutter
candidate is defined as a sample which appears to be inconsis-
tent with the target [23] (or abnormal). Here, we coarsely learn
a model for target class using features representing isotropic
nature and absolute topography of a candidate in addition to
the appearance-based feature derived in RS;. Outliers to this
model can be isolated as clutter, and rejected. Next, features
used for target modeling are elaborated in detail.

Distance feature: In RSy, the distance between a sample
x, and the true-sample prototype (denoted as drye = ||xp —
Hrue||) €ncodes a condensed appearance-based information
about the sample. The value of dy,... is low for candidates
that are similar in appearance to well-defined MAs. It is thus
carried forward to RS as a feature.

Correlation features: MA structure is typicaly found to be
isotropic in nature. A set of features to capture this informa-
tion would be the correlation between a local neighborhood
containing the structure, with itself after rotation. A high
correlation at several orientations indicates a highly isotropic
structure. The set of such correlation valuesis used to quantify
the isotropy of the candidate.

The features are computed by correlating a square window
(from 1) around the candidate (larger than the expected size of
the lesion), with rotated versions of the window. The rotation
is performed about the minima of the candidate. A total of 5
equally-spaced orientations (each /5 radians apart) is used
to get 5 features. These features are denoted as Ryg. This
feature only encodes isotropy of a candidate and not capable
of discriminating between large and small objects. Next, we
derived a set of features capturing absolute topography around
a candidate.

Level cuts: The local gray-scale topography around a can-
didate can be represented using iso-contours or level-curves
of the local neighborhood considering it as a height map.
Since, MAs are local minimain I,, the level curves at a MA-
like candidate can be expected to be closed curves, making it
possible to perform filling within each level-curve, to obtain
afinite area. We cadll this area a level-cut.
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Fig. 4. Surface profile of a MA candidate with a plane at level [ = 72
sectioning the surface.

Fig. 4 depicts the topographic surface obtained by visual-
izing the local gray-scale neighborhood of a candidate as a
height map. A plane parallel to the ground plane (at level
1) when intersecting with the surface, sections it and the
intersection points define the level-curve (shown in Fig. 4). A
level cut is the closed area bound by a level-curve, containing
within it the coordinate of the minima. The area of a level-cut
at level ; is taken to be the number of pixelsin the level cut
and is denoted as A(l;).

At each candidate, the lowest and highest relevant levels,
denoted as [,,;, and l,,q., ae found from the minimum
and maximum gray values within a window (of radius 5)
centered at the candidate minimum. M equi-spaced level
cuts are chosen between these extrema and the area A(l;);
i =1,2,...,M of each level cut is determined and used to
derive the following features:

d1 = lLnaz — Lnin : the estimated depth of the candidate
grayscale topography

l. = argmax{A(l;+1)/A(l;);i = 1,2,..., M} : this de-
notes the level at which the level-cut area changes significantly
(by 15 pixels) at the next level.

v: the ratio of volume of the candidate, to the volume of an
inverted cone with base area A(l.), and height h:

Ve

Y= A3 ®

le
where V, = > A(l;),

i=0

h=dy l./M

A. Feature Set-2

o dirqye: distance of sample from pigpye Of F'Sy
o RRyy: correlation of candidate with small window at 5
angles of rotation (36°)
m/dy: depth of the candidate
A(ly): area at the first level above Iy
m/l.: where [.. is the “rim-level” of the candidate
A(l.): area of the candidate
A(l+1)

o I': measure of “jump” defined asI" = (AR

Fig. 5. Sub-image indicating candidates rejected by RS;.

o 2 measure of “overflow” definedas Q = 41|, = A(l.+
1) — Al) )

o v Volume of the lesion relative to volume of cone of
similar dimensions

B. Classifier-11

In this second feature space, the MA samples are designed
to agglomerate near the origin, and clutter samples are ideally
scattered. The clutter samples are thus amenable to discrim-
ination as outliers to a model dictated by the distribution of
true samples in the feature space.

We model a hyper-cuboid H around the true samples,
defined by the range occupied in each feature dimension for
the true samples. The true samples are taken from the ground
truth available with the training images. The true samples
ideadly have a limited range and enclose the samples within
H near the origin. Clutter samples lie outside the hyper-
cuboid obtained. The dimensions of the model H are stored.
A candidate obtained from RS is rejected if it does not lie
within H. Figure 5 shows some candidates rejected by RS.

VIl. SIMILARITY MEASURE COMPUTATION (L)

The regjector cascade outputs a set C'» of candidates which
are likely to be true MAs. This final module assigns a numeri-
cal similarity scoreto each samplein C'z, indicating the chance
of it being a true lesion. We choose to perform the score
assignment by considering the signed distance of a sample
from the optimal hyperplane of a two-class SVM, in feature
space. A complete representation for true MA is obtained
by considering features from the previous rejection stages
in addition to the features encoding context and structure
symmetry information which are explained next.

Context features: The following set of context features are
derived, which considers the pixels within the candidate, and
a context surrounding it.

« Difference in mean value of the candidate region and its
surround of size (49 X 49) pixels computed in 4 spectral
bands: red, green, blue and hue. msd ; = mean(cand)—
mean;(surround), where j = {red, green, blue, hue}

« Theresponse of the candidate to a center-surround binary
filter [24] with off-center. Thisis used as a rough descrip-
tor of candidate computed on a image patch centered at
local minima.

o The perimeter p of the candidate, found as the number
of pixelsin the level curve at . (defined in F'Ss)

o Mean response and standard deviation of derivative of
Gaussian filter bank: ¢., 9y, 9za Jyy, Joy 8 PiXels within
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the candidate (5 filters at 4 scales each, resulting in 20
features; scales used are o = {1, 2,4, 8}) pixels
Symmetry features: A set of 8 features is obtained at each
candidate by filtering with rotated Haar-like wavelets [ 25]. The
vertical 2-dimensional non-standard Haar wavelet is rotated
in 16 orientations (each separated by 7/8) to get 16 filters.
The axialy anti-symmetric feature pairs capture symmetry of
the candidate along different axes, and the ratio of the pair
responses is used as features.

A. Feature Set-3

o dirue, A(l1), A(l.), T, Q, v: Taken from feature set-2.

o md,, mdgy, mdy: Difference in mean values within the
candidate and its surrounding region for red, green and
blue colour plane.

o mdy: Same as previous, in hue plane

« c.s: Response of center-surround binary filter [24]

o p: Perimeter of the candidate

o mr(o),sd(c): Mean and standard deviation of response
to Gaussian derivative filters g,., gy, 9za, Guy, gyy Within
the candidate. o = 1, 2,4, 8 pixels

o s.f: Symmetry features from non-standard Haar wavelet

B. Classifier-3

Here, we estimate the similarity score for a sample based
on its distance from the optimal hyperplane of a support
vector machine (SVM). A strength of SVM is its ability to
handle imbalanced distributions of true and false samples
[26]. Additionally, it permits the use of non-linear kernel
transformations, to overcome hyperplane linearity assumption.
The similarity score ¢ (a function of x) obtained is such
that it models a posterior probability of the two-class SVM
assigning a label “true-MA” to z,, given its feature values,
i.e, ¥(xq) = plyq < truelzy). In our experimentation, we
parameterised this probability score to get detection sensitivi-
ties at different false positive per image (fppi) rates.

VIII. DATASETS

For the purpose of evaluation three datasets were con-
sidered: two are the publicly available datasets namely, the
pIARETDB1[27] and roc,[18] datasets, a custom-built dataset
called crias. Images in each dataset are divided into training
and testing sets. Images in each dataset gives arange of image
sizes (768 X 586 to 1500 X 1100), resolution, etc. The detailed
specifications of the selected datasets is given next.

DIARETDB1 consists of 89 images, of which 5 images do not
contain any DR-indicative lesions. The images were collected
from a screening program and taken under a fixed imaging
protocol. The images were selected by the medical experts,
but their distribution does not correspond to any typical
population. The ground truth supplied with this dataset is a soft
map consisting of regions indicating expert consensus level
information averaged from multiple experts. A bright region
thus indicates high consensus about the presence of MA.
According to the guidelines given with the dataset, evaluation
of the presented method is done on a 75% consensus level

(relative to maximum) as the ground truth. A total of 182
MAs are obtained at 75% consensus level (i.e. majority vote
between 4 experts). A test set of 68 images is formed and
remaining 21 images were used in training.

ROC, consists of 50 training images with associated ground
truth, and atest set of 50 images whose ground truth is retained
by the organizers of a competition [18]. The images are taken
from a DR screening program across multiple sites, and hence
captured with different cameras, fields of view and resolution.
The images in this set are relatively heterogeneous [18]. The
number of MAs in the training set is 336 and 343 in the test
set [18].

CRIAS consists of 288 images collected by us from a loca
hospital. These images are mainly collected for clinical docu-
mentation and patient profiling. These images are of diabetic
patients who already have been diagnosed with DR. Therefore,
these images have high pathology occurrence and laser marks.
Ground truth on these images was obtained from two experts
and merged using the OR rule: a location is considered to
have an MA if at least one expert has marked it. This dataset
contains atotal of 1436 MAs based on the above criteriawhich
is far higher compared to the two public datasets. A training
set of 100 images and test set of 188 images were created.
The detailed specifications and other variability occurring in
each of the selected datasets is summarized in Table 1.

IX. EXPERIMENTS AND RESULTS

Various experiments were conducted with the following
objectives. To assess the detection performance 1) at the
lesion-level and image-level, 2) across datasets which present
different kinds of challenges and 3) against other approaches,
to assess the potential of the underlying approach. The second
objective is motivated by the fact that all existing approaches
report only on one dataset and hence no attempt has been
made to address the question as to whether performances can
be generalised across datasets.

A. Settings

We accommodate the variability in the given image res-
olution, which can affect feature values, by averaging the
responses of filters with centers positioned at each of the 8-
neighbors of the candidate location. The responses are given
equal weight of 1 for the 8 neighbors, and 1.2 for the center.

To obtain optimal classifier settings, we use 90% MAS from
the training images for training while holding out the rest for
evaluation. We perform folded validation with 8 folds, and
the best performing classifier setting during this evaluation
was retained and used for testing. RS; and L use two-
class classifiers which require negative samples during training
phase. False samples for training were generated via a random
selection of the background and vessel regions of training
images. Since, RS; mainly focuses on outlier modeling, the
ratio of true- to false-samples used for training was higher
1: 15 compared to the L stage 1 : 5. For the L-stage, a radial-
basis kernel was chosen: s (z1,72) = exp(—7|lx1 — x2|[?),
and a L 2-soft-margin kernel-SVM (with slack coefficient=10)
[26] was trained.



TBME-00468-2010-R1 - IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING

TABLE |
DATASET SPECIFICATIONS. ABBREVIATIONSUSED: |VW: ILLUMINATION VARIATION WITHIN IMAGES; VA ILLUMINATION VARIATION ACROSS
IMAGES; BLA: BLURRING AND LIGHTING ARTIFACTS; CP: IMAGES TAKEN UNDER A COMMON PROTOCOL ; ICT: IMAGE COMPRESSION
TYPE[UC:UNCOMPRESSED, C: COMPRESSED]

No. of Images Imaging Factors
(Training/Testing)
Cameras FOV VW VA CP Image Mydriatic
resolution
DIARETDB1 89 (21/68) fixed 50° high low yes fixed no
ROCy 100 (50/50) varying 45° low medium no mixed no
CRIAS 288 (100/188) fixed 30° — 45° low high yes fixed yes
Image Pathological Ground
Quality Category Truth
Clarity Contrast ICT BLA High Mild Type Number of experts
DIARETDB1 low low PNG (UC) low no yes soft multiple
ROCy medium medium JPG (C) low yes yes hard 4
CRIAS high high TIF (UC) high yes yes hard 2
TABLE Il 1
SENSITIVITIESOF THE PROPOSED METHOD AT DIFFERENT FPPI.
Dataset FPPI
1 2 4 8 12 16 20
DIARETDB1 | 0.71 | 0.74 | 0.78 | 0.83 | 0.85 | 0.87 | 0.88
ROCy; | 024 | 033 | 040 | 050 | 053 | 0.55 | 057 >
CRIAS | 010 | 015 | 024 | 0.36 | 044 | 049 | 051 z
B. Assessments

First, the evaluation is done using both a free-response
operating characteristic (FROC) and a receiver operating char-
acteristic (ROC) as they help assess the potential of the
proposed solution for two different type of applications: as
an assistive MA detection tool and as a decision support tool
to decide if an image is normal, respectively.

Next, an assessment of the proposed solution is done
against 8 different methods which were recently analysed on
the roc, dataset [18]. Dataset specifications and evaluation
methodology presented in [18] are adopted to facilitate an
objective comparison. Various operating points are considered
to capture our method's performance at different sets of fppi.

C. Results

Lesion-level detection: Figure 6 shows the FROC curves for
our method obtained on three different datasets. These curves
indicate that the best and worst performance is on pIARETDB1
and crias respectively. A comparable performanceis achieved
on roc, and crias beyond 30 fppi. The sensitivity is good on
ROC, reldive to crias, even for lower values of fppi. The
maximum sensitivity achieved varies with the dataset due to
the limitation imposed by the candidate selection scheme. As
mentioned in section VIII, biarReTDB1 contains images of equal
size and resolution with minimal inter-image variability unlike
the roc,. Hence, there is only a small variation among true
MAs in this dataset. This facilitates better candidate selection,
therefore highest sensitivity S,,,,.. of 88.46% (at 18.02 fppi)
was achieved for piareTps1. Whereas, crias dataset contains
images from the patients having confirmed DR. It has only
small variations in imaging, but poses challenges in terms of
the high number of hemorrhages of varying sizes (some being
similar to MAS) and other lesions in the images. The first
row in fig.8 shows a false negative example missed by the

——ROC
——CRIAS
<= DIARETDB1 |-~

0 i i i i i i i i i i i
0 5 10 185 20 25 30 35 40 45 S0 655 60
False positive per image (fppi)

Fig. 6. FROC curves: Lesion-level performance on 3 datasets.
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Fig. 7. ROC curves: Image-level performance on DIARETDBI and CRIAS.

candidate detection stage, due to its size being larger than a
typical MA.

For a closer look at the FROC curves, sensitivities obtained
at a set of particular fppi rates are given in Table II.

The end-to-end performances on the individual dataset can
be understood by examining the performance at individual
stages. In piareTDBI, the candidate selection stage has sen-
sitivity above 0.90 and detects, on average, 80 candidates per
image. Both RS1 and RS2 altogether reject 60% of the can-
didates and retain an average sensitivity of 0.88. The L-stage
receives, on average, 48 candidates per image. Comparatively,
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Fig. 8. Sample detection results with ground truth. Column 1 shows original
colour images and column 2 highlights detection on normalised green colour
plane.

the overall rejection achieved on roc, and crias was poor.
In crias, for example, the candidate selection stage has a
sensitivity of 0.79 and produces 157 candidates per image.
Both RS stages reject 45% candidates while maintaining a
sensitivity 0.75, passing, on average, 87 candidates per image
to the L-stage. Thus, due to poor clutter suppression in roc ,
and crias, the L-stage received twice as many candidates (as
in piArReTpB1) and incurs a higher cost in terms of fppi, for
attaining a similar sensitivity as piareTpsi. This manifests
itself in the form of a slow rise in the FROC curves for roc,
and criAs.

The higher cost incurred is due to the following. By design,
the false candidates passed on to L stage will be hard to
classify, since easier false candidates (such as local intensity
minima formed due to hard exudate clusters and discontinuity
in a vessel segment) would have been rejected in the earlier
stages. The second row of Fig. 8 showsinstances of ambiguous
false positives. The ambiguity is in the image characteristics,
based on which it is difficult to distinguish between a false
and true MA. This distinction is possible only by incorporat-
ing high-order information about the local surround like the
presence of exudate cluster or part of a discontinued vessel
segment.

Image-level detection was carried out as follows: An image
is declared abnormal if it contains at least one MA. Figure 7
shows the ROC curves obtained on two datasets. It can be
seen that the proposed method achieves sensitivity of 0.90
on piareTpe1 and 0.45 on crias at specificity of 0.90. The
difference in lesion- and image-level sensitivity is due to the
fact that the method does not require detecting every lesion in
an image having multiple instances of MAs. The image-level
performance is not reported on roc, since ground truth is not
available on the test set.

Comparison against other methods: A detailed comparative
analysis of 8 different detection methodsincluding ours (IRIA-
Group), is reported in [28] . The evaluation criterion used
is a score obtained by averaging the sensitivity values at a
set of fppi rates. Likewise, we consider two sets of fppi: the

TABLE Il
SCORES OBTAINED ON ROC, BY DIFFERENT METHODS[18] [28] AT TWO
SETS OF FPPI RATES.

| Method [[ AtOP1 [ At OP, |

Niemeijer et al. (4 0.395 0.558
LaTIM [ig 0.381 0.565

GIB Valadolid (29 0.322 0.514
OKmedical [3q 0.357 0.502
Proposed Method 0.264 0.503
Fujita Lab [3y 0.310 0.468
ISMV (3 0.256 0.438
Waikato [2g 0.206 0.355

first set (OP-1:fppi: [0.125, 0.25, 0.5, 1, 2, 4, 8]) to capture the
performance in the rising part of the FROC curve [18] while
the second set (OP-2: fppi: [2, 4, 8, 12, 16, 20, 24]) to largely
capture the plateau region.

Table Il shows the scores reported for 8 different methods
[18]. The methods are ordered according to the obtained
average performance on OP-1 and OP-2. It can be seen that for
OP-1, the score obtained by the proposed method is low due to
its slow rising behavior as mentioned earlier. Whereas, for OP-
2, the score is competitive. A poor score at OP-1 is mainly
due to the inability of the L stage to handle the ambiguity
between the target and the clutter.

Recently, one of the 8 methods (namely [30][33]) included
in Table Il has also been tested on piareTDBI. A proper
comparison of our method with this report is difficult since
the results have been reported in [30] only on 11 images
which are said to be randomly selected out of the full set of
89 images in this dataset. The average sensitivity obtained at
fppi: [0.5, 1, 2] is reported to be 0.713 for these 11 images. In
comparison, the proposed method has an average sensitivity of
0.706 on similar fppi rates however tested on a much larger
set of 68 images (test set). It is noteworthy that the scores
of the proposed method and [30] differed more significantly
(score of 0.264 compared to 0.357) on RoC.,.

From the above results, we conclude that the performance
achieved by the proposed method on piareTpB1 indicates
promise in the approach. Further, the lesion-level performance
of amethod on a dataset may be an insufficient basis to predict
its general performance across multiple datasets.

X. CONCLUSIONS

In this work, we formulated MA detection as a target
detection in clutter problem and proposed a successive clutter-
rejection solution for MA detection. The rejection stages are
formulated based on the occurrence frequency and discrim-
inability of the underlying clutter. A new set of morphological
and appearance-based features are introduced to characterize
the clutter and MA structures. In earlier approaches, a single
classification step is employed to distinguish between the
target and multiple sub-groups of clutter class together which
demands design complexity in feature space and underlying
classifier. The proposed processing pipeline separates both
classes and further allows various sub-groups of clutter classto
be handled through a cascade solution. This gives flexibility to
achieve independent optimal solution for individual sub-tasks
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and helps simplify the final classification step (L stage) by
reducing the number of clutter sub-groups to be handled.

The assessment of the proposed method demonstrated that
it performs well in image-level detection of MAs across 2
datasets. At the lesion-level, the performance is variable with
the dataset. Experiments performed at lesion-level detection
indicate scope for improvement in performance across datasets
and also highlight the difficulties that arise in candidate selec-
tion due to the variability found across datasets. Advanced
machine learning approaches such as kernel-based approaches
and training regimes with larger training dataset are some
solutions that can be explored.

Overdl, our experimental evaluation on three different
datasets offers some insights about challenges in developing
automated solutions for MA detection: a) In the current
scenario, automated screening solution is easier to realise if
a fixed protocol is used to acquire images as in DIARETDBL.
This however, may be practically difficult; b) In order to
develop robust solutions (and obtain a predictably consistent
performance for an MA detection algorithm), a large, hetero-
geneous dataset is needed. Hence, more effort needs to be
directed towards building large benchmark datasets composed
of images acquired in different settings such as different
cameras, imaging protocol, population etc. This will give a
common platform to evaluate methods and make evaluation
close to a real screening scenario [34].
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